Ao meu querido amigo e ilustre colega
Dr. Horta Barbosa,
offerece
Sr. Ferreira Araújo.

THESE DE CONCURSO
ESCOLA POLYTECHNICA

These de Concurso
A
VAGA DE LENTE SUBSTITUTO
DA
Primeira Secção
DO
CURSO GERAL
APRESENTADA POR

Francisco Ferreira Braga

RIO DE JANEIRO
Typographia do Jornal do Commercio, de Rodrigues & Comp.
1898
JUIZES DE CONCURSO

PRESIDENTE

Conselheiro Dr. Domingos de Araújo e Silva

Dr. Antonio de Paula Freitas.
Dr. Joaquim Duarte Murincho.
Conselheiro Dr. Ernesto Gomes Moreira Maúa.
Dr. Luiz Carlos Barbosa de Oliveira.
Dr. João Baptista Ortiz Monteiro.
Dr. Oscar Nerval de Gouréa.
Dr. André Gustavo Paulo de Frontin.
Dr. Carlos Cezar de Oliveira Sampaio.
Dr. Luiz Raphael Vieira Souto.
Dr. José Agostinho dos Reis.
Dr. Elysio Firmo Martins.
Dr. Arthur Getulio das Neves.
Dr. José Antonio Murincho.
Dr. Joaquim Galdino Pimentel.
Dr. Manoel Pereira Reis.
Dr. Manoel Joaquim Teixeira Bastos.
Dr. Antonio Ennes de Souza.
Dr. Manoel Timothée da Costa.
Dr. Wencesláo Alves Leite de Oliveira Bello.
Dr. Licínio Athanasio Cardoso.
Dr. Eugenio Tisserandot.
Dr. Luiz de Carvalho e Mello.
Dr. João Felippe Perreira.
Dr. Eugenio de Barros Raja Gabaglia.
Dr. Henrique Augusto Kingston.
PRIMEIRA SECÇÃO

DO

CURSO GERAL

4.ª CADEIRA DO 4.º ANNO

Geometria analytica. Calculo differencial e integral

4.ª CADEIRA DO 2.º ANNO

Calculo das variações. Mechanica racional

2.ª CADEIRA DO 5.º ANNO

Mechanica aplicada às machinas: Cinematica e Dynamica aplicadas
DISSERTAÇÃO

1.ª CADEIRA DO 1.º ANNO

ESTUDO OBJECTIVO DAS SUPERFÍCIES
INTRODUÇÃO

No estudo normal das leis que presidem aos fenômenos geométricos, feito à luz da immortais concepção cartesiana, é necessário distinguir dois aspectos essenciais: o subjetivo e o objetivo. O primeiro corresponde à instituição dos métodos analíticos, elementares ou transcendentes, destinados à solução uniforme das questões gerais que podem ser propostas na exploração de todas as formas geométricas; é o ponto de vista em que se colocaram Descartes, Fermat, Huyghens, Barrow, Wallis, Cavalleri, Leibniz nos memoráveis trabalhos que tornaram perpetuamente celebre o semi-século decorrido entre a fundação da geometria geral e o advento do cálculo transcendente. O segundo é o que se refere à aplicação comparativa do conjuncto daqueles métodos às multiplas e variadas formas emanadas da contemplação do mundo exterior ou construídas pela imaginação humana; é o ponto de vista que dominant em alguns trabalhos de Euler, de Newton, de Lagrange e presidiu as mais belas locuções de Monge, a quem devemos o esboço espontâneo da constituição directa da geometria comparada.

Em relação a este segundo aspecto dos estudos geométricos é preciso convir que o espetaculo que elle apresenta é extremamente imperfeito; e quanto mais meditamos sobre este assunto, mais profunda é a convicção que nutrimos de que a geometria comparada espera do porvir a sua constituição definitiva.

A apreciação objectiva das figuras geométricas repousa necessariamente sobre uma classificação dellas, pois é claro que si nessa apreciação considerássemos isoladamente cada figura, o estudo, então
interminável, já não seria feito á luz da concepção cartesiana, porém
de acordo com a geometria grega; estariamos então no ponto de vista
que presidiu ás produções de Archimedes, de Apolónius de Perge,
etc. Para que esse estado não perca o cunho de generalidade, que
constitue o mais admirável resultado da inmensa revolução impressa
por Descartes ao sistema das investigações geométricas, é preciso
que aquella apreciação seja feita considerando-se grupos de formas
entre as quais existem propriedades comuns, e não considerando
cada forma isoladamente.

Em relação ás linhas, não é possível o estabelecimento de uma
classificação racional: a isso oppõe-se a falta de caracteres bastante
variados e extensos que permitam a formação de grupos plenamente
naturais. Descartes, Euler, Newton e Clairaut fizeram tentativas
neste sentido, mas estas tentativas foram todas infrutíferas. Existe
a classificação empírica das curvas algebricas, baseada nos grãos das
equações rectílinhas; mas esta classificação é puramente artifício e
profundamente defeituosa. A classificação dessas curvas pelo número
de termos de suas equações rectílinhas, adoptada na discussão geomé-
trica das equações a duas variáveis, presta serviços na exploração das
curvas hyperbolicas e parabólicas e no estudo das curvas polinómicas;
mas apesar disso não deixa de ser uma classificação artificial e pro-
visoria.

Em virtude de sua complicação superior as superfícies podem
oferecer caracteres bastante variados e pronunciados, de sorte que
elas comportam uma classificação racional, que foi estabelecida por
Monge numa dessas luminosas inspirações familiares ao seu genio.
Longo de constituir no domínio mathematico o equivalente das classi-
ficações que encontramos, quer no espectaculo social quer no domínio
vital, essa classificação racional é extremamente imperfeita; com
efecto, qualquer que seja o seu valor científico e logico, ella não
encerra siquer o germen do elemento mais difícil e mais importante
da teoria das classificações—a coordenação dos grupos terminando
na construção de uma hierarchia. Demais, um único pensamento
hierárquico ella pôde plenamente elaborar: é a noção de família.

Esta consideração tem por fim unicamente mostrar a falta de
aptidão da science fundamental para constituir a theory logica das
classificações; ella em nada deslustra a grande elaboração de Monge,
que a historia da geometria abstracta insereverá em suas paginas
como o passo mais decisivo realisado no dominio dessa science depois
da memoravel fundação cartesio-leibniziana.
A classificação estabelecida por Monge satisfaz a uma condição essencial a que nenhuma das classificações anteriores respeitou: é a que consiste em colocar em cada grupo geométrico as superfícies que se acham mais intimamente relacionadas e em separar aquelas cujas analogias têm pouca importância.

Monge notou que todas as superfícies susceptíveis de ser geradas pela mesma linha, movendo-se segundo a mesma lei, devem apresentar relações geométricas mais profundas do que aquelas que só podem ser produzidas por linhas de naturezas diversas, ou da mesma natureza, porém sujeitas neste caso a leis diferentes. Dali resultou a concepção da família geométrica, grupo natural constituído por todas as superfícies que podem ser geradas por uma mesma linha, deslocando-se no espaço segundo a mesma lei. Entre as superfícies que compõem uma determinada família não pôde haver outra diferença que não seja a de uma unica directriz, que fica indeterminada quando se considera a totalidade dessas superfícies. Fazendo variar convenientemente essa directriz, podem ser obtidas, numa mesma família, superfícies cujas equações são não sómente de todos os graus possíveis, mas de todas as formas imagináveis. Assim é que as equações

\[
(x - az)^m (y - bz)^n = c \\
(y - bz)^m = e (x - az)^n \\
y - bz = tg (x - az) \\
y - bz = sen (x - az)
\]

representam, todas, superfícies cilíndricas, apezar da diversidade de sua constituição algebrica.

Monge conseguiu instituir uma nova sorte de equações próprias à representação algebrica, sob forma finita, das famílias de superfícies; o exame dos preceitos gerais que presidem à formação destas equações e dos que permitem decidir se o logar geométrico representado por uma equação dada faz ou não parte de uma certa família, assim como a applicação desses preceitos às famílias mais simples e usuais, constituem a primeira parte deste trabalho. E a parte do estudo objectivo das superfícies, acessível aos recursos fornecidos pela algebra directa.

As superfícies que compõem uma família geométrica sendo sempre caracterizadas por uma propriedade commum do seu plano tangente
num ponto qualquer, Monge, traduzindo em estilo algebrico essa propriedade, conseguiu estabelecer equações às derivadas parciais que se prestam à representação analytica de um grande número de famílias geometricas. Estas equações diferenciaes podem ser tambem estabelecidas indirectamente, isto é, partindo dos typos algebricos finitos que lhes correspondem.

Das meditações de Leibniz tinha surgido a concepção e o estudo das linhas envoltorias. A Clairaut e principalmente a Lagrange devemos a extenção dos trabalhos de Leibniz a respeito dessas linhas. A teoria das superficies envoltorias, que resume o conjunto da geometria objectiva, constitue o mais legitimo título de gloria de Monge.

O estudo diferencial das familias de superficies e a teoria das superficies envoltorias formam a primeira seccao da segunda parte do nosso trabalho, sendo a segunda seccao destinada a apreciação das questões que, referindo-se às familias de superficies, estão algebricamente subordinadas à integração das equações às derivadas parciais.

Em relação a integração desta sorte de equações, os trabalhos de Monge tiveram decisiva influencia; D'Alembert e Euler já se tinham preocupado com esse arduo e vastissimo problema e já tinham sentido a necessidade de introduzir funções arbitrárias nas integraes dessas equações diferenciaes; mas foi Monge o primeiro que, projetando sobre o assumpto o clarão do seu espirito, mostrou que toda equação entre tres variaveis e as derivadas parciaes de primeira ordem de uma delas em relação às outras duas, traduz uma propriedade commum de que gozam os planos tangentes às superficies que compõem uma mesma familia geometrica.

Assim, o nosso trabalho comprehende duas partes; sendo uma destinada ao estudo objectivo das superficies com os recursos da algebra directa, e a outra relativa aos recursos que, para esse estudo, fornece o calculo das relações indirectas. Esta segunda parte se desdobra em duas seccoes, sendo a primeira constituída pela teoria diferencial das familias de superficies e pela teoria das superficies envoltorias, e a segunda formada pelo estudo concernente à instituição finita dos grupos geometricos, partindo dos seus typos infinitesimais.
PRIMEIRA PARTE

Estudo objectivo das superfícies com os recursos do cálculo das relações directas
As multiplas e variadas superfícies que a imaginação humana pode conceber, ou são consideradas como geradas pelo movimento de uma linha segundo uma lei determinada, ou como envoltórias das posições sucessivamente ocupadas por uma outra superfície. A curva geratriz ou a superfície envolvida podem conservar constante a sua fórmula ou se deformar segundo uma lei determinada.

Oriunda das meditações de Monge, a geração das superfícies como envoltórias representa uma das mais bellas aquisições da geometria moderna; a apreciação deste modo de geração não pode porém ser feita agora, devendo ser reservada para a parte deste trabalho na qual o estudo objectivo das superfícies é feito à luz do cálculo das relações indirectas. Nosso dever, nesta ocasião, consiste em apresentar a classificação das superfícies, de acordo com a sua geração pelo movimento de uma linha.

A natureza da linha geratriz permitiu a Monge a grande distinção das superfícies em regradas ou rectílinéas e curves propriamente ditas, sendo as primeiras, aquelas que podem ser geradas pela linha recta, e as segundas, aquelas que não satisfazem a esta condição. Entre as superfícies curvas estão comprehendidas as superfícies circulares, elípticas, parábólicas, cissóidaes e inúmeros outros grupos geométricos, cada um delles mais vasto do que o das superfícies rectílinéas, visto o maior numero de pontos determinantes da geratriz.

Como exemplos de superfícies rectílinéas podemos lembrar as superfícies cilíndricas e conicas, o helicóide desenvolvível, os dos
parafusos de filetes rectangular e triangular, o hyperboloide continou, o paraboloide hyperbolico, e uma infinitade de superficies, a maior parte das quais não só não têm nomes especiais mas também não têm importância logica nem científica.

Como exemplos de superficies circulares citaremos as de revolução, as tubulares ou canais, as que são descriptas por um círculo cujo centro percorre uma helice de Arquimedes, cujo raio varia de modo tal que esse círculo se apoia sempre sobre uma directriz fixa de forma qualquer.

As superficies rectilineas podem ser desenvolvíveis ou reversas. São desenvolvíveis aquellas que podem ser distendidas sobre um plano sem que apresentem dobra ou ruptura, e reversas as que não gozam desta propriedade. As superficies desenvolvíveis apresentam três grupos geometricos que são: o das superficies cilindricas, o das conicas e o das de aresta de reversão. Os dois primeiros constituem verdadeiras familias geometricas; o terceiro, extremamente mais vasto, compreende uma infinitade de familias.

As superficies de arestas de reversão podem ser definidas como geradas por uma recta que se move ficando sempre tangente a uma curva de dupla curvatura; esta curva tem o nome de aresta de reversão das superficies. O helicoid desenvolvível corresponde ao caso em que a aresta de reversão é a curva notavel que, sob o nome de helice, o sublime espírito do principe dos geometras legou à geometria abstracta.

O plano tangente num ponto qualquer de uma superficie rectilínea contém a geratriz rectilínea que por elle passa. Se a superficie é desenvolvível, o plano é tangente ao longo dessa geratriz; se ella é reversa, elle absolutamente não satisfaz a est condição.

Chasles deu a denominação de ponto central de uma geratriz pertencente a uma superficie rectilínea, ao pé da perpendicular comun a essa geratriz e á geratriz infinitamente proxima; a totalidade dos pontos centraes de todas as geratizes constitue a linha que elle denominou linha de stricção da superficie. O plano tangente á superficie, tirado pelo ponto central de uma geratriz, constitue o que Bour chamou o plano central dessa geratriz.

Uma formula muito simples, estabelecida por Chasles, determina a inclinação do plano tangente num ponto qualquer de uma geratriz da superficie rectilínea, sobre o plano central correspondente á mesma geratriz.
Chamando θ o ângulo do plano tangente com o plano central, o ângulo das duas geratrizes infinitamente vizinhas, ε a menor distância entre elas, x a distância do ponto de contacto ao ponto central da geratriz correspondente, obtem-se facilmente

$$\varepsilon \cdot \tan \theta = x \cdot \tan \varepsilon$$

ou

$$\tan \theta = \frac{x \cdot \tan \varepsilon}{\varepsilon} = \frac{x}{\varepsilon} \cdot \frac{\tan \varepsilon}{\varepsilon}$$

ou

$$\tan \theta = \frac{x}{\varepsilon} = \frac{x}{k}$$

sendo k o parâmetro de distribuição dos planos tangentes.

A discussão desta fórmula mostra a existência de um único plano tangente ao longo de uma geratriz, quando a superfície é desenvovível, e a de uma infinidade de planos tangentes, quando a superfície é reversa.

Quer o vasto grupo geométrico constituído pelas superfície desenvolvíveis, quer o não menos extenso grupo formado pelas superfícies reversas, encerram uma infinidade de famílias de superfícies. O mesmo se dá com as superfícies circulares, com as superfícies parabólicas, etc.

A condição primordial para que duas superfície façam parte de uma mesma família geométrica é que elas possam ser geradas pela mesma linha, porém esta condição não é suficiente, pois que uma mesma geratriz pode convir a uma infinidade de famílias distintas. Assim é que podemos ter inúmeras famílias de superfícies nas quais a geratriz é rectilínea: a, das superfícies céntricas, a das espirais, as que são descriptas por uma recta obrigada a apoiar-se sobre uma helice ordinária ficando ao mesmo tempo paralela a um plano fixo, as que são geradas pelo movimento de uma recta sujeita à condição de apoiar-se sobre uma recta fixa e uma parábola, etc. Ainda é assim que, geradas pelo círculo, temos imensa
variedade de famílias de superfícies, entre as quais se destacam as de revolução, as que emanam desta supondo a condição de perpendicularismo entre o plano do círculo e o eixo, substituída pela de paralelismo a um plano fixo e em seguida obrigando o centro do círculo a percorrer uma parábola, ou uma cissóide, ou uma hélice ordinária, etc., em vez de se deslocar sobre a recta que primitivamente constituía o eixo da superfície. Não menos dignas de ser mencionadas são as diferentes famílias de superfícies canaes, as famílias que resultam do movimento do círculo cujo centro percorre uma hélice de Archimedes, cujo plano se conserva perpetuamente normal a essa hélice e cujo raio varia de modo tal que esse círculo se apoia sempre sobre uma curva, que seja indeterminada quando se considera a totalidade das superfícies que compõem a família geométrica considerada. Substituindo, nesta última família, a directriz helicoidal do centro do círculo por uma directriz parabólica, ou senusoidal, ou logarithmica, etc., e deixando indeterminada a directriz, que deve fixar a lei de variação do raio do círculo, é claro que novas famílias geométricas serão obtidas.

A verdadeira noção da família geométrica é a que consiste em encaralha como gerada por uma certa linha, movendo-se segundo uma mesma lei e obrigada a apoiar-se sobre uma directriz indeterminada. Esta directriz pôde receber, em virtude da sua indeterminação, todas as formas imagináveis, e a cada forma que lhe for atribuída corresponderá um género determinado de superfícies compreendido nessa família. As superfícies que, estando compreendidas num mesmo género, satisfazem às condições de semelhança, formando uma espécie, grupo geométrico cujo grão de extensão é menor do que o que convém ao género, visto como cada género compreende uma infinidade de espécies.

E por uma única directriz que diferem entre si os géneros de superfícies compreendidos numa mesma família geométrica.

E sómente o pensamento de família geométrica que se acha plenamente elaborado em geometria objectiva; é só em relação a elle que o espectaculo que apresenta a geometria comparada pôde ser considerado plenamente satisfactorio.

Mas se essa ideia hierárquica tivesse ficado exclusivamente no campo dos estudos geométricos, ella não teria produzido os admiráveis fructos que constituem verdadeiros monumentos destinados a
attestar a grandeza do gênio de Monge. Para que as concepções quase-
quêer de geometria geral possam conduzir a resultados decisivos é pre-
ciso que elas sejam transportadas para o terreno algebrico. Foi o que
conseguiu Monge, desvendando um novo gênero de equações próprias
to representar famílias de superfícies. As equações introduzidas por
Clairaut, sob a inspiração fundamental de Descartes, são equações
ordinárias a três variáveis, em cuja constituição podem entrar para-
metros arbitrários: estas equações representam gêneros de superfícies
ou espécies ou ainda superfícies individualizadas, se os seus coe-
cientes estiverem todos numericamente definidos. As equações intro-
duzidas por Monge, são equações em que a indeterminação vaca aefec-
tar uma função que entra na constituição da equação; são equações que
encerram uma função arbitrária, isto é, uma função capaz de rece-
ter todas as formas imagináveis. A representação geometrica dessas
equações, claramente apreciável, é sem duvida alguma muito mais
vasta do que a das equações ordinárias; o seu logar geométrico não se
reduz a uma superfície única, nem mesmo a uma espécie em um gênero
de superfícies; ele é sempre múltiplo, pois corresponde a uma infini-
dade de gêneros, constituindo pela sua totalidade uma verdadeira fami-
lia de superfícies. Constituindo estas equações por assim dizer espe-
lhos feis, nos quais vão se reflectir as propriedades comuns a cada
família, a sua descoberta assinala um passo decisivo no desenvolvi-
mento da geometria geral; elas vieram descortinar novos horizontes
aos espíritos dos geómetras, sempre avidos de conhecer a verdade nos
diversos ramos da ciência fundamental.

As equações introduzidas por Monge são equações da forma
\[f_1(x, y, z) = \varphi \left[f_1(x, y, z) \right] \] ou, o que é equivalente, \[\varphi \left[f_1(x, y, z), f_2(x, y, z) \right] = 0, \]
a que as características \(f_1 \) e \(f_2 \) são empregadas
para desigual equações determinadas ao passo que as característi-
cas \(\varphi \) e \(\psi \) designam funções inteiramente arbitrárias.

Tratemos de interpretar abstractamente esta sorte de equações.
A simples inspeção do tipo algebrico precedente reconhe-
ce-se que ele encerra uma infinitade de equações ordinárias a três
variáveis, cada uma das quais emana deles mediante uma forma
particular atribuída a função arbitrária \(\varphi \) ou \(\psi \), se se
considera a equação no estado implícito. Nota-se mais a possibili-
dade de conseguir sempre a redução dos tipos algebricos dessa
natureza de modo a que ellas venham a encerrar apenas duas vari-
aveis, efectuando-se esta redução de acordo com transforma-
ções sempre suscetíveis de ser indicadas. De facto, fazendo-se
\(f_1(x, y, z) = t \) e \(f(x, y, z) = u \) a equação

\[\psi \left[f_1(x, y, z), f(x, y, z) \right] = 0, \]

se reduz a \(\psi (t, u) = 0 \), que é uma equação a duas variáveis.

Este privilégio de que gozam as equações introduzidas por
Monge, conduz imediatamente o espírito a desvendar a marcha
que deve ser seguida para saber si uma equação particular dada,
\(f(x, y, z) = 0 \), se acha ou não compreendida num certo typo

\[\psi \left[f_1(x, y, z), f(x, y, z) \right] = 0, \]

si pôde ou não emanar dele mediante uma certa fórmula particular
atribuída á função arbitraária \(\psi \). Vemos que as substituições de
\(f_1(x, y, z) \) e \(f_2(x, y, z) \) respectivamente por \(t \) e \(u \) reduz o typo analy-
tico precedente a \(\psi (t, u) = 0 \) ; portanto, é claro que no caso afirmativo
a mesma substituição deveria reduzir imediatamente a equação
\(f(x, y, z) = 0 \), si nesta equação estivessem postas em evidencia as
duas funções \(f_1(x, y, z) \) e \(f_2(x, y, z) \), o que só se daría excepcional-
mente. Mas a substituição indicada deverá operar tal redução desde
que as equações \(f_1(x, y, z) = t \) e \(f_1(x, y, z) = u \) sejam resolvidas em
relação a \(x \) e a \(y \), de modo a se ter

\[x = F_1(t, u, z), \quad y = F_2(t, u, z) \]

e estas expressões sejam substituídas em logar de \(x \) e \(y \) na equação
\(f(x, y, z) = 0 \). Feita a substituição, obtem-se

\[f \left[F_1(t, u, z), F_2(t, u, z) \right] = 0 \]
Tal é a equação que deve tornar-se independente de \(z \), si a equação \(f(x, y, z) = 0 \) estiver compreendida no tipo algebrico

\[
\psi \left[f_1(x, y, z), f_2(x, y, z) \right] = 0
\]

Si, aproveitando a disponibilidade dos paramêtros fixos que, no caso do typo analytico ser geral, entrarem necessariamente na constituição das funções determinadas \(f_1(x, y, z) \) e \(f_2(x, y, z) \), pudermos fazer desapparecer os termos que contêm \(z \), mediante valores admis-siveis para os paramêtros fixos, não restará duvida alguma de que o typo collectivo considerado abrange, como caso particular, a equação ordinaria \(f(x, y, z) = 0 \), que dele pôde emanar, desde que a função \(\psi \) se atribua uma certa forma determinada.

Si o desapparecimento da variável \(z \) não puder ser effectuado mediante valores admis-siveis de tais paramêtros fixos, pôde-se ter certeza de que a equação particular não está compreendida naquelle typo, pois que não existe forma alguma que, atribuída a função \(\psi \), determine a coincidencia do typo

\[
\psi \left[f_1(x, y, z), f_2(x, y, z) \right] = 0
\]

com a equação particular \(f(x, y, z) = 0 \).

As considerações precedentes deixam bem patente que as equações introduzidas por Monge têm uma significação algebrica perfeitamente clara, abrangendo cada uma delas uma ininfinité de equações ordinarias a tres variaveis, sem que entretanto compreenda qualquer equação escolhida ao acaso.

Estabelecida geometricamente a idéa de familia, examinada em seguida a concepção das equações que encerram uma função arbi-traria, facil se torna, pelo estabelecimento da harmonia entre essas duas noções geraes, lançar os alicerces da geometria comparada.

Trata-se agora de mostrar que os logares geometricos das equações da forma

\[
f_1(x, y, z) = \psi \left[f_2(x, y, z) \right] \text{ ou } \psi \left[f_1(x, y, z), f_2(x, z, z) \right] = 0
\]
não são simples superfícies individuais, não são mesmo espécies ou géneros determinados de superfícies; esse logar geométrico, necessariamente múltiplo, encerra uma infinidade de géneros, constitue uma verdadeira família de superfícies.

Para isto, observemos que as equações dessa natureza são constituídas algebricamente de modo tal que desde que uma das funções determinadas se torne constante, a outra também se tornará inevitavelmente. Com efeito, fazendo

\[f_1(x, y, z) = a \]

resulta

\[a = \phi \left[f_1(x, y, z) \right] \]

ou

\[\phi \left[a, f_2(x, y, z) \right] = 0 \]

o que exige que se tenha

\[f_2(x, y, z) = b \]

Desde então, si determinamos as intersecções do logar geométrico da equação \(\phi \left[f_1(x, y, z), f_2(x, y, z) \right] = 0 \) por uma série de superfícies auxiliares representadas pela equação \(f_2(x, y, z) = b \), na qual \(b \) é um parâmetro arbitrário, obtémos para a segunda equação da secção correspondente: \(\phi \left[f_1(x, y, z), b \right] = 0 \) ou \(f_1(x, y, z) = \varphi(b) \) ou ainda \(f_1(x, y, z) = a \), sendo \(a = \varphi(b) \), de sorte que a série das intersecções será representada pelo par algebrico

\[f_1(x, y, z) = a \]

\[f_2(x, y, z) = b \]

Desde que não esteja definida a forma da função \(\varphi \) e portanto a da função \(\varphi \), é claro que não estará especificada a relação que
liga os parametos \(a\) e \(b\); d’onde resulta que o logar geometrico con-
siderado comprehende uma serie de generos de superficies, compostas
todas das linhas representadas pelo conjugado analytico \(f_1(x, y, z) = a\),
\(f_2(x, y, z) = b\). E’ evidente que, não entrando os parametos
arbitrarios \(a\) e \(b\) na constituição algebraica das funções \(f_1(x, y, z)\) e
\(f_2(x, y, z)\) o modo de subordinação destes paramentos não influirá absolumente sobre a natureza das geratrices representadas pelas
equações precedentes, nem também sobre a lei do seu movimento.
Assim, as diversidades de forma de que é susceptivel a funçao \(\psi\) ou a
função \(\varphi\) só pode entender-se com as diferenças das directrizes
com as quaes a geratriz deve ser combinada successivamente, dando
logar aos variados generos comprehendidos no grupo natural
que a equação considerada representa; de modo que si sujeitassemos a
geratriz a encontrar uma directriz determinada, tendo para equações
\(F(x, y, z) = 0\), \(F_1(x, y, z) = 0\), a condição de encontro, que seria
obtida pela eliminação de \(x, y, z\) entre estas equações e as equações
\(f_1(x, y, z) = a, f_2(x, y, z) = b\) da geratriz, estabeleceria uma relação
necessaria, \(\psi(a, b) = 0\) ou \(a = \varphi(b)\), entre os parametos variaveis, e
teríamos então um genero de superficies comprehendido na familia
geometrica representada pela equação proposta, enquanto se mantem
a indeterminação da funçao \(\psi\) e portanto da funçao \(\varphi\). A condição de
encontrar uma outra directriz, em vez de apoiar-se sobre a primeira,
viria estabelecer uma nova relação entre os parametos arbitrarios,
resultando, portanto, um novo genero de superficies comprehendido
na mesma familia e assim por diante. Vê-se, pois, que deixando inde-
terminada a directriz, e portanto arbitaria a funçao \(\psi\), mas sup-
pondo, como fizemos, as funçoes \(f_1\) e \(f_2\) determinadas, a equação con-
siderada convirá a todas as superficies que podem ser geradas por
uma mesma linha, movendo-se segundo a mesma lei, e que desde então só poderão deferir entre si por uma unica directriz.

A harmonia entre a indeterminação da directriz especifica e a da
funçao \(\varphi\) que entra na equação \(\varphi(f_1(x, y, z), f_2(x, y, z) = 0\) já não
sofre, pois, a minima duvidas; a multiplicitade das formas analyticas
que a funçao \(\varphi\) pode affectar é a traduçao abstracta da inmensa
variedade de formas geometricas de que se pôde revestir a directriz
arbitaria.

A concepção das equações finitas, em cuja constituição entra
uma funçao arbitaria, recebe um complemento notavel no estudo
differencial da geometria comparada, onde se consegue, fazendo
projectar sobre o estudo objectivo das superfícies as luzes emanadas da criação leibniziana, o estabelecimento de equações indirectas, independentes da função arbitrária, e eminentemente próprias a representação algébrica das famílias geométricas.

Ao mesmo tempo constituindo o termo normal de estudos seculares realizadas pelo espírito humano no domínio geométrico e o início de novas e grandiosas locubrações científicas, a correlação que acabamos de examinar, entre os dois modos de indeterminação, um concreto e outro abstracto, veio permitir algébricamente instituir novas famílias de superfícies com a mesma facilidade com que podem ser multiplicados os generos de curvas planas, desde a fundação da geometria geral. Para este fim basta atribuir diversas formas analíticas às funções \(f \) e \(f \), que determinarão em cada caso, não só a natureza da geratriz mas também a lei de seu movimento; a discussão geométrica da equação obtida formulando entre as duas funções uma relação totalmente arbitrária, dará, em cada caso, uma ideia clara da família que ella representa.

Consideremos, por exemplo, a equação

\[
\left| x - r \cos \left(\frac{2 \pi}{h} z \right) \right|^3 + \left| y - r \sen \left(\frac{2 \pi}{h} z \right) \right|^3 = \gamma(z)
\]

As equações da geratriz serão

\[
\left| x - r \cos \left(\frac{2 \pi}{h} z \right) \right|^3 + \left| y - r \sen \left(\frac{2 \pi}{h} z \right) \right|^3 = \alpha, \quad z = b;
\]

vê-se facilmente que ellas representam um círculo cujo plano se conserva perpetuamente paralelo ao plano dos \(xy \) e cujo centro percorre a helice de Archimedes representada pelas equações

\[
x = r \cos \left(\frac{2 \pi}{h} z \right), \quad y = r \sen \left(\frac{2 \pi}{h} z \right)
\]
Assim, qualquer que seja a função \(\varphi \) o logar geométrico da equação proposta será uma superfície descripta por um círculo cujo centro se move sobre uma hélice ordinária e cujo plano se desloca perpendicularmente ao eixo do cilindro de revolução sobre o qual essa hélice constitue uma linha geodésica. Mantendo a indeterminação da função \(\varphi \), o que equivale a deixar uma directriz arbitrária, a equação proposta representa uma família geométrica que é uma generalização da família das superfícies de revolução, a qual foi obtida supondo que o centro do círculo gerador percorre a hélice ordinária em vez de percorrer o eixo. Se fizermos \(r = 0 \), isto é, si an- nularmos o raio do cilindro sobre o qual está traçada a hélice —directriz do centro—esta se reduzirá ao eixo, e a equação se tornará

\[
x^2 + y^2 = \varphi(z)
\]

Agora a geratriz será o círculo representado pelas equações

\[
x^2 + y^2 = a, \quad z = b;
\]

ora, o centro deste círculo percorrendo o eixo dos \(z \) e o seu plano ficando perpendicular a esse eixo, a equação precedente convém à família das superfícies de revolução, quando o eixo dos \(z \) é escolhido de modo a coincidir com o eixo da superfície de revolução.

Consideremos ainda a equação collectiva

\[
\frac{y - r \sin \left(\frac{2 \pi}{h} - z \right)}{x - r \cos \left(\frac{2 \pi}{h} - z \right)} = \varphi(z)
\]

As equações da geratriz serão

\[
z = b, \quad \frac{y - r \sin \left(\frac{2 \pi}{h} - z \right)}{x - r \cos \left(\frac{2 \pi}{h} - z \right)} = a.
\]
ou

\[z = b, \quad y - r \sin \left(\frac{2 \pi}{h} z \right) = a \left[x - r \cos \left(\frac{2 \pi}{h} z \right) \right]; \]

ora estas equações nos mostram que a geratriz das superfícies representadas pela equação proposta é uma recta que se desloca paralelamente ao plano dos \(xy \) e que se apoia constantemente sobre a helice de Archimedes, cujas equações são

\[x = r \cos \left(\frac{2 \pi}{h} z \right), \quad y = r \sin \left(\frac{2 \pi}{h} z \right) \]

Assim a equação proposta representa uma família geométrica, gerada por uma recta obrigada a apoiar-se sempre sobre uma helice de Archimedes e a ficar sempre paralela a um plano tirado perpendicularly ao eixo do cilindro sobre o qual existe a helice; é, como se vê, uma família obtida generalizando-se a das superfícies coneoides, mediante a substituição da directriz rectilínea do coneide por uma helice ordinária.

Igualando a zero o raio \(r \) do cilindro correspondente à helice directriz, obtém-se

\[\frac{y}{x} = \varphi (z) \]

que é a equação collectiva dos coneoides, quando o eixo dos coneoides é adoptado para eixo dos \(z \).

Examinemos em último, como terceiro exemplo, a equação

\[\frac{y - e^z}{x} = \varphi (z) \]

As equações da geratriz serão

\[\frac{y - e^z}{x} = a \]

\[z = b \]
Ellas representão uma recta que, movendo-se parallelamente ao plano dos \(xy \) apoia-se sempre sobre a logarithmica \(x = 0, \ z = \log \text{nep} \ y \), situada no plano dos \(xz \). Esta família constitue ainda uma generalização da dos conoides, obtida pela substituição da directriz rectilinea dos conoides, pela logarithmica.

Si agora considerarmos a marcha geral propria a conduzir á formação do typo collectivo finito que representa cada família geometricamente definida, vé-se que ella consistirá em elaborar analyticamente a definição, de modo a obter as equações da geratriz sómente com dois parametros arbitrarios, referir estes dois parametros ás coordenadas correntes da geratriz, e, entre as duas funções determinadas assim obtidas, estabelecer uma relação arbitraries. A impossibilidade de obter as equações da geratriz só com dois parametros arbitrarios, depois de haver attendedo a todas as condições inherentes á definição, quererá significar que a definição não convem sómente a uma familia geometrica, mas sim a um grupo que encerra uma infinitade de familias de superficies. Neste caso a formulación do caracter collectivo, que só pôde ser obtida de modo indirecto, é reservada á geometria diferencial. Si, levando em conta todas as condições da definição, as equações da geratriz só encerram um parametro variavel, o logar geometrico constituirá um genero determinado de superficies, e para obter a equação correspondente a esse genero bastará eliminar, entre as equações da geratriz, esse parametro restante.

As equações collectivas prestam-se a resolver a questão que consiste em decidir si as familias geometricas correspondentes comprehendem uma superficie particular, dada pela equação ordinaria a tres variaveis. Bastará, pelo emprego das formulas já consideradas,

\[
x = F_1 (t, \ u, \ z) \quad y = F_2 (t, \ u, \ z),
\]

ver si a equação especial proposta pôde ou não entrar abstractamente no typo algebrico correspondente.

Si a questão fosse apresentada, perguntando-se a que familia pertence uma superficie algebricamente dada, ella comportaria evidentemente uma grande indeterminação, pois que uma mesma superficie pôde se achar comprehendida numa infinitade de familias dif-
ferentes. Para citar um exemplo, basta lembrar que o cilindro de revolução está compreendido em três famílias usuais: a das superfícies cilíndricas, a das de revolução e as que constituem as superfícies canais quando o logar dos centros é uma curva plana.

Tendo examinado a classificação racionais das superfícies, com o desenvolvimento que permite a extensão deste trabalho, vamos esclarecer os preceitos fundamentais nessa instituídos, aplicando-os às famílias de superfícies mais simples, mais usuais, e ao mesmo tempo mais importantes pelas suas variadas aplicações científicas e técnicas.
Denomina-se superfície cilíndrica toda a superfície gerada por uma recta movel obrigada a conservar constante a sua direcção e a encontrar incessantemente uma linha qualquer. Esta linha pode ser plana ou de dupla curvatura, e em qualquer destes dois casos pode afectar fórmas extremamente variadas. A totalidade das superfícies compreendidas na definição precedente constitue a mais simples e a mais usual de todas as famílias geométricas. Verdadeiramente notáveis são as aplicações que comportam essas superfícies, quer no campo das investigações científicas, quer no domínio da realidade prática. Entre as primeiras bastará lembrar o emprego do cilindro circular na apreciação da curvatura das superfícies, a concepção do cilindro parcialmente osculador. Entre as ultimas nos limitaremos a mencionar o papel importante que desempenham as superfícies cilíndricas na determinação geométrica da separatriz de sombra e de luz no caso dos raios luminosos paralelos, assim como o emprego delas na construção das perspectivas paralelas.

Considerando a família das superfícies cilíndricas, a directriz fica indeterminada; ella pôde receber todas as fórmas que a imaginação humana possa conceber.

A cada uma destas fórmas corresponde um genero determinado de superfícies. Em cada genero, o conjunto dos typos semelhantes constitue uma especie: é, como se vê, uma noção analoga
á que já se institue na parte da geometria comparada que se refere ao estudo objectivo das curvas.

Examinemos mais detalhadamente esta divisão da família das superfícies cilíndricas numa infinidade de grupos menores constituindo as espécies.

Todas as superfícies cilíndricas que têm para directriz o círculo, formam evidentemente um grupo, cuja extensão é incomparavelmente menor do que a que se refere á família propriamente dita.

O conjunto das superfícies cilíndricas de directriz elíptica constituirá um segundo genero; o daquelas cuja directriz é a curva que o genio inventivo de Archimedes legou ao domínio geometrico debaixo do nome de helice formará um terceiro genero, e assim por diante.

A theoria geral da semelhança, que sem duvida alguma constitue uma das mais belas creações do espírito geometrico, permite a decomposição de cada genero de superfícies numa infinidade de espécies.

Feitas estas considerações, passemos ao estabelecimento da equação colectiva finita, propia á representação algebraica da familia das superfícies cilíndricas.

Sendo a geratriz uma linha recta, as suas equações geraes as mais simples, no sistema de coordenadas rectilíneas ordinarias, serão

\[x = ax + a \]
\[y = bz + b \]

Nestas equações \(a \) e \(b \) são parametros fixos, pois que o desloca-mento da recta se effectua em direcção constante; ao inverso, \(x \) e \(y \) são parametros variaveis, porquanto a recta muda incessantemente de posição.

A dualidade dos parametros arbitrarios mostra que a definção dada corresponde a uma verdadeira familia de superfícies, como a ponderação geometrica tinha permitido reconhecer.

Inspirados nos preceitos geraes que já foram expostos neste trabalho e que devem constituir incessantemente o guia do espírito
na exploração objectiva das superfícies, devemos formular os dois parâmetros variáveis da geratriz em função das coordenadas correntes delas, o que nos dá imediatamente:

\[\alpha = x - az \]

\[\beta = y - bz \]

Instituindo entre as expressões destes dois parâmetros uma relação totalmente arbitrária

\[x - az = \psi (y - bz) \]

ou

\[\psi (x - az, y - bz) = 0 \]

teremos a equação collectiva, geral, a mais simples, destinada a representar sob o aspecto finito a família que examinamos. Debaixo de uma fórma ou de outra, a equação encerra sempre uma função arbitrária, isto é uma função que pode receber todas as formas imagináveis. A cada fórma determinada atribuída á função arbitrária corresponderá uma equação ordinária a três variáveis; o tipo analítico collectivo encerra, portanto, uma infinidade de equações que, à luz da memorável concepção cartesiana, representam, cada uma, um certo gênero de superfícies.

Assim vê-se, ainda uma vez, confirmada a admirável harmonia entre as fórmas e as equações, a íntima e indissolúvel aliança entre as concepções geometricas e algébricas. Grandiosa conquista realizada pelo poderoso espirito de Descartes, a quem devemos a fundação da philosphia mathematica, essa harmonia se desenvolveu sob o impulso da bela concepção de Monge relativamente às equações contendo uma função arbitrária. A correlação entre o abstracto e o concreto se apresentou sob um aspecto mais elevado. O grão de extensão proprio ás familias de superfícies se reflectiu nas equações correspondentes; a função arbitrária foi destinada a traduzir algébricamente a indeterminação de uma directriz em cada família geometrica.
A equação que obtivemos para representar, analyticamente, o grupo natural constituído pela totalidade das superfícies cilíndricas, é a equação collectiva finita; esse grupo geométrico pôde porém ser definido algebricamente por meio de uma equação indirecta, que já não encerra a função arbitrária: é uma relação entre as derivadas parciais da coordenada dependente em relação às coordenadas livres.

Normalmente reservado à geometria differential, o estabelecimento daquella equação indirecta pôde ser realizado directamente, traduzindo uma propriedade característica do plano tangente, ou indirectamente, partindo do typo algebrico finito.

Um dos problemas que se impôe ao nosso espírito, no estudo da família das superfícies cilíndricas, é o que consiste em saber se uma superfície individualizada, ou uma espécie ou ainda um gênero determinado de superfícies, estão ou não comprehendidos nessa família geométrica. A marcha a seguir na solução deste problema é baseada nos pressupostos fundamentaes da geometria comparada.

Seja \(f(x, y, z) = 0 \) a equação dessa superfície unica, ou desse gênero, ou dessa espécie de superfícies. Nota-se que a equação collectiva, \(\psi(x - cz, y - bz) = 0 \), é susceptível de só conter duas variáveis, e esta redução se effectua pela substituição de \(x - az \) por \(t \) e de \(y - bz \) por \(u \); d'ahi resulta que se o logar geométrico da equação proposta for cilíndrico, a substituição indicada deverá reduzir essa equação a só conter duas variáveis \(t \) e \(u \). Mas como nesta \(x - az \) e \(y - bz \) não se acham em evidência, é preciso substituir \(x \), por \(az + t \) e \(y \) por \(bz + u \) afim de eliminar \(x \) e \(y \). O resultado desta substituição, \(f(x, az + t, bz + u) \), deve se tornar independente de \(z \), reduzindo-se portanto a só conter \(t \) e \(u \), se o logar geométrico for de natureza cilíndrica. Mas o desaparecimento de \(z \) não se poderá realisar espontaneamente, porque nenhuma superfície poderia ser cilíndrica numa direção arbitrária, nem mesmo o plano que é cilíndrico em uma infinidade de direções; será preciso aproveitar a disponibilidade dos parâmetros fixos \(a, b \), que entram nas equações da geratriz.

Igualando a zero os coeficientes de todos os termos da equação precedente nos quais entra a coordenada \(z \), obtem-se um certo numero de equações que, se forem satisfeitas pelos mesmos valores reaes de \(a \) e \(b \) indicarão a natureza cilíndrica do logar geométrico, determinando estes valores de \(a \) e \(b \) a direção da geratriz; no caso con-
trariá, concluiremos que o logar geométrico da equação proposta não está compreendido na família das superfícies cilíndricas.

Suppondo que se tenha verificado a natureza cilíndrica desse logar geométrico, apenas restará indicar uma directriz suficientemente simples e que será habitualmente um dos traços da superfície sobre os planos coordenados.

A realização dos cálculos assim indicados, só dependendo de estarem numericamente fixados os expoentes, é claro que a marcha precedente permitirá estabelecer as relações que devem ligar os coeficientes disponíveis que entram numa equação qualquer para que o logar geométrico correspondente seja cilíndrico.

Bastará efectuar o desenvolvimento da equação final

\[f(z, t + az, u + bz) = 0, \]

igualar a zero os coeficientes dos termos em \(z \), e entre as equações assim obtidas eliminar \(a \) e \(b \). As equações restantes exprimirão as condições de cilindricidade do logar geométrico representado pela equação proposta.

Considerando especialmente a equação geral do segundo grao a tres variáveis

\[Ax^3 + By^3 + Cz^3 + Dxy + Exz + Fzy + Gx + Hy + Kz = 1 \]

a substituição prescrita nos dá

\[A(t + az)^3 + B(u + bz)^3 + Cz^3 + D(t + az)(u + bz) + Ez(t + az) + Fz(u + bz) + G(t + ax) + H(u + bz) + Kz = 1 \]

ou

\[A\ell^3 + Bu^3 + (Aa^3 + Bb^3 + C + Dab + Eu + Fb)z^3 + (2Aa + Db + E\ell)z + (2Bb + Da + F)uz + (Ga + Hb + K)z + Dtu + Gt + Hu = 1 \]
Igualando a zero os coeficientes dos termos em z, vem

\[2 \ Aa + Db + E = 0 \]
\[2 \ Bb + Da + F = 0 \]
\[Ga + Hb + K = 0 \]
\[Ax^2 + Bb^2 + C + Dab + Ea + Fb = 0 \]

Este sistema é equivalente ao seguinte

\[2 \ Aa + Db + E = 0 \]
\[2 \ Bb + Da + F = 0 \]
\[Ga + Hb + K = 0 \]
\[Ax^2 + Bb^2 + Dab - C = 0 \]

Das duas primeiras tiramos

\[a = \frac{DF - 2BE}{D^2 - 4AB} \]
\[b = \frac{DE - 2AF}{D^2 - 4AB} \]

Substituindo nas duas últimas, vem

\[G(DF - 2BE) + H(DE - 2AF) - K(D^2 - 4AB) \]
\[A(DF - 2BE)^2 + B(DE - 2AF)^2 + D(DF - 2BE)(DE - 2AF) - C(D^2 - 4AB)^2 \]

Tais são as duas relações que devem existir entre os coeficientes da equação geral do 2º grau para que o logar geométrico por ela representado seja de natureza cilíndrica.
A determinação da função arbitrária, quando se trata de obter a equação relativa a um gênero de superfícies cilíndricas tendo para directriz a curva representada pelas equações \(f_1(x, y, z) = 0 \) e \(f_2(x, y, z) = 0 \), não apresenta dificuldades que não sejam provenientes da teoria da eliminação. Effectivamente, devendo a geratriz encontrar perpetuamente a directriz dada, as quatro equações \(x = \alpha z + \alpha, y = \beta z + \beta, f_1(x, y, z) = 0 \) e \(f_2(x, y, z) = 0 \) devem ser simultâneas; d'onde se torna necessária uma relação \(\psi(\alpha, \beta) = 0 \) entre os parâmetros arbitrários, relação que será obtida pela eliminação das coordenadas variáveis \(x, y, z \), entre as quatro equações precedentes. Para ter a equação do gênero considerado de superfícies cilíndricas bastará referir os parâmetros \(x \) e \(z \) às coordenadas correntes da geratriz, o que nos dá \(x = \alpha z + \alpha, \beta = \beta z + \beta \) e substituir na relação que traduz o encontro; obtém-se então a equação procurada, que será \(\psi(x - \alpha z, y - \beta z) = 0 \), na qual \(\psi \) já não representará uma função arbitrária mas sim uma função determinada.

Se a directriz dada for uma curva plana e situada num dos planos coordenados, a marcha precedente comporta uma simplificação notável. Supondo, por exemplo, que a directriz plana estenda sita no plano dos \(xy \), as suas equações serão \(z = 0, f(x, y) = 0 \); a eliminação preparatória se realiza sem que haja necessidade de definir a forma da função \(f \) que entra na equação plana da directriz, e obtem-se \(f(x, y) = 0 \) para a relação que traduz o encontro perpetuo da geratriz com a directriz. Desde então a substituição de \(x \) e \(y \) por \(x - \alpha z \) e \(y - \beta z \) dará para equação do gênero de superfícies cilíndricas considerado: \(f(x - \alpha z, y - \beta z) = 0 \). Vê-se que a simples substituição de \(x \) por \(x - \alpha z \) e de \(y \) por \(y - \beta z \), feita na equação plana da directriz, fornece a equação procurada; d'onde resulta a grande facilidade com que podemos estabelecer as equações próprias aos diversos gêneros de superfícies cilíndricas, partindo das directrizess planas correspondentes.

Assim, para o caso da directriz rectilínea \(z = 0, px + qy + r = 0 \) teremos a equação \(p(x - \alpha z) + q(y - \beta z) + r = 0 \) para a superfície cilíndrica correspondente, que será plana.

Para o círculo \(z = 0, x^2 + y^2 = r^2 \) temos \((x - \alpha z)^2 + (y - \beta z)^2 = r^2 \), que será a equação do cilindro círcular.

Para o cilindro parabólico obtemos a equação \((y - b z) = m (x - \alpha z) \).

Para os cilindros hiperbólico, logarithmico, cissoidal, as equações seriam respectivamente \((y - \beta z) (x - \alpha z) = p^2, y - \beta z = \log (x - \alpha z), (y - b z)^2 = \frac{(x - \alpha z)^2}{2r - x + \alpha z} \).
Em fim, para os cilindros cujos traços sobre os planos coordenados fossem as duas primeiras espécies de curvas, uma fechada, outra indefinida, que Descartes tirou do círculo, as equações seriam respectivamente:

\[
\begin{align*}
\left[(x-az)' + (y-bz)' \right]^2 &= r^2 (x-az)^4 \\
\left[(x-az)' + (y-bz)' \right] &= (x-az)^4
\end{align*}
\]

A' geometria diferencial, em cujo domínio deve ser instituída a equação indirecta própria à representação colectiva das superfícies cilíndricas, reservamos o problema que consiste em estabelecer a equação da superfície cilíndrica, quando esta superfície, em vez de passar por uma curva dada, deve ser circunscrita a uma superfície qualquer, que é o que acontece habitualmente nas teorias geométricas das sombras e das perspectivas, em cujos domínios este problema encontra fecundas e lúminosas aplicações, quando se suppõe o foco luminoso ou o ponto de vista situados à distância infinita.
Theoria das superfícies conicas

A totalidade das superfícies geradas por uma recta móvel obrigada a passar constantemente por um ponto fixo e a apoiar-se sobre uma curva qualquer constitue a familia das superfícies cónicas.

Notaveis, quer como meio de investigação geométrica, quer pelas variadas aplicações às artes, estas superfícies constituem uma infini-
dade de generos, visto como a curva fixa pôde ser plana ou de dupla
curvatura, e, quer um caso quer o outro, ella pôde afetar uma infini-
dade de formas. Si a curva fixa, que constitue a directriz da superficie,
fôr a circumferencia de circulo, teremos o genero das superfícies co-
nicas circulares, cujas secções planas lebram os bellos lampejos do
espirito de Appolonius de Perge, preparando a estrada que, trilhada
vinte seculos mais tarde pelo vigoroso genio de Kepler, devia conduzir
este geometra ao conhecimento das leis geometricas dos movimentos
planetarios. Si a directriz fôr a cissoida de Diocles, teremos o genero
das superfícies conicas cissoidaes; si fôr a helice ordinaria teremos o
das superfícies conicas helicoidaes, e assim por diante.

A familia das superfícies cónicas faz parte de um grupo mais
vasto: o das superfícies que receberam de Monge a denominacao de
superfícies desenvolviveis, constituindo estas ultimas, por sua vez, uma
categoria das superfícies rectilineas ou regradas.

Inspirados nos preceitos geraes que regem a formação dos tipos
collectivos, graças aos quaes Monge conseguin a representação alge-
brica das familias geometricas, abrindo assim vastissimo campo por
onde se devia estender a incomparavel concepção cartesiana, facil se
nos torna o estabelecimento da equação geral e collectiva da família das superfícies conicas.

Desiguando por α, β, γ as coordenadas do ponto fixo, que é o vertice da superficie, as equações da geratriz rectilínea serão

$$x - \alpha = a(z - \gamma)$$

$$y - \beta = b(z - \gamma).$$

Nestas equações α, β, γ são parametros fixos, enquanto que a e b são parametros variaveis. A dualidade destes ultimos parametros mostra que a definição do grupo geometrico corresponde realmente a uma familia.

Resolvendo as equações que precedem em relação aos parametros a e b, obtem-se:

$$a = \frac{x - \alpha}{z - \gamma}, \quad b = \frac{y - \beta}{z - \gamma}$$

Estabelecendo entre as expressões dos dois parametros uma relação totalmente arbitrária, virá

$$\varphi\left(\frac{x - \alpha}{z - \gamma}; \frac{y - \beta}{z - \gamma}\right) = 0$$

Tal é a relação collectiva e geral que representa algébricamente a familia das superfícies conicas.

A função φ é uma função indeterminada, isto é, pôde receber todas as formas imaginaveis. A cada forma que lhe fôr atribuida corresponderá um genero determinado de superfícies conicas. Sob o aspecto geometrico, determinar a forma da função φ equivale a fixar a natureza geometrica da directriz.

Vejamos como a equação precedente pôde conduzir-nos a saber si uma superficie particular, representada pela equação ordinaria a tres variaveis, $f(x, y, z) = 0$, é ou não uma superficie conica.
E claro que sob o ponto de vista algebrico a questao consiste em decidir si na infinita variedade de formas que a funcao \(\psi \) pode receber existe uma para a qual o typo analitico

\[\psi \left(\frac{x-a}{z-\gamma}, \frac{y-\beta}{z-\gamma} \right) = 0 \]

coincida com a equacao particular \(f(x, y, z) = 0 \).

Sob o aspecto geometrico ella consistira em desvendar a forma da directriz sobre a qual a geratriz devera apoiar-se para que a superficie conica produzida possa confundir-se com a que e representada pela equacao proposta.

De acordo com os preceitos fundamentaes que ja nos sao familiares, sabemos que a equacao collectiva das superficies conicas pode sempre reduzir-se a encerrar apenas duas variaveis, e esta reducao sera operada, vese immediatamente, mediante a mudanca de

\[\frac{x-a}{z-\gamma} \text{ por } t \text{ e } \frac{y-\beta}{z-\gamma} \text{ por } u \], ou de \(x \) e \(y \) por \(z + (z-\gamma) t \) e \(\beta + (z-\gamma) u \).

Isto posto, a substituicao darat a equacao

\[f \left[z, x + (z-\gamma) t, \beta + (z-\gamma) u \right] = 0 \]

Ora a substituicao indicada, feita no typo algebrico collectivo, o reduz a so, conter duas variaveis; o mesmo devera acontecer com a equacao precedente si ella for um caso particular da das superficies conicas, isto e, si a superficie proposta estiver comprehendida na familia geometrica que estudamos. Mas a equacao precedente encerra as variaveis \(t, u, z \); para que estas variaveis se reduzam a duas, é necesario que se efectue o desapparecimento de \(z \), dispendo convenientemente dos parametros \(x, \beta \) e \(\gamma \), que determinam a situacao do vertice da superficie.
Podemos considerar em relação às superfície conicas, como o fizemos em relação às superfícies cilíndricas, a questão que consiste em determinar o número de condições necessárias para que a equação completa do 2º grau a três variáveis represente um logar geométrico de natureza conica. Tomando essa equação:

\[A x^2 + By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + H y + Kz = 1 \]

e fazendo nela a mudança anteriormente indicada, virá

\[A \left[x + (z-\gamma) t \right]^2 + B \left[y + (z-\gamma) u \right]^2 + Cz^2 + D \left[x + (z-\gamma) t \right] \left[y + (z-\gamma) u \right] + \\
+ E \left[x + (z-\gamma) t \right] y + F \left[y + (z-\gamma) u \right] z + G \left[x + (z-\gamma) t \right] z + H \left[y + (z-\gamma) u \right] z + Kz = 1 \]

Effectuando os desenvolvimentos e igualando a zero os coeficientes totaes de \(x^2, y^2, uz \) e \(z \) teremos quatro equações encerrando os parametros \(z, \beta \) e \(\gamma \). A eliminação destes parametros entre essas equações fornecerá uma relação unica entre os nove coeficientes disponíveis da equação geral do 2.º grao; tal relação traduzirá analyticalmente a condição de conicidade do logar geométrico.

Mais ardudo do que no caso das superfícies cilíndricas, o trabalho algebrico necessário para verificar se uma superficie dada pertence ou não á familia das superfícies conicas, recebe, entretanto, notable simplificação, graças a um bello theorema de geometria objectiva, devido á feliz inspiração de Monge.

Si na equação collectiva da familia das superfícies conicas supuermos nullas as coordenadas do vertice, teremos

\[\psi \left(\frac{x}{r}, \frac{y}{z} \right) = 0. \]

Para reduzir esta equação a só conter duas variáveis bastará evidentemente substituir \(x \) e \(y \) por \(ts \) e \(uz \). Portanto, quando tal sub-
stituição for feita numa equação particular, a conicidade do logar geométrico correspondente exigirá o desaparecimento espontâneo da coordenada z, o que supõe que todos os termos da equação sejam do mesmo grau. Somos assim conduzidos à proposição geral que, fruto das meditações de Monge, constitui um dos attestados mais brilhantes da íntima harmonia que a sublime criação cartesiana estabeleceu entre as formas e as equações, da aliança fecunda e indissoluvel que ela inaugurou entre a lógica dos sinais e a das imagens. Mais ainda: elle serve para mostrar a grandeza do passo realizado por Monge com a fundação da geometria comparada, pois que sem o impulso impresso por esse geometra com a concepção das equações próprias à representação algébrica das familias geometricas, a ligação directa entre a conicidade da superficie e a homogeneidade da equação teria ficado, talvez, perpetuamente ignorada.

O theorema de Monge permite facilmente reconhecer si uma superficie dada pela sua equação \(f(x, y, z) = 0 \) se acha ou não compreendida na família das superfícies conicas. De facto, si a equação for homogenea podereemos imediatemente afirmar que a sua representação geométrica será uma superficie conica tendo para vertice a origem das coordenadas; si essa condição não for satisfeita, um simples deslocamento de origem, obtido pela mudança de \(x, y, z \) por \(x + \alpha, y + \beta, z + \gamma \), ou permitirá tornal-a homogenea, disposto-se das constantes \(\alpha, \beta, \gamma \) de modo a annullar os coeficientes totais de todos os termos de grau inferior ao da equação, e neste caso conhecemos imediatemente a posição do vertice, ou mostrará a impossibilidade de conseguir tal homogeneidade e então ficaremos certos de que a família geometrica que estudamos não comprende a superficie individualizada, ou a especie de superficies, ou ainda o genero de superficies representados pela equação proposta.

Tratando-se, por exemplo, da equação geral do segundo grao a tres variaveis

\[
A x^2 + B y^2 + C z^2 + D x y + E x z + F y z + G x + H y + K z = 1
\]

a mudança indicada conduzirá à equação:

\[
A (x+\alpha)^2 + B (y + \beta)^2 + C (z + \gamma)^2 + D (x + \alpha)(y + \beta) + E (x + \alpha)(z + \gamma) + \\
+ F (y + \beta)(z + \gamma) + G (x + \alpha) + H (y + \beta) + K (z + \gamma) = 1
\]
ou

\[\begin{align*}
Ax^2 + By^2 + Cz^2 + (2A\gamma + D\beta + E\zeta + G)x + (2B\gamma + D\beta + F\zeta + H)y + (2C\gamma + \\
E\zeta + F\zeta + K)z + (A\gamma^2 + B\beta^2 + C\zeta^2 + D\beta^2 + E\gamma^2 + F\gamma^2 + G\zeta + H\zeta + K\gamma + K - 1 = 0
\end{align*}\]

Para que esta transformada seja homogênea é necessário que se tenha

\[\begin{align*}
2A\gamma + D\beta + E\zeta + G = 0 \\
2B\gamma + D\beta + F\zeta + H = 0 \\
2C\gamma + E\zeta + F\zeta + K = 0
\end{align*}\]

Resolvendo as três primeiras equações em relação a \(\gamma\), \(\beta\), \(\zeta\), e substituindo as expressões obtidas na última, obtem-se a relação que deve ligar os coeficientes para que o logar geométrico da equação do 2° grau seja de natureza conica.

Se considerarmos agora a questão que consiste em, dada a diretriz, formar a equação dos cones, veremos imediatamente que o problema se reduz a estabelecer, em estilo algebrico, a condição de encontro entre a geratriz rectilínea e a directriz proposta. Sendo \(x-x=a (z-\zeta)\) e \(y-\gamma=b (z-\zeta)\) as equações da geratriz, \(f_1 (x, y, z) = 0\), \(f_2 (x, y, z) = 0\) as da directriz, o caracter algebrico proprio a traduzir o encontro das duas linhas será a simultaneidade dessas quatro equações; ora eliminadas as coordenadas \(x, y, z\), chegaremos a uma relação \(\phi (a, b) = 0\) entre os parametos variaveis da geratriz, relação que exprimirá que em todas as posições a geratriz encontra a diretriz. Da relação \(\phi (a, b) = 0\) passaremos imediatamente à equação da superfície conica substituindo \(a\) e \(b\) por

\[\begin{align*}
\frac{x-a}{z-\zeta} &= \frac{y-\gamma}{z-\zeta}
\end{align*}\]
Como exemplo característico destinado a esclarecer esta parte da teoria das superfícies conicas, escolheremos a interessante questão que se encontra na construção das cartas geográficas, quando, adoptando o sistema das projeções stereográficas imaginado por Ptolomeu, se procura determinar a perspectiva de um círculo qualquer da esfera terrestre. Nesse sistema de projeções o quadro é o plano de um meridiano e o ponto de vista é um dos polos correspondentes a esse meridiano. Vê-se desde logo que bastará formar a equação do cone visual e determinar a interseção desse cone pelo plano do meridiano tomado para quadro.

Para simplificar o trabalho algebrico collocaremos o origem das coordenadas rectilíneas no centro da terra, faremos passar o eixo dos \(z \) pelos polos terrestres, suporemos o eixo dos \(x \) situado no quadro; nestas condições o eixo dos \(y \) passará necessariamente pelo ponto de vista.

A directriz do cone visual sendo um círculo qualquer da esfera terrestre, será representada pelo sistema das duas equações

\[
x^2 + y^2 + z^2 = r^2
\]
\[
z = ax + by + c
\]

a primeira das quais representa a superfície terrestre, suposta esférica, e a segunda um plano qualquer.

A geratriz devendo ser rectilínea as suas equações serão da fórma

\[
x = mz + k
\]
\[
y = nx + l
\]

Devendo além disso passar pelo vértice, cujas coordenadas são

\[
z = o, \beta = r, \gamma = o
\]

teremos

\[
k = o, l = r
\]
Consequentemente as equações que precedem se tornam

\[x = nz \]
\[y = nz + r \]

A condição de encontro será obtida pela eliminação de \(x, y, z \) entre estas equações e da directriz.

Substituindo \(x \) e \(y \), tirados das duas equações precedentes, na equação

\[z = ax + by + c, \]

vem

\[z = amz + bnz + br + c; \]

d’onde

\[z = \frac{br + c}{1 - am - bn} \]

e portanto

\[x = \frac{m (br + c)}{1 - am - bn} \]
\[y = \frac{n (br + c)}{1 - am - bn} + r \]

A substituição de \(x, y, z \) pelas expressões precedentes na equação

\[x^2 + y^2 + z^2 = r^2 \]

dará a relação

\[\frac{m^2 (br + c)^2}{(1 - am - bn)^2} + \left[\frac{n (br + c)}{1 - am - bn} + r \right]^2 + \frac{(br + c)^2}{(1 - am - bn)^2} = r^2 \]
ou

\[m^2 (br + c)^2 + \left[n (br + c) + r (1-am-bn) \right]^2 + (br + c)^2 = r^2 (1-am-bn)^2 \]

ou

\[m^2 (br + c)^2 + (nc + r - amr)^2 + (br + c)^2 = r^2 (1 - am - bn)^2 \]

Tal é a condição de encontro permanente entre a geratriz e a directriz. A eliminação de \(m \) e \(n \) entre a equação precedente e as da geratriz fornece a do cone visual. As equações da geratriz nos dão

\[m = \frac{x}{z}, \quad n = \frac{y - r}{z} \]

Substituindo na condição de encontro, obtemos

\[\frac{ax}{z^2} (br + c)^2 + \left[c \left(\frac{y - r}{z} + r - \frac{ax}{z} \right) \right]^2 + (br + c)^2 = r^2 \left[1 - \frac{ax}{z} - \frac{b (y - r)}{z} \right]^2 \]

ou

\[x^2 (br + c)^2 + \left[c(y - r) + r^2 - ax \right]^2 + (br + c)^2 z^2 = r^2 \left[z - ax - b(y - r) \right]^2 \]

Obtida assim a equação da superfície cônica procurada, para termos a da perspectiva do círculo bastará fazer nela \(y = 0 \), o que dará

\[x^2 (br + c)^2 + (rz - re - ax)^2 + (br + c)^2 z^2 = r^2 (z - ax + br)^2 \]

ou

\[x^2 (br + c)^2 + r^2 (z - c - ax)^2 + (br + c)^2 z^2 = r^2 (z - ax + br)^2 \]
ou

\[x^2(br + c)^2 + r^2(z - ax)^2 + r^2z^2 - 2cr^2(z - ax) + (br + c)x = r^2(z - ax)^2 + r^2b^2 + 2r^2b(z - ax)\]

ou

\[x^2(br + c)^2 + (br + c)x^2 + (2rv^2 + 2r^2br)x + (3r^2 + 2r^2br)x + r^2v^2 - r^2br^2 = 0\]

\[x^2(br + c)^2 + (br + c)x^2 + 2br^2(br + c)x - 2r^2(br + c)x + r^2(c - br)(c + br) = 0\]

ou finalmente

\[x^2 + z^2 + 2 \frac{ar^2}{br + c} x - 2 \frac{r^2}{br + c} z + \frac{r^2(c - br)}{br + c} = 0\]

A simples inspeção desta equação, vê-se que ella satisfaz a dupla condição necessária e suficiente para que uma equação do 2º grao represente um círculo em coordenadas rectilíneas.

Dahi resulta a principal propriedade do sistema das projeções stereográficas, a qual consiste em que a prespectiva de qualquer círculo terrestre é também um círculo. Esta propriedade era conhecida dos antigos que a tinham desvendado, partindo da consideração das secções anti-paralelas do cône circular obliquo.

Uma outra propriedade de que gosa o mesmo sistema de projeções, consiste em que o ângulo de dois círculos quaisquer traçados sobre a esfera é igual ao ângulo das suas projeções. Poderíamos, por meio da equação obtida verificar esta propriedade; não o faremos entretanto attendendo a que elém de não apresentar ella grande importância, o trabalho algebrico necessário para isso é bastante penoso.

Comparando a equação precedente com a equação geral do círculo em coordenadas rectilíneas orthogones.

\[x^2 + z^2 - 2x_i w - 2z_i u + (x_i^2 + z_i^2 - R^2) = 0\]
obtem-se

\[x_1 = -\frac{ax^2}{br + c}, \quad z_1 = \frac{r^2}{br + c} \]

\[x_i^2 + z_i^2 - R^2 = \frac{r^2 (c - br)}{c + br} \]

As duas primeiras relações determinam a posição do centro da perspectiva; a última nos dá o raio da mesma perspectiva. Della tiramos

\[R^2 = x_1^2 + z_1^2 - \frac{r^2 (c - br)}{c + br} = \frac{a^2 r^4}{(br + c)^2} + \frac{r^4}{(br + c)^2} - \frac{r^2 (c - br)}{c + br} \]

ou

\[R^2 = \frac{a^2 r^4 + r^2 - r^2 (c + br) (c - br)}{(c + br)^2} \]

ou

\[R^2 = \frac{r^2 [(a^2 + b^2 + 1) r^2 - c^2]}{(br + c)^2} \]

d'onde

\[R = r \frac{r}{br + c} \sqrt{(a^2 + b^2 + 1) r^2 - c^2} \]

Para a perspectiva dos parallelos ao equador teremos \(z = c \) e portanto \(a = 0, \ b = 0 \)

\[R = r \frac{r}{c} \sqrt{r^2 - c^2} \]

Chamando \(\lambda \) a latitude correspondente, temos

\[c = r \ sen \lambda \]
e portanto

$$R = \frac{r}{r \sen \lambda} \sqrt{r^2 - r^2 \sen^2 \lambda}$$

ou,

$$R = \frac{1}{\sen \lambda} \sqrt{r^2 \cos^2 \lambda} = \frac{r \cos \lambda}{\sen \lambda} = r \cotang \lambda$$

Este resultado mostra que o raio da perspectiva de um paralleló qualquer é sempre proporcional à cotangente da latitude.

Para o caso dos meridianos, a equação do plano que por sua intersecção com a superfície terrestre dá a directriz do cône visual é $y = px$

As condições de identificação da equação $z = ax + by + c$ com esta são

$$\frac{1}{b} = o, \quad \frac{c}{b} = o, \quad \frac{a}{b} = -p$$

Considerando a expressão do raio da perspectiva virá

$$R = \frac{r}{r + \frac{a}{b}} \sqrt{\left(\frac{a^2}{b^2} + 1 + \frac{1}{b^2}\right) r^2 - \frac{c^2}{b^2}}$$

Attendendo-se às condições acima esta expressão se torna

$$R = \sqrt{(p^2 + 1) r^2}$$

ou

$$R = r \sqrt{p^2 + 1}$$
Representando por L a longitude teremos $p = \tan L$ e portanto

$$R = r \sqrt{1 + \tan^2 L} = r \sqrt{\sec^2 L}$$

ou

$$R = r \sec L$$

Conclue-se assim que o raio da perspectiva de um meridiano qualquer é proporcional à secante da longitude.

A marcha geral que devemos seguir para o estabelecimento da equação de um gênero, de uma espécie ou de uma superfície individual, pertencentes à família geométrica que estamos estudando — quando a diretriz correspondente é dada — comporta notável simplificação desde que esta diretriz seja o traço da superfície conica sobre um dos três planos coordenados.

Supondo que seja dado o traço sobre o plano dos xy, as equações correspondentes serão $z = 0$, $f(x, y) = 0$.

É preciso, para exprimir o encontro da geratriz com esta curva, eliminar as coordenadas variáveis entre as equações precedentes e as da geratriz $x = x = a(z - \gamma)$, $y = \beta = b(z - \gamma)$ o que dá $f(x - ax, \beta - b\gamma) = 0$. Desta condição emana imediatamente a equação da superfície conica procurada, bastando para isso substituir os parâmetros variáveis a e b pelas suas expressões tiradas das equações da geratriz, isto é, por

$$x = x$$
$$y = y$$
$$z = z$$

A equação da superfície conica será pois

$$f\left(\frac{x - \gamma(x - z)}{z - \gamma}, \frac{\beta - \gamma(y - \beta)}{z - \gamma}\right)$$

ou

$$f\left(\frac{z - \gamma x}{z - \gamma}, \frac{\gamma z - \gamma y}{z - \gamma}\right)$$
A constituição algébrica desta equação nos mostra que ella resulta da equação plana da directriz substituindo-se simplesmente \(z \) por \(\frac{\alpha - \gamma x}{x - \gamma} \) e \(y \) por \(\frac{\beta - \gamma y}{x - \gamma} \).

Assim a equação do círculo referido a dois diametros perpendiculares

\[x^2 + y^2 = r^2 \]

fornece imediatamente a do cone circular

\[\left(\frac{z - \gamma x}{x - \gamma} \right)^2 + \left(\frac{\beta - \gamma y}{x - \gamma} \right)^2 = r^2 \]

ou

\[(\alpha z - \gamma x)^2 + (\beta z - \gamma y)^2 = r^2 (z - \gamma)^2 \]

No caso do cone circular recto, temos \(x = 0, \beta = 0 \), pois que o vertice deve estar situado sobre a perpendicular tirada ao centro da base perpendicular que no caso actual é o eixo dos \(z \).

Desde então a equação será

\[x^2 + y^2 = \frac{r^2}{x^2} (z - \gamma)^2 \]

Tratando-se do cone parabolico, as equações da directriz serão \(x = 0, y^2 = mx \); a equação da superfície será

\[\left(\frac{\beta z - \gamma y}{x - \gamma} \right)^2 = m \frac{\alpha z - \gamma x}{x - \gamma} \]

ou

\[(\beta z - \gamma y)^2 = m (\alpha z - \gamma x)(z - \gamma) \]
Para os cones elíptico e hiperbólico, as equações da directriz serão

\[b^2x^2 \pm a^2y^2 = a^2b^2 \]

A equação da superfície será

\[b^2 \left(\frac{x - \gamma x}{z - \gamma} \right)^2 \pm a^2 \left(\frac{z - \gamma y}{z - \gamma} \right)^2 = a^2b^2 \]

ou

\[b^2 \left(\alpha x - \gamma x \right)^2 \pm a^2 \left(\beta z - \gamma y \right)^2 = a^2b^2 (z - \gamma)^2 \]

Se o vértice estiver sobre a perpendicular levantada ao plano da directriz pelo centro desta, teremos a equação

\[b^2 \gamma^2 x^2 \pm a^2 \gamma^2 y^2 = a^2 b^2 (z - \gamma)^2 \]

ou

\[\frac{x^2}{a^2} \pm \frac{y^2}{b^2} = \left(\frac{z - \gamma}{\gamma} \right)^2 \]

Para o cône cissoidal, cuja directriz tem por equações

\[z = 0 \quad , \quad y = \frac{x^3}{\varepsilon r - x} \]

teremos a equação

\[\left(\frac{\beta x - \gamma z}{z - \gamma} \right)^2 = \frac{\left(\frac{x}{z - \gamma} \right)^3}{\varepsilon r - \frac{a \beta - \gamma x}{z - \gamma}} \]
Para o cone logarithmico, cuja directriz tem por equações

\[z = 0 , \quad y = \lg x \]

a equação será

\[\frac{z - \gamma y}{z - \gamma} = \lg \left(\frac{z - \gamma x}{z - \gamma} \right) \]

Para as superfícies conicas cuja directrices são as duas notaveis séries de curvas que o poderoso genio de Descartes fez derivar do circulo, as equações se obtêm com igual facilidade. Basta lemb� que a primeira dessas séries, a das curvas fechadas, é representada em coordenadas rectilíneas ordinarias pelas equações de grãos simplesmente pares

\[
\begin{align*}
(x^2 + y^2)^3 - r^3 x^3 & = 0 , \quad z = 0 \\
(x^2 + y^2)^5 - r^5 x^5 & = 0 , \quad z = 0 \\
(x^2 + y^2)^7 - r^7 x^7 & = 0 , \quad z = 0 \\
(x^2 + y^2)^9 - r^9 x^9 & = 0 , \quad x = 0 \\
(x^2 + y^2)^{3n+1} - r^{3n} x^{3n} & = 0 , \quad z = 0 \\
\end{align*}
\]

D'ahi resultam imediatamente para as equações das superfícies conicas cujas directrices fossem essas curvas:

\[
\begin{align*}
\left[\left(\frac{z - \gamma x}{z - \gamma} \right)^2 + \left(\frac{z - \gamma y}{z - \gamma} \right)^2 \right]^3 - r^3 \left(\frac{z - \gamma x}{z - \gamma} \right)^4 & = 0 \\
\left[\left(\frac{z - \gamma x}{z - \gamma} \right)^2 + \left(\frac{z - \gamma y}{z - \gamma} \right)^2 \right]^5 - r^5 \left(\frac{z - \gamma x}{z - \gamma} \right)^6 & = 0 \\
\left[\left(\frac{z - \gamma x}{z - \gamma} \right)^2 + \left(\frac{z - \gamma y}{z - \gamma} \right)^2 \right]^{6n+1} - r^{6n+1} \left(\frac{z - \gamma x}{z - \gamma} \right)^{4n+1} & = 0
\end{align*}
\]
Quanto à segunda série, a das curvas indefinidas, as suas equações rectilíneas têm gráos duplamente pares e são as seguintes:

\[x^4 = r^2 \left(x^2 + y^2 \right) \]
\[x^8 = r^2 \left(x^2 + y^2 \right)^4 \]
\[x^{12} = r^2 \left(x^2 + y^2 \right)^6 \]
\[x^{16} = r^2 \left(x^2 + y^2 \right)^8 \]
\[\cdots \]
\[z = 0 \]
\[\cdots \]
\[x^{2n} = r^2 \left(x^2 + y^2 \right)^{2n-4} \]
\[z = 0 \]

Para obter as equações das superfícies conicas correspondentes a esta série de curvas, devemos fazer a substituição de \(x \) e \(y \) nas equações planas, pelas expressões já indicadas, o que dá:

\[
\left(\frac{ax - \gamma x}{z - \gamma} \right)^4 = r^2 \left(\left(\frac{ax - \gamma x}{z - \gamma} \right)^2 + \left(\frac{by - \gamma y}{z - \gamma} \right)^2 \right) \]
\[
\left(\frac{ax - \gamma x}{z - \gamma} \right)^8 = r^2 \left(\left(\frac{ax - \gamma x}{z - \gamma} \right)^4 + \left(\frac{by - \gamma y}{z - \gamma} \right)^4 \right) \]
\[
\left(\frac{ax - \gamma x}{z - \gamma} \right)^{12} = r^2 \left(\left(\frac{ax - \gamma x}{z - \gamma} \right)^6 + \left(\frac{by - \gamma y}{z - \gamma} \right)^6 \right) \]
\[
\cdots \]
\[
\left(\frac{ax - \gamma x}{z - \gamma} \right)^{4n} = r^2 \left(\left(\frac{ax - \gamma x}{z - \gamma} \right)^{2n} + \left(\frac{by - \gamma y}{z - \gamma} \right)^{2n} \right) \]

Como último exemplo, formemos a equação das superfícies conicas que têm para directriz as curvas celebres obtidas cortando o tóro de revolução por planos paralelos ao eixo. Entre as secções toricas está a ellipse de Cassini, curva que será eternamente lembrada na his-
toria do desenvolvimento da ciência astronômica, como assignalando uma audaciosa tentativa para derrogar as leis que o immortal autor da «Stella Maris» tão sabiamente conseguiu desprender das aparências celestes. A equação plana comum a essas três curvas sendo

\[y^2 + 2(d^2 + x^2) y^2 + (d^2 - x^2)^2 = m^4 \]

a das superfícies conicas correspondentes será

\[\left(\frac{\beta z - y}{z - y} \right)^2 + \left(\frac{\alpha z - y}{z - y} \right)^2 + \left(\frac{\delta z - y}{z - y} \right)^2 = m^4. \]

Antes de terminar o estudo da teoria das superfícies conicas, na parte acessível ao cálculo das relações directas, é preciso mostrar como, à luz dessa teoria, pôde ser feita em toda a sua generalidade a apreciação das curvas do segundo grão consideradas como secções conicas. Considerando a equação do cone circular recto

\[y^2 + x^2 = \frac{r^2}{\gamma^2} \left(z - \gamma \right)^2 \]

e substituindo nela as coordenadas \(x, y, z\) pelas expressões emanadas das fórmulas de Euler quando se atende à planicidade da curva e se collocam os novos eixos coordenados em situações convenientes, vem

\[(-x'\cos \varphi + y'\cos \varphi \cos \theta)^2 + (x'\cos \varphi + y'\cos \varphi \cos \theta)^2 = \frac{r^2}{\gamma^2} \left(y'\cos \theta + \right. \]

\[+ \left. c - \gamma \right)^2 \]

Esta equação, reunida a \(z' = 0 \), representará a secção do cone recto circular referida ao novo sistema de coordenadas rectilíneas.

Vê-se claramente que feitos os desenvolvimentos algebricos indicados, ella tomará a fórma
\[Ay'' + Bx'y' + Cx'^2 + Dx' + Ey' = 1 \]

que representa ao plano os três generos de curvas do segundo grão.
Assim, o metodo das seções planas nenhuma duvida deixa sobre a
natureza das seções do cone de revolução. Para o cone circular
obliquo, a equação sendo, como já vimos,

\[(b - \gamma y)^2 + (xz - \gamma x)^2 = r^2 (z - \gamma)^2 \]

o emprego das fórmulas eulerianas, com as simplificações próprias
ao caso da planicidade, nos daria para equações da seção

\[z' = 0 \]

e

\[[\beta (y' \cos \gamma + c) - \gamma (-x' \cos \gamma + y' \cos \gamma)]^2 + [x (y' \cos \gamma + c) - \gamma (x' \cos \gamma + y' \cos \gamma)]^2 = r^2 (y' \cos \gamma + c - \gamma)^2 \]

o que mostra que as seções do cone circular obliquo podem ser
 ao caso do único de curvas do segundo grão.

Independentesmente do metodo das seções planas se poderia
 chegar a este resultado, pela simples observação de que toda a super-
fície algebrica só poderia ter, para seções planas, curvas do mesmo
grafo. A verdade desta observação é evidente quando se consideram
 as seções feitas paralelamente aos três planos coordenados, porquanto
 para obter as equações destas seções nos seus respectivos planos
 basta fazer \(x = C, y = C' \) ou \(z = C'' \), conforme se trata de seções paral-
lelas ao plano dos \(xy \), dos \(xz \) ou dos \(xy \). Desde então a equação da
superfície sendo \(f(x, y, z) = 0 \), teremos:

 para as seções paralelas ao plano dos \(xy \): \(f(C, z, y) = 0 \)
 para as seções paralelas ao plano dos \(xz \): \(f(C', x, z) = 0 \)
 para as seções paralelas ao plano dos \(xy \): \(f(C'', x, y) = 0 \)

Mas as seções paralelas aos planos coordenados podem repre-
sentar todas as sortes de seções, pois que considerando a equação completa de cada grão, a disponibilidade dos parametos que entram na sua constituição algebraica, permitirá atribuir todas as situações possíveis ao logar geométrico e consequentemente obter todas as seções possíveis:

Em virtude do princípio que acabamos de expôr, conclui-se que as seções planas do cône circunferente são curvas do segundo grão, por quanto esta superfície faz parte das do segundo grão. Parece inutil notar que quando dizemos isto, nos referimos aos casos normais, pois que considerando se situações excepcionais do plano secante, poderíamos obter seções compostas de duas linhas rectas.

Eis o que julgamos essencial dizer sobre o estudo da teoria das superfícies conicas feito à luz dos recursos da álgebra directa. Em outra parte do nosso insignificante trabalho, trataremos de fazer a apreciação dessa teoria com os recursos do cálculo transcendente, poderoso instrumento cuja criação foi preparada principalmente por Descartes, Fermat, Barrow, Huyghens, Cavallerius e Wallis, e magistralmente realizada por Leibniz, que a publicou nas brilhantíssimas paginas das Actas de Leipsic do mezo de Outubro de 1684.
Como terceiro exemplo destinado a esclarecer a grandiosa concepção do fundador da geometria descriptiva, se apresenta a família das superfícies de revolução. As duas famílias anteriores, a das superfícies cilíndricas e a das superfícies cônicas, fazem parte do vasto grupamento das superfícies que Monge denominou desenvolvíveis e que constituem uma das classes das superfícies rectílinhas ou regradas.

A família das superfícies de revolução se acha, ao contrário, compreendida na classe das superfícies curvas propriamente ditas, o que não quer, entretanto, significar que nesta família não se encontrem tipos geométricos excepcionais, podendo ser gerados pela linha recta. Assim, o plano, as superfícies cilíndrica e conica de revolução, o hipérboleide também de revolução são superfícies rectílinhas. Este facto serve para atestar de modo eloquente que, no domínio geométrico, como em todos os outros ramos do saber humano, ilusória seria a pretensão de obter classificações dotadas de perfeição absoluta. Caso particular das superfícies cilíndricas, o cilindro de revolução se acha compreendido na família das superfícies de revolução e, ainda mais, na família das superfícies cínicas: entra, portanto, aquela superfície excepcionalmente em três famílias, sendo a primeira pertencente às superfícies rectílinhas, a segunda às superfícies curvas de revolução e a terceira às superfícies curvas quaisquer.

Typo fundamental de todos os estudos geométricos relativos às superfícies, o plano constitui um caso particular ao mesmo tempo das superfícies cilíndricas, das cônicas, das de revolução e, em fim, das superfícies regradas quaisquer.

Feitas estas considerações vejamos qual a geração das superfícies que compõem a família cujo estudo estamos iniciando.
Toda a superfície de revolução pôde ser definida como sendo gerada pelo movimento de uma certa linha em torno de um eixo fixo, invariavelmente ligado a elle.

A linha movel considerada constitui a geratriz da superficie. Ella pôde ser recta ou curva, e neste ultimo caso pôde ser uma curva plana (também chamada de flexão), ou de dupla curvatura (também denominada de torsão). Quer seja plana, quer de dupla curvatura, ella pôde afectar uma infinidade de fórmas distinctas, correspondiendo a cada uma destas formas um genero determinado de superficies de revolução. É inutil dizer que cada genero compreende por sua vez uma infinidade de especies, sendo cada especie caracterisada pela semelhança das superficies que a compõem.

A mais simples superficie curva de revolução que a imaginação humana possa conceber é a esfera, cujas propriedades já são exploradas, á luz do methodo dos antigos, desde a geometria preliminar. Gerada pela rotação de uma semi-circumferencia de circulo em torno de um dos seus diametros, essa superficie desempenha importante papel, quer no dominio geometrico, como meio de investigação scientifica, quer nas artes de construccion, onde ella tem numerosas e variadas aplicações. Sob o primeiro aspecto, lembremos a luminosa concepção da esfera parcialmente osculatriz a uma superficie, empregada na determinação da curvatura; sob o segundo, immensos são os empregos que poderiam ser mencionados. Sob o ponto de vista historico a esfera não é menos notavel, pois, essa superficie desperta no nosso espírito a lembrança das maravilhosas acquisições que a sciencia geometrica deve ao poderoso genio do principio dos geometros—o grande Archimedes.

Como exemplos notaveis de superficies de revolução, podem ser mencionados: o tório de revolução, superficies cujas secções planas lembram a singular tentativa de Cassini para distuir os aliceres da legislação kepleriana; o ellipsoide e o paraboloide de revolução, os hyperboloides continuo e descontinuo de revolução, etc.

As secções feitas numa superficie de revolução por planos perpendiculares ao eixo denominam-se paralelos da superficie; as secções feitas por planos conduzidos pelo eixo chamam-se meridianos e são todas iguais entre si.

A geração das superfícies de revolução pelo movimento de uma linha em torno de um eixo, ao qual ella se acha invariavelmente ligada, não se adapta a formação da equação collectiva propria á representa-
ção algébrica da família geométrica constituída pelo conjunto dessas superfícies. De facto, num tal modo de geração a geratriz não é a mesma para todas as superfícies; elle varia de uma superfície para outra, o que, de acordo com os preceitos gerais da geométrica comparada, constitui serio obstáculo para o estabelecimento do tipo algébrico colectivo.

Mas existe um modo de geração no qual a geratriz é a mesma para todas as superfícies de revolução. De acordo com este modo, as superfícies que compõem a família que estudamos são geradas por um círculo cujo centro percorre uma recta fixa, cujo plano se conserva constantemente perpendicular a esta recta, e cujo raio varia de modo tal que esse círculo encontre sempre uma linha fixa. Esta linha fica indeterminada quando se considera a família em toda a sua plenitude; em estilo algébrico esta indeterminação de uma directriz se traduz pela existência de uma função arbitrária no tipo analítico collectivo. A harmonia entre o abstracto e o concreto, entre as equações e as formas geométricas que ellas representam, reveste-se de um cunho admirável de perfeição; estabelecida sob o impulso da grandiosa concepção de Descartes, quanto às superfícies particulares, quanto às espécies e aos géneros de superfícies e as equações ordinárias a tres variáveis, ella se estende, pelo pensamento de Monge, às familias de superfícies e aos tipos algebricos que encerram na sua constituição uma função indeterminada.

Guia incessante do espírito na formação das equações colectivas, os preceitos gerais instituídos na taxonomia geométrica nos indicam a necessidade de elaborar a definição que convém á família proposta, de modo a reduzir a dous os parâmetros arbitrários que entram no conjugado algébrico da geratriz, para em seguida estabelecer entre elles uma relação arbitrária, que fornecerá a equação colectiva, desde que os parâmetros sejam formulados em função das coordenadas.

Sejam \(x = ax + \alpha, \ y = by + \beta \) as equações do eixo; a geratriz sendo um círculo as suas equações são

\[
(x - a)^2 + (y - b)^2 + (z - c)^2 = r^2
\]

\[z = mx + ny + c\]
as quais convém respectivamente a uma esfera e a um plano quase-
quer; a interceptão destas duas superfícies é evidentemente um
círculo. Devendo a geratriz ter sempre o seu centro colocado sobre o
eixo, claro é que devemos colocar o centro da esfera num ponto
fixo qualquer do eixo; escolheremos o traço do eixo sobre o plano
dos xy, donde resultará $x_i = x$, $y_i = \beta$, $z_i = o$. Além disso o plano
dos eixos deve-se conservar sempre normal ao eixo, o que exige que se
tenha $m = -a$, $n = -b$.

Levando em conta as condições precedentes, que emanam dire-
ctamente da definição, as equações gerais as mais simples que convêm
à geratriz, serão

$$(x - x_o)^2 + (y - \beta)^2 + z^2 = r^2$$
$$x + ax + by = c$$

Nestas equações, x, β, a, b são parâmetros fixos, enquanto que
r e c são parâmetros variáveis. Coexistindo apenas dois destes últi-
mos parâmetros, pode-se afirmar que a definição proposta é relativa
a uma família propriamente dita, família cuja equação coletiva as
equações da geratriz estão aptas a fornecer imediatamente.

Achando-se estas últimas resolvidas em relação a r^2 e c, basta,
entre as expressões destes dois parâmetros em função das coordena-
das, instituir uma relação arbitrária, o que dará para typo analyticco
correspondente a esta família geométrica:

$$(x - x_o)^2 + (y - \beta)^2 + z^2 = \gamma (x + ax + by)$$

ou

$$\Psi [(x - x_o)^2 + (y - \beta)^2 + z^2, x + ax + by] = o$$

Consideremos, como em relação às duas famílias já estudadas, o
problema que consiste em saber se uma superfície individualizada,
ou uma espécie ou ainda um genero, dados pelas suas respectivas
equações em coordenadas rectilíneas ordinárias, estão ou não compre-
hendidas na família das superfícies de revolução. Sendo $f(x, y, z) = 0$
a equação correspondente à superfície individualizada, à espécie de
superfícies ou ao genero, é claro que quando se trata do primeiro
logar geométrico todos os coeficientes dessa equação estarão numericamente definidos, enquanto que quando se consideram os dois últimos a equação encerrará forçosamente coeficientes disponíveis. Seja como fôr, o problema, encarado sob o aspecto geométrico, consistirá em determinar a diretriz sobre a qual deverá apoiar-se o círculo gerador para que, movendo-se segundo a lei própria à família geométrica que estudamos, seja descripta a superfície proposta, ou em reconhecer que tal diretriz não existe. Algebricamente, a questão se reduz a saber se existe alguma fórmula que possa receber a função arbitraria z que entra na equação colectiva

$$(x-a)^2 + (y-\beta)^2 + z^2 = (z + ax + by)^2$$

para que esta equação coincida com a equação ordinaria $f(x, y, z) = 0$. Se existir essa fórmula da função z que determina a coincidência das duas equações, ficará claro que a equação $f(x, y, z) = 0$ é um caso particular da equação colectiva e que, portanto, a primeira terá para representação geométrica uma superfície unica, ou uma especie, ou ainda um genero de superficies compreendidos na família das superficies de revolução; no caso contrario concluiremos que a imagem geométrica da equação proposta, quer seja uma superfície unica, quer uma especie, quer um genero, não faz parte daquelle grupo natural.

Para ver si existe alguma fórmula que, atribuída á função arbitaria, torne idénticas as duas equações, observaremos que a equação colectiva se reduz a conter apenas duas variáveis pela substituição de $(x-a)^2 + (y-\beta)^2 + z^2$ por t e de $z + ax + by$ por u; o mesmo deverá acontecer á equação proposta, si ella fôr um caso particular da equação colectiva considerada.

Eliminando então x e y entre as equações

$$f(x, y, z) = 0, \quad (x-a)^2 + (y-\beta)^2 + z^2 = t, \quad z + ax + by = u$$

chegaremos a uma equação que deve tornar-se independente de z, mediante a disponibilidade das constantes a, b, α e β que permitirá anular os coeficientes dos termos distinctos em que entra z.
Este método permite desvendar as condições algébricas necessárias para que a equação geral de um grão qualquer represente superfícies de revolução. Aplicado, por exemplo, à equação geral do segundo grão,

\[Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Kz = 1 \]

a marcha a seguir consistirá em exprimir \(x \) e \(y \) em função de \(z \), \(t \), \(u \), mediante as relações acima, igualando em seguida a zero os coeficientes dos termos em \(z \). Teremos um certo número de equações que pela eliminação de \(z \), \(\beta \), \(a \), \(b \) nos fornecerão as condições necessárias para que a imagem geométrica da equação esteja comprehendida na família das superfícies de revolução.

O tipo algébrico collectivo próprio a esta família se simplifica enormemente quando se escolhe para eixo dos \(z \) o próprio eixo da superfície de revolução. Então as equações do eixo, \(x = az + z \) e \(y = bz + \beta \) devem se reduzir a \(x = 0, y = 0 \); para que isto se dê é necessário que se tenha \(z = 0, a = 0, \beta = 0, b = 0 \), e desde então a equação collectiva se torna

\[x^2 + y^2 + z^2 = \varphi(z) \]

ou

\[x^2 + y^2 = \varphi(z) - z^2 \]

Mas é evidente que a diferença entre uma função arbitária de \(z \) e a função determinada \(z^2 \) constituye ainda uma função arbitária de \(z \) que poderemos ainda designar pela característica \(\varphi \), o que dará à equação a forma extremamente simples

\[x^2 + y^2 = \varphi(z) \]

De acordo com os preceitos gerais em que se funda o estudo da geometria comparada, obtaremos as equações da geratriz igualando a dois parâmetros variáveis as funções determinadas entre as quaes o tipo collectivo estabelece uma relação arbitraria. Em virtude desta
regra, que já é familiar ao nosso espírito, temos para equação da geratriz no caso actual

\[z = c \quad x^2 + y^2 = r^2 \]

Geometricamente considerada, a redução da equação collectiva à forma precedente equivale á substituição do sistema das duas superfícies, uma plana e outra esferica, por outro mais simples constituído pelo plano e por uma superficie cilíndrica de revolução em torno do eixo dos \(z \).

A equação simplificada \(x^2 + y^2 = \varphi (x) \) permite reconhecer si uma superficie particular, dada pela sua equação \(f(x, y, z) = 0 \) é ou não de revolução em torno do eixo dos \(z \). Bastará versi é possível reduzir a equação \(f(x, y, z) = 0 \) a só conter as variaveis \(x \) e \(t \), quando se fizer \(y^2 + z^2 = t \). Poderíamos mesmo empregar aquella equação para decidir si as superficie dada é de revolução em torno de um eixo não coincidente com o dos \(z \), mas então seria necessario, pelo emprego das formulas de transposição, effectuar uma mudança indeterminada de eixos.

Attribuindo á directriz, que constitue a linha fixa pela qual differem os multiplos generos de superfícies de revolução, uma forma geometrica determinada, teremos tambem, sob o aspecto algebraico, definindo a funçao \(\varphi \) que, ao contrario, quando se considera a totalidade das superficies que compõem a familia é sempre indeterminada. A determinação da forma da funçao \(\varphi \) se consegue pela eliminação, das coordenadas variaveis \(x, y, z \) entre as equações da directriz dada \(f_1(x, y, z) = 0 \) e \(f_2(x, y, z) = 0 \) e as da geratriz \(x^2 + y^2 = r^2, z = 0 \), o resultado d'esta eliminação exprimindo, como se sabe, a condição de encontro. Em seguida, a equação da superficie será obtida refirindo-se, na condição de encontro \(\varphi (c, r) = 0, c \) e \(r \) à \(x, y, z \), o que dá

\[\varphi (z, \sqrt{x^2 + y^2}) = 0 \]

Como primeiro, exemplo, consideremos o caso em que a directriz é uma recta. Tomaremos o plano dos \(x, z \) paralelo á recta, d'onde resultará que as equações della serão \(x = az + x, y = \beta \).

Eliminando \(x, y, z \) entre estas equações e \(x^2 + y^2 = r^2, z = c \), te-
remos para condição de encontro: \((ac + x)^2 + \beta^2 = r^2\). As equações da geratriz dão os parâmetros já referidos às coordenadas, portanto teremos para equação da superfície

\[
(a z + x)^2 + \beta^2 = x^2 + y^2
\]

ou

\[
x^3 + y^3 - a^2z^2 - 2aax = a^2 + \beta^2
\]

Fazendo nesta equação \(y = 0\), obtém-se

\[
x^2 - a^2z^2 - 2aax = a^2 + \beta^2
\]

Ora esta equação representa, no plano dos \(xz\), uma hipérbole ordinária tendo para eixo não transverso o eixo dos \(z\), e para eixo transverso uma paralela ao eixo dos \(x\). Determinemos o eixo transverso. Para isto, mudando \(z\) em \(z' + z_1\), virá

\[
x^2 - a^2(z'^2 + 2z_1 z' + z_1^2) - 2aax (z' - z_1) = a^2 + \beta^2 j
\]

igualando a zero o coeficiente \(-2 (a^2 z + ax)\) da primeira potência de \(z'\), obtem-se

\[
z_1 = -\frac{z}{a}
\]

para ordenada do centro da hipérbole. Estando conhecidos o centro e a direção do eixo transverso, a situação deste está determinada.

Cortando a superfície por planos horizontais representados pela equação \(z = h\), na qual \(h\) é um parâmetro arbitrário, teremos para equação da secção:

\[
z = h, \quad x^2 + y^2 = \beta^2 + (ah' + z)^2
\]
Vemos que as secções perpendiculares ao eixo são, como devíamos prever, todas circulares: a secção de raio \(\text{minimum} \) corresponderá ao plano

\[
a z + x = 0 \quad \text{ou} \quad z = -\frac{x}{a}
\]

Esta secção denomina-se \(\text{gola} \) da superfície; esta superfície é o \(\text{hyperboloide} \) contínuo de revolução.

O cone reto de base circular é um caso particular desta superfície; para obtê-lo basta supor que a directriz, já paralela ao plano dos \(xz \), encontra o eixo dos \(z \), o que quer dizer que elle terá para equações:

\[
x = az + a, \quad y = 0.
\]

Nestas condições \(\beta \) será nulo e a equação se tornará

\[
x^2 + y^2 = a^2 z^2 - 2 axz = x^2
\]

ou

\[
x^2 + y^2 = (az + a)^2
\]

Para as secções feitas pelos planos dos \(xz \) e dos \(xy \), obtem se respectivamente as equações

\[
y = 0, \quad x = \pm (az + x)
\]
\[
x = 0, \quad y = \pm (az + x)
\]

o que quer significar que cada uma dessas secções se compõe de duas rectas que, por terem os seus coeficientes angulares iguais e de sinaes contrarios, são igualmente inclinadas sobre o eixo dos \(z \).
Cortando ainda a superfície por planos passando pelo eixo dos z, para o que basta fazer $y = mx$, obtem-se:

$$y = mx, \quad x^2 + m^2 x^2 = (az + z)^2$$

ou

$$y = mx, \quad (1 + m^2) x^2 = (az + z)^2$$

ou

$$y = mx, \quad x \sqrt{1 + m^2} = \pm (az + z)$$

A secção compõe-se ainda das duas rectas representadas pelas equações

$$x = \frac{a}{\sqrt{1 + m^2}} z + \frac{z}{\sqrt{1 + m^2}}$$

$$e \quad x = -\frac{a}{\sqrt{1 + m^2}} z - \frac{z}{\sqrt{1 + m^2}}$$

Não pôde, portanto, restar duvida alguma sobre a natureza da superfície: trata-se de uma superfície conica tendo para vertice o ponto cujas coordenadas são: $o, o, -\frac{a}{z}$, que é o ponto de concurso de todas essas rectas.

O theorema de Monge pôde ser empregado para a verificação da conicidade da superfície, no caso particular que estudamos. A mudança de z por $z' + z_1$ dá, com efeito,

$$z'^2 - a^2 (z'^2 + 2 z_1 z' + z_1^2) - 2 a z (z' - z_1) = z^2$$

ou

$$(1 - a^2) z'^2 - 2 a (az_1 + z) z' = a^2 z_1^2 + 2 a z z_1$$

Para fazer com que esta equação se torne homogenea é preciso estabelecer as condições

$$az_1 + z = 0, z^2 + a_1^2 + z_1^2 + 2 a z z_1 = 0$$
a primeira das quais dá \(z = -\frac{y}{a} \), expressão que satisfaz à segunda;

a equação torna-se pois homogênea quando a origem das coordenadas é transportada para o ponto cujas coordenadas são \(x = 0, y = 0 \)

\(z = -\frac{a}{z} \), o que quer significar a natureza conica do logar geométrico correspondente. Este cône é o cône asymptota do hiperboloide.

O cilindro de revolução está compreendido, como caso particular, no hiperboloide continuo, e para obter-o basta suppor a geração paralela ao eixo dos \(x \), o que dá ás suas equações a forma \(x = a \), \(y = \beta \); d'ahi resulta que \(a = o \) e desde então a equação achada reduz-se a

\[
x^2 + y^2 = z^2 + \beta^2
\]

que representa uma superfície cilíndrica de revolução em torno do eixo dos \(z \).

O proprio plano constitue um caso particular da superfície gerada por uma recta que se move em torno de um eixo fixo; basta que a recta seja perpendicular ao eixo fixo, isto é que se tenha \(a = x \),

d'onde \(\frac{1}{a} = \frac{1}{x} = o \). Com efeito a equação da superfície pôde ser escrita assim

\[
\frac{1}{a^2} x^2 + \frac{1}{a^2} y^2 - z^2 - \frac{2}{a} z = \frac{x^2 + \beta^2}{a^2}
\]

para \(\frac{1}{a} = o \) obtem-se

\[
z^2 = 0
\]

ou

\[
z = 0
\]

A superfície de revolução se reduz portanto, n'este caso excepcional, a um plano, coincidente com o plano dos \(xy \).
Como segundo exemplo, consideremos o caso em que a directriz é a curva que a sublime imaginação de Archimedes legou à geometria abstrata sob o nome de helice e que tão importante papel desempenha na apreciação da curvatura das curvas de torsão, onde o seu ofício lógico é inteiramente analogo ao do círculo entre as curvas planas ou de flexão. Supporemos o eixo da superfície paralelo ao da helice e escolheremos o primeiro para eixo dos z.

N’estas condições as equações d’essa curva notável são

$$y = r \cos \frac{2 \pi}{h} z, \quad x = r \cos \frac{2 \pi}{h} z + a$$

sendo a a distância entre os dois eixos, h o passo da helice e r o raio do cilindro sobre o qual ela é linha geodesica.

Para obter a equação da superfície helicoidal é preciso antes de tudo exprimir o encontro perpetuo do círculo gerador cujas equações são $z = c$, $x^2 + y^2 = R^2$ com a curva, o que se consegue eliminando as tres coordenadas variáveis entre as quatro equações. A eliminação conduz a

$$\left(r \cos \frac{2 \pi}{h} c \right)^2 + r \left(\cos \frac{2 \pi}{h} c + a \right)^3 = R^2$$

ou

$$r = 2 a \cos \frac{2 \pi}{h} c + c^2 = R^2$$

Substituindo n’esta equação c e R pelas expressões obtidas em função das coordenadas, mediante as equações da geratriz, virá

$$x^2 + y^2 = 2 a \cos \frac{2 \pi}{h} z + r^2$$

que será a equação da superfície de revolução helicoidal.
As equações
\[y = a, \quad x^2 = 2ar \cos \frac{2\pi}{b} z + r^2 \]
caracterizam a natureza dos meridianos.

Quando a linha fixa sobre a qual a geratriz deve apoiar-se para gerar a superfície de revolução é uma linha plana e situada num dos planos coordenados, por exemplo no plano dos \(x \), a formação da equação da superfície torna-se muito simples. N'estas condições a direttriz torna-se evidentemente um dos meridianos da superfície; demais, as suas equações sendo \(f(x, z) = a \), \(y = o \), a condição de encontro se traduz pela relação \(f(c, r) = o \), e a equação da superfície será
\[f(z, \sqrt{x^2 + y^2}) = o. \]
O exame da constituição algebrica d'esta equação mostra que ella emanada da equação plana da direttriz pela substituição de \(x \) por \(\sqrt{x^2 + y^2} \). Assim é que considerando para direttriz a ellipse, a equação \(a^2 z^2 + b^2 x^2 = a^2 b^2 \) dá imediatamente \(a^2 z^2 + b^2 (x^2 + y^2) = a^2 b^2 \) para o elipsoide de revolução; a equação \(a^2 z^2 - b^2 x^2 = a^2 b^2 \) dá \(a^2 z^2 - b^2 x^2 = b^2 y = a^2 b^2 \), que é a equação do hiperboloide discontínuo de revolução; a equação \(a^2 z^2 - b^2 x^2 = -a^2 b^2 \) ou \(b' x^2 + a^2 z^2 = b^2 b^2 \) dá \(b' (x^2 + y^2) = -a^2 b^2 \), que representa o hiperboloide contínuo de revolução. E' ainda assim que considerando a parabola do segundo grao, cuja equação é \(x' = m z \), obtem-se \(x^2 + y^2 = m z \) para a do paraboloide de revolução; a equação \(a^2 z^2 = n x \) dá \(n \sqrt{x^2 + y^2} = z \) ou \(n (x^2 + y^2) = z^2 \) para a superfície gérada pela parabola quando o eixo de rotação é a tangente ao vertice.

Consideremos especialmente a superfície annular, denominada tórno, que se encontra em diversas questões de geometria descriptiva, e que é gérada pela rotação de um círculo em torno de um eixo que não paspe pelo centro.

Fazendo passar o eixo dos \(x \) pelo centro do círculo considerado e representando por \(a \) a distancia deste centro ao eixo de rotação, a equação plana do círculo será
\[z^2 + (x - a)^2 = r^2 \]
A substituição de \(\sqrt{x^2 + y^2} \) em lugar de \(x \) nos dá a equação do
tóro:

\[
\frac{x^2}{(\sqrt{x^2 + y^2} - a)^2} = r^2
\]

ou

\[
\sqrt{x^2 + y^2} - z = \sqrt{r^2 - z^2}
\]

ou

\[
x^2 + y^2 + z^2 + a^2 - r^2 = 2a \sqrt{x^2 + y^2}
\]

ou

\[
\frac{4}{2} \frac{x^2}{(x^2 + y^2)} = (x^2 + y^2 + z^2 + a^2 - r^2)
\]

Esta equação é, como se vê, do quarto grau. Da relação anterior
tiramos

\[
z^2 = -(x^2 + y^2 + z^2 - r^2) + 2a \sqrt{x^2 + y^2}
\]

d’onde

\[
z = \pm \sqrt{-(x^2 + y^2 + z^2 - r^2) + 2a \sqrt{x^2 + y^2}}
\]

Tal é o modo pelo qual a coordenada dependente \(z \) varia com as
coordenadas livres \(x \) e \(y \) de um ponto qualquer do tóro.

Examinemos as seções feitas na superfície por planos paralelos
ao dos \(xx \); basta fazer na equação \(y = c \), o que dá

\[
z = \pm \sqrt{-(x^2 + c^2 + z^2 - r^2) + 2c \sqrt{x^2 + c^2}}
\]

equação que é idêntica a que se obtem quando, procurando esclare-
cer a concepção cartesiana, se considera o logar geométrico de um
ponto que, movendo-se num plano, conserva constante o produto
das suas distancias a dois pontos fixos tomados nesse plano.
Como último exemplo, sobre este assunto, consideremos a superfície de revolução produzida pelo caracol de Pascal, girando em torno da tangente ao círculo donde se deriva essa curva, tirada pelo ponto inicial.

A equação plana da curva sendo

\[(x^2 + z^2 - bx)^2 = a^2 (x^2 + z^2)\]

a mudança de \(x\) pelo radical \(\sqrt{x^2 + y^2}\) fornece a equação da superfície

\[(x^2 + y^2 + z^2 - b \sqrt{y^2 + x^2})^2 = a^2 (x^2 + y^2 + z^2)\]

ou

\[x^2 + y^2 + z^2 - b \sqrt{y^2 + x^2} = \pm a \sqrt{x^2 + y^2 + z^2}\]

ou

\[b^2 \sqrt{y^2 + x^2} = (x^2 + y^2 + z^2) = a \sqrt{x^2 + y^2 + z^2}\]

ou

\[b^2 (y^2 + x^2) = (x^2 + y^2 + z^2)^2 + a^2 (x^2 + y^2 + z^2) = 2 a (x^2 + y^2 + z^2)^{\frac{3}{2}}\]

ou

\[\pm 2 a (x^2 + y^2 + z^2)^{\frac{3}{2}} = (x^2 + y^2 + z^2)^2 + a^2 (x^2 + y^2 + z^2) - b^2 (x^2 + y^2)\]

ou

\[4 a^2 (x^2 + y^2 + z^2)^3 = [(x^2 + y^2 + z^2)^2 + a^2 (x^2 + y^2 + z^2) - b^2 (x^2 + y^2)]^2\]
Temos assim examinado a família das superfícies de revolução com os recursos da álgebra directa, que nos permitiram formar facilmente o tipo algebrico finito correspondente a essa família; em ocasião opportuna veremos como, com os recursos do cálculo transcendente, se consegue instituir o caráter diferencial próprio à representação algebrica da mesma família.
Dá-se a denominação de superfície conoide a toda superfície gerada por uma recta que, ficando sempre paralela a um plano fixo, apoia-se sobre uma recta fixa e sobre uma curva qualquer. Esta curva constitui a directriz ordinariamente curvilínea da superfície: aquelle plano constitui o plano director della. Quando se considera a familia, a directriz é indeterminada, e esta indeterminação se traduz algébricamente pela existência de uma função arbitrária na equação finita própria à representação dessa família. A directriz sendo indeterminada, podemos atribuir-lhe todas as formas possíveis, planas ou de dupla curvatura; e a cada uma destas formas corresponderá um genero determinado de superfícies conoides.

Assim, se a directriz curvilínea for a helice ordinaria, teremos o genero dos conoides helicoidaes, no qual está comprehendido o helicóide do parafuso de filete quadrangular, que dele resulta supondo o plano director perpendicular ao eixo da helice e a directriz rectilínea coincidente com o mesmo eixo. Este caso particular das superfícies conoides helicoidaes apresenta grande importância pelas suas aplicações ás artes.

Considerando o caso em que a directriz curvilínea é substituída por uma linha recta, obtem-se o paraboloide hyperbolico, também denominado plano reverso, que é um dos logares geometricos normalmente representados pelas equações do segundo grao a tres variaveis.

A familia das superfícies conoides está comprehendida no grupamento geometrico das superfícies reversas ou inviesadas, as quaes,
por sua vez, constituem uma das divisões do grupo mais vasto formado pelas superfícies rectilíneas ou regradas.

Para formar o typo algebrico collectivo que representa, sob o aspecto finito, esta família geomeŕtica, é ainda nos preceitos fundamentaes da geometria comparada que nos devemos inspirar.

Sendo o plano director representado pela equação

\[z = px + qy \]

e a directriz rectiliníia pelas equações

\[x = ax + z, \quad y = bz + \beta, \]

haverá duas relações entre os quatro parametros variáveis \(a', \beta', a', b' \), que entram nas equações gerais as mais simples próprias à geratriz

\[x = a'z + a', \quad y = b'z + \beta': \]

uma proveniente de ser ella parallela ao plano director, e a outra resultante da condição de encontro com a directriz rectilínea da superfície. Estas duas relações são respectivamente:

\[\frac{a' - a}{\beta' - \beta} = \frac{a' - a}{\beta' - \beta}, \quad pa' + qb' = 1, \]

e ellas nos permitem formular dos dos parametros variáveis, por exemplo \(b' \) e \(\beta' \), em função dos outros dos \(a' \) e \(z' \); de sorte que substituindo nas equações da geratriz as expressões achadas para aquellos dos parametros, essas equações passarão a conter apenas dos parametros arbitrários \(a' \) e \(z' \), que desde então podem ser expressos em função das coordenadas correntes. Obtem-se assim duas funções determinadas, entre as quaes a instituição de uma
relação arbitraria fornece imediatamente a equação collectiva pro-
curada.

Póde-se ainda chegar a este typo algebrico notando que si a
geratriz tem de deslocar-se paralelamente ao plano director,
\(e = px + qy \), ella ficará sempre situada no plano movel cuja equação
\(z = px + qy + c \), em que \(c \) representa um parametro variavel; por
outro lado, devendo ella em todas as suas posições encontrar a
directriz rectilínea, evidentemente estará sempre situada num se-
gundo plano movel sujeito a conter sempre essa directriz e repre-
sentado pela equação

\[
y - bz - \beta = m (x - az - z)
\]

em que \(m \) tambem disigna um parametro variavel. Formulando
esses parametros em função das coordenadas correntes da geratriz,
tem-se

\[
e = z - px - qy
\]

\[
m = \frac{y - bz - \beta}{x - az - x}
\]

A relação arbitraria que constituirá a equação finita propria
á familia das superfícies conoides será então

\[
z - px - qy = \frac{y - bz - \beta}{x - az - x}
\]

Si o plano director coincidir com o plano dos \(x \) \(y \), teremos
\(p = 0, q = 0 \), e a equação precedente se tornará

\[
z = \frac{y - bz - \beta}{x - az - x};
\]
si, além disso, a directriz rectilínea coincidir com o eixo dos \(z \), teremos \(a = o, x = o, b = o, \beta = o \), e a equação tomará a forma ainda mais simples

\[z = \varphi \left(\frac{y}{x} \right) \]

Esta equação nos revela um teorema geral de geometria comparada, que lembra a bella proposição instituída por Monge relativamente às superfícies conícas. Consiste esse teorema em que a equação do conoide, será homogênea sômente em relação às variáveis \(x \) e \(y \), sempre que o plano director for o dos \(x \) \(y \) e a directriz rectilínea coincidir com o eixo dos \(z \); e recíprocamente o logar geométrico de toda equação a três variáveis, homogênea em relação a duas dessas variáveis, será uma superfície ou uma especie ou um genero compreendido na família dos conoides e tendo a respectiva directriz rectilínea coincidente com o eixo das coordenadas correspondente á terceira dessas variáveis.

Para aplicar á equação collectiva dos conoides a decidir si uma superfície algebricamente dada está ou não compreendida na respectiva família, bastará eliminar \(x \) e \(y \) entre a equação dada e as relações

\[z - px - qy = t, \quad y - bz - \beta = u \left(x - ax - \alpha \right) \]

para examinar si o resultado pôde tornar-se independente de \(z \), mediante valores admissíveis das constantes \(p, q, \alpha, b, \beta \). Si isto se der, concluiremos que a equação dada representa um logar geométrico compreendido na família das superfícies conoides, e os valores dessas constantes determinarão o plano director e a directriz rectilínea; no caso contrario ficará provado que essa família não compreende o logar geométrico proposto.

A determinação da função arbitrária quando se dá a directriz, representada pelas suas equações \(f_1 (x, y, z) = o, f_2 (x, y, z) = o \) se
realiza de acordo com uma marcha que já é familiar ao nosso espírito; basta eliminar \(x, y, z \) entre estas equações e as da geratriz

\[
z = px + qy + c, \quad y - bz - \beta = m(x - az - \alpha)
\]

para ter a relação de encontro \(\psi(c, m) = 0 \), da qual resulta a equação do conoide ou do gênero de conoides proposto, substituindo \(c \) por \(z - px - qy \) e \(m \) por \(\frac{y - bz - \beta}{x - az - z} \).

Consideremos a superfície conoide, muito empregada nas artes geométricas, denominada helicóide do parafuso de filete quadrangular. Esta superfície é gerada por uma recta movel que encontra sempre uma helicóide ordinária e o respectivo eixo, formando além disso a geratriz com este eixo ângulo recto. Escolhendo os eixos em situação conveniente, as equações da helicóide ordinária são:

\[
x = r \cos \left(\frac{2\pi}{h} z \right), \quad y = r \sen \left(\frac{2\pi}{h} z \right)
\]

e as da geratriz são \(z = c, y = m x \). A relação que caracteriza o encontro desta recta com a directriz é

\[
m = tg \left(\frac{2\pi}{h} c \right),
\]

donde resulta para equação do helicóide considerado

\[
y = x \ tg \left(\frac{2\pi}{h} z \right).
\]
um circulo cujo plano se desloca numa direcção invariavel, cujo centro percorre uma helice ordinaria, e cujo raio varia de modo que o circulo se apoia sempre sobre uma directriz arbitaria, etc., podemos sempre elaborar analyticamente a definição de modo a obter as equações da geratriz apenas com dois parametros arbitrarios, e instituir finalmente o typo collectivo com os simples recursos da algebra directa.

No segundo caso, que se acha realizado nas diversas variedades de superficies canaes ou tubulares, é em muitas outras que poderiam ser mencionadas, as equações geraes da geratriz não podem ser esta belecidas independentemente da directriz indeterminada e de modo a encerrar sómente duas constantes arbitrarias; então já não é possível formar, com os simples recursos da algebra ordinaria, a equação collectiva procurada, é preciso appellar para as luzes do calculo transcendentente afim de conseguir o estabelecimiento do caracter differential collectivo, e isto mesmo se obtem em casos muito pouco numerosos.

Tratando-se de grupos mais vastos do que a simples familia, elles não comportam equações directas e a sua instituição algebraica só se pôde realizar em alguns casos, sob forma differential, tornando-se por consequencia necesario reservar a apreciacao desses grupos superiores á geometria transcendentente: a extensão de tais grupos se mede espontaneamente pelo numero de parametros arbitrarios que entram nas equações geraes as mais simples da geratriz, quando se tem atendido a todas as condições inherentes á definìção collectiva.

Considerando-se o vasto grupamento constituido pelas superficies que Monge denominou regradas, já sabemos que a geratriz correspon dente é a linha recta; mas as equações geraes as mais simples da linha recta, no sistema rectilíneo ordinario são \(x = az + \alpha, y = bz + \beta \), nas quaes entram quatro parametros variaveis. Si sujéitassemos a recta a encontrar tres directrizes fixas, teríamos entre esses parametros tres relações \(\psi (a, b, \alpha, \beta) = 0, \phi (a, b, \alpha, \beta) = 0, \omega (a, b, \alpha, \beta) = 0 \), que nos permitiriam obter as expressões de tres desses parametros em função do quarto, o que nos daria para a geratriz as equações \(x = x \phi (\beta) + x \psi (\beta), y = y \psi (\beta) + \beta \), contendo sômente um parametro arbitrario. Assim, vê-se que a existencia de tres directrices sobre as quaes a geratriz rectilínea é obrigada a apoiar-se torna determinado o movimento desta. Se supporzermos agora que uma destas directrizes seja deixada indeterminada, teremos uma familia propriamente dita; a equação collectiva finita correspondente encerrará uma
única função arbitrária que corresponderá à indeterminação daquella directriz. Si, em vez de uma, suppostemos que duas são as directrizes que ficam arbitrárias é claro que o grupo, muito mais vasto do que o precedente, se comporá de uma infinidade de famílias; a equação collectiva finita, suppondo-a obtida, deveria encerrar duas funções arbitrárias distinctas e independentes para corresponder à indeterminação das duas directrizes que ficaram arbitrárias. Si, em fim, as três directrizes ficarem indeterminadas, o grupo apresentará maior grao de extensão, elle compreenderá uma dupla infinidade de famílias geometricas distinctas; e o, typo collectivo finito, si chegássemos a instituí-lo, deveria conter tres funções arbitrárias distinctas e independentes entre si, para corresponder ao numero de directrizes deixadas arbitrárias.

Monge estabeleceu a distinção geral das superíícies regradas ou rectilíneas em desenvolvíveis e reversas. A classe das superíícies desenvolvíveis, posto que já constituia um caso particular daquelle vasto grupo geometrico, ainda é por demais extensas para comportar sob fórmula finita uma verdadeira equação collectiva, existindo apenas o typo diferencial que o lucido espírito de Euler pôde desenvendar por meio da theoria geral da curvatura das superíícies e que será estabelecido na segunda parte deste trabalho. E' claro que a equação collectiva finita das superíícies desenvolvíveis deveria encerrar necessariamente duas funções arbitrárias distinctas e independentes.

Tratando-se das superíícies que podem ser geradas pelo círculo e que por este motivo são denominadas—circulares—, como cinco é o numero de directrizes necessárias para tornar determinado o movimento de um círculo, a indeterminação destas directrizes exigiria que a equação finita commum a essas superíícies encerrassem cinco funções arbitrárias distinctas; d'onde resulta que o grupamento geometrico assim formado é muito mais vasto do que o das superíícies rectilíneas.

As superíícies parabolicas, assim denominando todas as que podem ser geradas pela parabola ordinaria, formam um grupamento mais extenso do que o precedente; como sete é o numero de directrizes próprias a determinarem o movimento de uma parabola, a indeterminação dellas introduziria na equação finita commum às superíícies parabolicas, sete funções arbitrárias independentes entre si.

Posto que obstáculos ordinariamente inveneiveis se opponham à formação das equações collectivas introduzidas por Monge, tratando-
se dos modos de geração já asinalados, torna-se entretanto possível resolver, para cada gênero particular de superfícies dessa natureza, dos problemas fundamentais, o primeiro consistindo em formar a equação quando o movimento da geratriz está completamente determinado, o segundo em, reciprocamente, desvendar o modo de geração partindo da equação dada. Vamos examinar successivamente esses dois problemas.

Considerando o primeiro, sejam \(f_1(x, y, z, a, b, c, d, \ldots) = 0 \) e \(f_2(x, y, z, a, b, c, d, \ldots) = 0 \) as equações gerais as mais simples próprias à geratriz das superfícies compreendidas na definição proposta; se \(n \) for o número de pontos determinantes da geratriz, \(2n \) será o número dos parâmetros variáveis \(a, b, c, d, \ldots \) que entram nas equações precedentes. Como supomos que a definição proposta se refere a um gênero determinado de superfícies, e não a uma família ou a qualquer outro grupoamento mais vasto, é claro que, de acordo com aquela definição, a geratriz deverá ser sujeita a encontrar \(2n - 1 \) diretrizes, ou a satisfazer a outras condições geométricas equivalentes, em número igual ao que acabamos de indicar. A condição de encontro perfeito da geratriz com, cada uma das diretrizes ou qualquer outra prescrição geométrica equivalente, traduz-se algébricamente por uma relação entre os parâmetros indeterminados que entram nas equações da geratriz, isto é por uma relação da forma \(F_1(a, b, c, d, \ldots) = 0. \) A eliminação dos \(2n \) parâmetros arbitários entre as \(n - 1 \) equações que traduzem as condições de encontro das diretrizes com a geratriz, e as equações desta, fornecerá a equação relativa ao gênero de superfícies ao qual convém a definição proposta.

Examinemos agora a questão inversa que consiste em decidir si um gênero de superfícies, representado por uma equação dada, \(f(x, y, z) = 0, \) é ou não susceptível de ser gerado por uma certa linha, e, no caso afirmativo, desvendar a lei do movimento. Sendo \(\varphi(x, y, z, a, b, c, d, \ldots) = 0, \) \(\gamma(x, y, z, a, b, c, d, \ldots) = 0 \) as equações gerais as mais simples da linha dada, é claro que aquelle gênero de superfícies só poderá ser gerado por esta linha se ella for susceptível de ficar situada sobre a superfície sem que todos os parâmetros \(a, b, c, d, \ldots \) estejam inteiramente determinados, ficando um delles totalmente arbitrário e todos os outros podendo se exprimir em função do dele mediante fórmulas geométricamente admissíveis que farão conhecer o modo de geração. Então, a questão consistirá algébrica mente na eliminação de duas das coordenadas variáveis \(x, y, z \), entre as equações da linha e a
da superfície dadas, para se ver se é possível transformar a equação resultante, que só encerrará a terceira coordenada e os parâmetros, numa identidade, mediante valores reais dos diversos parâmetros da geratriz em função de um delles, para exprimir que esta linha, em cada uma das suas posições, fica inteiramente situada sobre a superfície.

Para esclarecer o primeiro dos problemas precedentes, vamos proceder à formação da equação da superfície descrita por uma recta obrigada a apoiar-se sobre três directrizes rectilíneas fixas. Escolhendo convenientemente os eixos coordenados as equações da primeira destas directrizes serão \(x = 0 \), \(y = 0 \), as da segunda serão \(z = 0 \), \(y = c \) e as da terceira serão \(z = p \), \(z = q \). Sendo a geratriz obrigada a apoiar-se sobre as duas primeiras directrizes, as suas equações serão \(y = ax \), \(z = bz + c \); sendo obrigada a encontrar a terceira, é necessário que se tenha \(ap - bq + c \).

A eliminação de \(a \) e \(b \) conduz à equação

\[
gxy + czx - pzy = qzx
\]

que representa a superfície procurada.

Poderíamos ainda considerar o grupo geométrico das superfícies descriptas por um círculo de raio constante, movendo-se de modo que o seu centro percorre uma curva qualquer e o seu plano se conserva sempre normal a esta curva.

Estas superfícies circulares são denominadas superfícies canaes ou tubulares, e elles compreendem uma infinitade de famílias propriamente ditas; a formação das equações collectivas tem resistido aos esforços dos geômetras, o que não veda a instituição da equação especial propria a cada caso, desde que seja dada a directriz do centro do círculo invariável que gera a superfície considerada.

A regra destinada a determinar as secções planas de uma superfície qualquer permite imprimir notável simplificação á marcha geral propria a reconhecer si uma superfície algebricamente dada é susceptível de ser gerada por uma curva plana; e esta simplificação se torna altamente comoda quando se trata do círculo. E' uma interessante applicação das formulas de transposição que, instituídas por Euler, tão assinalados serviços prestão não só no domínio
da geometria geral, mas também no estudo da mechanica e da astronomia.

Terminando assim a apreciação da grandiosa concepção de Monge, com os recursos da algebra ordinaria, temos concluído a primeira parte do nosso trabalho. Na segunda parte, vamos aplicar ao estudo objectivo das superfícies a incomparável instituição leibniziana, o que permitirá estabelecer, no campo dos estudos geometricos, a plena harmonia entre a analyse e a synthese.
SEGUNDA PARTE

Estudo objectivo das superfície com os recursos do cálculo das relações indirectas
I

Theoria diferencial das familias de superficies

Aurora de imensa renovação científica, a grandiosa concepção cartesiana estabeleceu no domínio da ciência fundamental a combinação da lógica das imagens com a dos signaes, representando as curvas planas por equação a duas variáveis e, reciprocamente, provendo cada equação a duas variáveis de representação geométrica. As equações introduzidas por Descartes representam curvas individualizadas, especies, e generos de curvas planas. A ideia de família geométrica ficando eminentemente vaga quando considerada em relação às curvas, o estudo objectivo destas não exigia senão o complemento que, um semi-seculo mais tarde, devia constituir imorredoura gloria de Leibniz.

Mas a gloriosa concepção do philosopho francez devia necessariamente estender-se às superficies e às curvas de dupla curvatura: este passo foi realizado por Clairaut, a quem se deve a representação analytica das superficies individualizadas, das especies e dos generos de superficies. Ora, as superficies, consideradas quanto às relações geraes das suas formas, podem ser divididas em grandes familias, dotadas de certos caracteres communs, gozando de propriedades mathematicas que lhes pertencem collectivamente. A Monge coube a elevada missão de aperfeiçoar o pensamento cartesiano; a elle se deve a introdução das equações encerrando uma função arbitaria, equações cujos logares geometricos são familias de superficies. E' esta uma das mais
bellas conquistas realizadas no domínio geométrico depois da fundação
da geometria geral, mas não é a única que neste sentido foi feita por
Monge, pois este geógrafo conseguiu estabelecer caracteres indi-
rectos, equações diferenciais próprias à representação das famílias
geométricas. Existem mesmo alguns grupos naturais cujas equações
collectivas não podendo ser instituídas sob forma finita, o são entre-
tanto sob o aspecto diferencial.
Seria illusório pensar que as acquisições científicas, que neste
sentido o cálculo das relações indirectas permite adicionar aos re-
zultados obtidos à luz da álgebra ordinária, sejam extraordinárias,
pois frequentemente os nossos esforços se detêm impotentes diante
dos obstáculos que opõe a maior parte das famílias geométricas à
formação das suas equações indirectas: confirma-se assim o destino
mais lógico do que científico da taxonomia geométrica.
Na primeira parte deste trabalho examinamos os preceitos
fundamentais que regem o estabelecimento das equações, sob a fór-
ma finita, próprias às famílias de superfícies convenientemente definidas;
mostramos como tais equações permitiam decidir se um gênero de su-
perfícies, uma espécie ou um superfície única, dados pelas suas equa-
çoes, estão ou não compreendidos numa família geométrica proposta:
vimos como se podia exprimir a condição de encontro perpetuo da ge-
ratriz com a directriz quando esta fosse especificada, de modo a ob-
ter-se a equação do gênero correspondente. Esses preceitos gerais
foram em seguida aplicados às quatro famílias mais simples e mais
usuais. Como complemento natural a esse estudo fizemos a apreciação
dos grupos geométricos cujas equações colectivas não são conhecidas
sob forma finita.
Nesta segunda parte, vamos ver o aperfeiçoamento que o cálculo
transcendente imprime à constituição algébrica das famílias de su-
perfícies, quer pela aplicação natural da teoria dos planos tangentes,
quer pela concepção das superfícies evolutorias. Desse estudo se po-
derá facilmente concluir que a harmonia perfeita entre a análise e a
síntese só pode existir na geometria objectiva, pois é só no seu domín-
io que a equação finita e o typo diferencial correspondente, apre-
sentam o mesmo encontro de generalidade.
TYPOS DIFFERENCIAES DAS FAMILIAS DE SUPERFICIES, ESTABELECIDOS DIRECTAMENTE. CORRESPONDENCIA ANALYTICA DESTES TYPOS COM AS EQUAÇÕES COLLECTIVAS SOR FORMA FINITA.

A Monge devemos a luminosa concepção que consiste em caracterizar cada família de superfícies por uma propriedade do plano tangente.

Sabe-se que o plano tangente num ponto qualquer de uma superfície contém as tangentes a todas as curvas que por esse ponto podemos traçar sobre a superfície; d’ahi resulta que o plano tangente ficará determinado sempre que conhecermos as tangentes a duas curvas situadas sobre a superfície e cortando-se no ponto de contacto. Si a superfície for regrada por cada um de seus pontos passará uma geratriz rectilínea, que evidentemente se confunde com a sua própria tangente e será desde então uma das rectas determinante do plano tangente.

Vamos considerar as consequencias do theorema precedente em relação ás famílias de superfícies. O grupo geometrico a que Monge deu esta denominação compõe-se sempre de todas as superfícies que podem ser geradas por uma certa linha, movendo-se segundo á mesma lei e obrigada a encontrar perpetuamente um directriz qualquer. Nesta definição de família geometrica nós destacamos completamente a directriz arbitraria, pela qual diferem entre si os diversos generos d’essa família, de todas as outras directizes que perverrunt possa existir, mas que terão formas determinadas e desde então ficarão incluidas na lei do movimento da geratriz.

N’estas condições, podendo-se sempre considerar que por cada ponto de uma superfície passão uma geratriz e uma curva que possa ser tomado para directriz, é claro que das duas rectas que determinam o plano tangente, uma, a tangente á geratriz será a mesma para todos os generos comprehendidos numa mesma família, enquanto que a outra, a tangente á directriz, será peculiar a cada um delles. Substituindo as equações directas, porém indeterminadas por equações determinadas posto que indirectas, esse pensamento completa e aperfeiçãoá o domínio da geometria objectiva. Demais, as equações indirectas e os typos algebricos finitos podem ser ligados eliminando-se a função arbitraria que entra nestas ultimas e que contém o caracter collectivo debaixo de forma finita. Em sentido inverso, a equação collectiva finita poderia normalmente emanar da equação
indirecta, se a imperfeição inherent ao domínio do cálculo integral não oferecesse obstáculos intransponíveis a semelhante inversão.

Vamos aplicar as considerações que precedem às quatro famílias já consideradas na primeira parte deste trabalho, e que são não sómente as mais simples, mas também aquelas que nos despertam maior interesse.

FAMÍLIA DAS SUPERFÍCIES CYLINDRICAS

A propriedade de que goza o plano tangente às superfícies cilíndricas e que consiste em que ella é sempre parallela à direcção comum das geratrizes, permite, traduzida em estilo algebraico, instituir imediatamente a equação indirecta própria à família geométrica correspondente.

Sejam \(x = a z, y = b z\) as equações de uma recta tirada pela origem e à qual a geratriz deve sempre ficar parallela.

A equação geral do plano tangente a uma superfície qualquer é como se sabe

\[
z - z' = \frac{d z'}{d x'} (x - x') + \frac{d z'}{d y'} (y - y')
\]

onde \(x', y', z'\) representam as coordenadas do ponto de contacto.

Ora, a condição de parallelismo entre uma recta e um plano, estabelecida na teoria do plano, é expressa pela relação

\[
A a + B b + C = 0
\]

sendo \(a, b\) os coeficientes angulares da recta e \(A, B, C\) os coeficientes das coordenadas correntes na equação do plano.
No caso actual temos

\[A = \frac{d z'}{d x'}, \quad B = \frac{d z'}{d y'} \]

d’onde resulta a equação

\[a \left(\frac{d z'}{d x'} \right) + b \left(\frac{d z'}{d y'} \right) = 1, \]

ou

\[a \frac{d z}{d x} + b \frac{d z}{d y} = 1 \]

que exprime a cindricidade da superfície, abstracção feita da curva fixa ou directriz sobre a qual a geratriz deverá apoiar-se. Ela exprime um caracter que convém a todos os generos de superfícies cilíndricas; constitue, portanto, o typo collectivo proprio à representação, sob o aspecto differencial, da familia de superfícies cilíndricas.

A correlação analutica entre o typo differencial que acabamos de instituir directamente e a equação finita anteriormente estabelecida

\[y - b z = \varphi \left(x - a z \right) \]

pode ser posta em evidencia; bastará para isso que mostremos como o caracter indirecto, que traduz a propriedade do plano tangente, pode emanar da equação finita pela eliminação da função arbitraría.

Tomando os coëfficientes differenciaes de ambos os membros da equação precedente, na hypothese de se considerar a variavel livre y constante, e x e z como variaveis, virá

\[-b \frac{d z}{d x} = \varphi' \left(x - a z \right) \left(1 - a \frac{d z}{d x} \right) \]
Fazendo o mesmo, mas na hipótese de se considerar a variável livre \(x \) como constante, virá

\[
1 - b \frac{dz}{dy} = \varphi'(x - a \, z) \, a \frac{dz}{dy}
\]

Eliminando entre as três equações precedentes as funções \(\varphi \) e \(\varphi' \), que variam para cada superfície cilíndrica, obtem-se uma relação independente dessas funções, a qual convirá desde então a todas as superfícies cilíndricas.

Notando-se que as duas últimas equações só encerram a função \(\varphi' \), a eliminação se simplifica pois ella se reduz a dividir uma pela outra, o que dá

\[
\frac{1 - b \frac{dz}{dx}}{1 - b \frac{dz}{dy}} = \frac{1 - a \frac{dz}{dx}}{a \frac{dz}{dy}}
\]

ou

\[
ab \frac{dz}{dx} \frac{dz}{dy} = 1 - b \frac{dz}{dy} - a \frac{dz}{dx} + ab \frac{dz}{dx} \frac{dz}{dy}
\]

ou

\[
a \frac{dz}{dx} + b \frac{dz}{dy} = 1
\]

Chegamos assim a equação obtida pela propriedade do plano tangente, d'onde resulta a conformidade entre a equação indirecta e o tipo finito da família das superfícies cilíndricas. A equação precedente nos leva a concluir que essa família é caracterizada pela constância da soma de dois múltiplos fixos das derivadas parciais da coordenada dependente relativamente às coordenadas livres, quaesquer que sejam os eixos coordenados rectílineos. A mesma
equação fornece um meio comodo de reconhecer ou não a natureza cilíndrica de uma superfície dada, indicando, no caso afirmativo e direcção das geratrizes correspondentes.

Sendo \(f(x, y, z) = 0 \) a equação dessa superfície, tomemos os coeficientes diferenciais de ambos os seus membros supondo sucessivamente variáveis livres \(x \) e \(y \) constantes, o que dará

\[
\frac{df}{dx} + \frac{df}{dz} \frac{dz}{dx} = 0 \quad \frac{df}{dy} + \frac{df}{dz} \frac{dz}{dy} = 0
\]

A cilindricidade do logar geométrico da equação proposta, quer este logar seja uma superfície individualizada, quer uma especie ou um genero de superficies, exige que a equação

\[
a \frac{dz}{dx} + b \frac{dz}{dy} = 1
\]

satisfeita para todos os valores de \(x, y, z \) quando fizermos nella a substituição \(\frac{dz}{dx} \) e \(\frac{dz}{dy} \) pelos seus valores tirados das duas equações precedentes, o que dá

\[
a \frac{df}{dx} + b \frac{df}{dy} + \frac{df}{dz} = 0
\]

Mas para que esta equação se transforme assim n'uma identidade, é preciso, em virtude do principio que serve de base ao método cartesiano, que os coeficientes das diversas potencias das coordenadas sejam separadamente nulos. Si igualando a zero estes coeficientes, as equações de condição assim obtidas, fornecerem valores reaes e compatíveis para \(a \) e \(b \), estará verificada a natureza cilíndrica do logar geométrico representado pela equação proposta e, ainda mais, estará determinada a direcção das geratrizes da superficie; no caso contrario poderemos legitimamente concluir que esse logar geométrico não está comprehendido na mesma familia.

Esta marcha sendo evidentemente aplicavel, ainda quando os coeficientes da equação proposta são indeterminados, desde que os expoentes não o sejam, é claro que ella permite desvendar as condições necessarias para que a superficie correspondente seja cilíndrica.

Assim na equação geral do segundo grão

\[
Ax' + By' + Cz' + Dxy + Exz + Fyz + Gx + Hy + Kz = 1
\]
temos

\[
\frac{df}{dx} = 2Ax + Dy + Ez + G
\]

\[
\frac{df}{dy} = 2By + Dx + Fz + H
\]

\[
\frac{df}{dz} = 2Cz + Ex + Fy + K
\]

As equações que deve ser identicamente satisfeita será

\[
a (2Ax + Dy + Ez + G) + b (2By + Dx + Fz + H) + (2Cz + Ex + Fy + K) = 0
\]

As condições de annullação dos coeficientes totaes de \(x, y, z\), e do termo independente das coordenadas, são pois :

\[
2Aa + Db + E = 0
\]

\[
Da + 2Bb + F = 0
\]

\[
Ea + Fb + 2C = 0
\]

\[
Ga + Hb + K = 0
\]

Eliminando \(a\) e \(b\) entre estas quatro equações, chegaremos a duas relações entre os nove parametros disponíveis que entram na equação do segundo grão e que exprimirão as condições necessarios e suficientes para que o logar geométrico representado por essa equação seja cílindrico.

As condições que se obtêm assim são justamente as que já obtivemos em outra parte do nosso trabalho.

Muitas vezes, em vez de se dar a directriz de uma superficie cilindrica, se exige que ella seja circunscripta a uma superficie dada pela sua equação \(f(x, y, z) = 0\); é o que acontece frequentemente no estudo da theoria geométrica das sombras quando se considera o
caso dos raios luminosos paralelos, e na determinação das perspectivas, quando se supõe o ponto de vista colocado no infinito.

Então é necessário começar por determinar a curva de contacto da superfície proposta com o cilindro circunscrito, que, na aplicação concreta mencionada, seria o cilindro dos raios luminosos.

Ora, ao longo da curva de contacto, a superfície proposta e o cilindro circunscrito terão os mesmos planos tangentes, d’onde resulta que as derivadas \(\frac{dz}{dx} \) e \(\frac{dz}{dy} \) deverão ter os mesmos valores quer para o cilindro, quer para aquella superfície. Portanto a equação

\[
a \frac{df}{dx} + b \frac{df}{dy} + \frac{df}{dz} = 0
\]

devendo ser verdadeira para todos os pontos da curva de contacto, representará uma superfície que contém esta curva. Como, por outro lado, a curva de contacto é evidentemente uma linha situada sobre a superfície dada, segue-se que a equação precedente, que podemos representar abreviadamente por \(f_i(x, y, z) = 0 \) reunida a \(f(x, y, z) = 0 \) determinam completamente essa curva, isto é a directriz da superfície cilíndrica procurada. Conhecida a directriz, a elaboração algébrica se effectua de acordo com as regras que já nos são familiares.

Vamos aplicar as considerações precedentes à determinação da sombra projectada sobre o plano dos \(xy \) pelo elipsoide representado pela equação

\[
a x^2 + b y + c^2 z^2 = 1
\]

e à determinação da separatriz, considerando os raios luminosos paralelos e sendo a sua direcção definida pela recta cujas equações são \(x = m z, y = n z \).

Temos, no caso actual, \(\frac{df}{dx} = 2a x, \frac{df}{dy} = 2b y, \frac{df}{dz} = 2b z \); portanto, a equação de uma superfície contendo a curva de contacto será

\[
a m x + b n y + c z = 0;
\]
como esta curva está sobre o elipsóide, a equação deste, reunida à precedente, determinará perfeitamente a separtatriz, tomada para directriz do cilindro dos raios luminosos.

As equações da geratriz serão \(x = mz + \alpha \) e \(y = nz + \beta \), devendo os parâmetros variáveis \(\alpha \) e \(\beta \) guardar entre si a relação que se obtem eliminando as coordenadas variáveis entre estas equações e as da directriz.

A eliminação de \(x \) e \(y \) dá para resultado as equações

\[
\begin{align*}
am (mz + \alpha) + bn (nz + \beta) + cz &= 0 \\
\alpha (mz + \alpha)^2 + b (nz + \beta)^2 + cz^2 &= 1
\end{align*}
\]

entre as quaes é preciso eliminar \(z \). Resolvendo, em relação a esta variável, a primeira dessas equações, obtem-se

\[
z = \frac{\alpha m x + bn \beta}{am^2 + bn^2 + c}
\]

Substituindo esta expressão na segunda, vêm

\[
(am^2 + bn^2 + c) \left(\frac{\alpha mx + bn \beta}{am^2 + bn^2 + c} \right)^2 - 2 \left(\frac{\alpha mx + bn \beta}{am^2 + bn^2 + c} \right) \left(\frac{am x + bn \beta}{am^2 + bn^2 + c} \right) + a x^2 + b \beta^2 - 1 = 0
\]

ou

\[
(a x^2 + b \beta^2 - 1) (am^2 + bn^2 + c) = (am x + bn \beta)^2
\]

Esta equação, que exprime o encontro da geratriz com a diretriz, dará a da superfície cilíndrica desde que \(\alpha \) e \(\beta \) sejam substituídos respectivamente por \(x - mz \) e \(y - nz \); obtem-se assim

\[
\left[a (x - mz)^2 + b (y - nz)^2 - 1 \right] (am^2 + bn^2 + c) = \left[am (x - mz) + bn (y - nz) \right]^2
\]
ou, juntando e subtraindo cz à quantidade cujo quadrado constitui o segundo membro:

$$[a(x-mz)^2 + b(y-nz)^2 - 1] \left(am^2 + bn^2 + c \right) = \left(amx + bny + cz \right) - \left(am^2 + bn^2 + c \right) x f^2$$

ou, depois de algumas transformações muito simples,

$$(ax^2 + by^2 + cz^2 - 1) \left(am^2 + bn^2 + c \right) = (amx + bny + cz)^2$$

Colocada debaixo desta forma, a equação indica claramente que o cilindro é tangente ao ellipsoide ao longo da curva situada no plano representado pela equação

$$amx + bny + cz = 0;$$

essa curva é justamente a linha que separa, sobre o ellipsoide, a parte iluminada da que fica no escuro: é, portanto, a separatriz de sombra e de luz.

Para determinar a sombra que o ellipsoide, suposto opaco, projeta sobre o plano horizontal das coordenadas, basta fazer na equação do ellipsoide $z = 0$, d'onde resulta

$$(ax^2 + by^2 - 1) \left(am^2 + bn^2 + c \right) = (amx + bny)^2$$

para equação da linha de sombra projectada, a qual, como se vê, é uma ellipse.

Podemos ainda determinar o semi-diametro do ellipsoide, paralelo à direcção dos raios luminosos. Para isto basta determinar as coordenadas de um dos pontos de intersecção da recta $x = mz, y = nz$ com o ellipsoide e substituir essas coordenadas na formula que exprime a distancia de um ponto qualquer a origem das coordenadas.
Desiguando por \(R \) o semi-diametro considerado, obtém-se assim

\[
R^2 = \frac{m^2 + n^2 + 1}{am^2 + bn^2 + c}
\]

A introdução deste semi-diametro e dos seus cosenos directores na equação da superfície cilíndrica, permite apresentar esta sob aspecto diverso. Chamando \(\lambda, \mu e \nu \) os ângulos que elle forma com os eixos coordenados rectilíneos, temos:

\[
m = \frac{\cos \lambda}{\cos \nu}, \quad n = \frac{\cos \mu}{\cos \nu};
\]

além disso, temos

\[
am^2 + bn^2 + c = \frac{m^2 + n^2 + 1}{R^2}
\]

ou

\[
am^2 + bn^2 + c = \frac{1}{R^2} \left(\frac{\cos^2 \lambda}{\cos^2 \nu} + \frac{\cos^2 \mu}{\cos^2 \nu} + 1 \right) + \frac{1}{R^2 \cos^2 \nu}
\]

e

\[
amx + bny + cz = \frac{\cos \lambda}{\cos \nu} ax + \frac{\cos \mu}{\cos \nu} by + cz = \frac{1}{\cos \nu} (ax \cos \lambda + by \cos \mu + cz \cos \nu)
\]

Substituindo estas expressões na equação da superfície cilíndrica, virá

\[
(ax^2 + by^2 + cz^2 - 1) \frac{1}{R^2 \cos^2 \nu} = \frac{1}{\cos^2 \nu} (ax \cos \lambda + by \cos \mu + cz \cos \nu)^2
\]

ou

\[
ax^2 + by^2 + cz^2 - 1 = R^2 (ax \cos \lambda + by \cos \mu + cz \cos \nu)^2
\]
Na hipótese de serem os raios luminosos paralelos ao eixo dos \(z \), teremos \(\lambda = 90^\circ, \mu = 90^\circ, \nu = 0 \), e a equação precedente fornece como caso particular:

\[
ax^2 + by^2 + cz^2 = 1 = R^2 c^2 z^2
\]

ou, notando que neste caso \(R' c = 1 \),

\[
ax^2 + by^2 + cz^2 = 1 + cz^2
\]

ou

\[
ax^2 + by^2 = 1
\]

Este resultado devia ser previsto, pois que, no caso particular considerado, as geratrices do cilindro sendo paralelas a um dos eixos coordenados, a sua equação devia vir independente da coordenada correspondente.

Os diversos aspectos do problema que acabamos de resolver também convém à determinação da perspectiva do elipsoide, desde que o ponto de vista seja situado no infinito, o que corresponde à substituição do cone visual pelo cilindro visual.

FAMÍLIA DAS SUPERFÍCIES CONÍCAS

A equação coletiva desta família se obtem, de baixo de forma diferencial, traduzindo algebraicamente a propriedade que consiste em que, nas superfícies conícas, o plano tangente passa sempre pelo vertice. Nestas condições sendo \(x, \beta \) e \(\gamma \) as coorde-
nadas deste ponto, elas deverão satisfazer a equação geral do plano tangente, d'onde resulta o typo diferencial
\[
\gamma - z' = \frac{dy}{dx} (x - x') + (\beta - y') \frac{dz'}{dx}
\]
ou, dando a forma habitual
\[
z - \gamma = \frac{dz}{dx} (x - \alpha) + \frac{dz}{dy} (y - \beta)
\]
Esta equação pode surgir do typo finito eliminando a função arbitrária e a sua derivada entre esse typo e as suas derivadas parciais. Tomando as derivadas parciais, primeiro supondo \(y\) e depois \(x\) constantes, de ambos os membros da equação \(\frac{y - \beta}{x - \gamma} = \varphi \left(\frac{x - \alpha}{z - \gamma} \right)\)
btem-se successivamente:
\[
\frac{- (y - \beta)}{(z - \gamma)} \frac{dz}{dx} = \frac{(z - \gamma) - (x - \alpha)}{(x - \gamma)^2} \frac{dz}{dx} \varphi' \left(\frac{x - \alpha}{z - \gamma} \right)
\]
\[
\frac{(z - \gamma) - (y - \beta)}{(z - \gamma)^2} \frac{dz}{dy} = \frac{- (x - \alpha)}{(x - \gamma)^2} \frac{dz}{dy} \varphi' \left(\frac{x - \alpha}{z - \gamma} \right)
\]
Si atendermos a que nestas duas equações a função \(\varphi\) só entra pela sua derivada primordial \(\varphi'\), veremos que bastará eliminar entre ellas \(\varphi'\) para obter a equação às derivadas parciais da família das superfícies conicas. Dividindo as duas equações precedentes uma pela outra obtem-se:
\[
\frac{- (y - \beta)}{(z - \gamma) - (y - \beta)} \frac{dz}{dx} = \frac{(z - \gamma) - (x - \alpha)}{(x - \gamma) - (y - \beta)} \frac{dz}{dx} \frac{dz}{dy} \frac{- (x - \alpha)}{dy}
\]
d’onde

\[
\left[(x - x) (y - \beta) \frac{dz}{dx} \frac{dz}{dy} \right] = (z - \gamma)^2 - (z - \gamma) (x - x) \frac{dz}{dx} - \\
- (z - \gamma) (y - \beta) \frac{dz}{dy} + (x - x) (y - \beta) \frac{dz}{dx} \frac{dz}{dy}
\]
on

\[(z - \gamma) = \frac{dz}{dx} (x - x) + \frac{dz}{dy} (y - \beta)\]

A conformidade do tipo diferencial com a equação collectiva finita se acha portanto estabelecida.

A equação diferencial da família das superfície conicas presta-se a solução da questão em que se tem em vista decidir se uma superfície especial pertence ou não a essa família geometrica. Sendo \[f (x, y, z) = 0 \] a equação da superficie dada a condição de conicidade respectivo logar geometrico consistirá em que a equação diferencial

\[z - \gamma = \frac{dz}{dx} (x - x) + \frac{dz}{dy} (y - \beta) \]
deverá ser identicamente satisfeita, quando fizermos nella a substituição de \[\frac{dz}{dx} e \frac{dz}{dy} \] tirados das equações

\[\frac{df}{dx} + \frac{zf}{dx} \frac{dz}{dx} + \frac{df}{dy} + \frac{zf}{dy} \frac{dz}{dy} = 0, \]

obtidas pela diferenciação da da superficie dada. Ora, a substituição indicada conduz a relação

\[(x - x) \frac{df}{dx} + (y - \beta) \frac{df}{dy} + (z - \gamma) \frac{df}{dz} = 0\]
que deverá ser verdadeira para todos os valores de \(x, y, z\). Igualando separadamente a zero os coeficientes totais das diversas potências das coordenadas, teremos um certo número de equações que, si forem compatíveis e fornecerem valores reais e finitos para \(x, \beta, \gamma\), indicarão a natureza conica do logar geométrico, ficando desde logo determinada a situação do vértice. No caso contrário, poderemos afirmar que a família das superfícies conicas não compreende a superfície proposta.

O modo precedente pôde ser aplicado ao estabelecimento das relações que devem existir entre os coeficientes disponíveis da equação geral de um grão qualquer para que o logar geométrico correspondente seja de natureza conica. Considerando a equação geral do \(2^{\circ}\) grão a três variáveis, obtem-se

\[
\begin{align*}
\frac{df}{dx} &= 2Ax + Dy + Ez + G \\
\frac{df}{dy} &= 2By + Dx + Fz + H \\
\frac{df}{dz} &= 2Cz + Ex + Fy + K
\end{align*}
\]

Substituindo estas expressões na equação precedente virá

\[
(x - \alpha)(2Ax + Dy + Ez + G) + (y - \beta)(2By + Dx + Fz + H) + (z - \gamma)(2Cz + Ex + Fy + K) = 0
\]

ou, attendendo à equação do \(2^{\circ}\) grão,

\[
\omega (2Ax + Dz + Ez + G) + \gamma (Dz + 2Bz + Fz + H) + \delta (Ex + Fz + 2\zeta + K) + Gx + Hz + Kz + I = 0
\]
O princípio que serve de base ao método dos coeficientes a determinar permite escrever:

\[2A \alpha + D \beta + E \gamma + G = 0 \]
\[D \alpha + 2B \beta + F \gamma + H = 0 \]
\[E \alpha + F \beta + 2C \gamma + K = 0 \]
\[G \alpha + H \beta + K \gamma + l = 0 \]

Este sistema de equações é equivalente ao que obtivemos na primeira parte deste trabalho. A eliminação das coordenadas \(\alpha, \beta \) e \(\gamma \) do vértice forneceria uma relação única entre os coeficientes da equação do segundo grau, a qual exprimiria a condição de conicidade do logarítmico representado por essa equação.

Podemos ainda, em relação às superfícies cónicas, considerar o problema consistente na formação da equação da superfície, não sendo dada a directriz, mas sim uma superfície qualquer a qual o cône deve ser circumscripto. Trata-se evidentemente do problema que, no caso do vértice ser um ponto luminoso, consistiria em determinar o cône dos raios luminosos, o qual, pelo seu contacto com a superfície proposta, daria a separatriz; ou do problema que, se o vértice fosse um ponto de vista, conduziria a determinar o cône visual e a linha de contorno aparente relativo a esse ponto.

A superfície dada e a superfície cónica tangenciando-se ao longo de uma certa curva, é claro que, se obtivermos as equações desta curva, o problema irá recobrir no caso em que se conhece a directriz. Ora, a superfície dada e o cône circumscripto têm, ao longo da curva de contacto, o mesmo plano tangente, o que quer dizer que, para todos os pontos dessa linha, os valores de \(\frac{dz}{dx} \) e \(\frac{dz}{dy} \) tirados das equações do cône e da superfície, devem ser os mesmos.

Então, supondo que \(f(x, y, z) = 0 \) seja a equação da superfície dada, substituindo os valores de \(\frac{dz}{dx} \) e \(\frac{dz}{dy} \), tirados dessa, na equação geral do plano tangente, obtem-se

\[\frac{df}{dx} (x = \alpha) + \frac{df}{dy} (y = \beta) + \frac{df}{dz} (z = \gamma) = 0 \]
Esta equação, devendo ser satisfeita para todos os valores de \(x, y, z \), relativos à curva de contacto, representará uma superfície sobre a qual existe a curva, e como esta existe também sobre a superfície dada, segue-se que a equação \(f(x, y, z) = 0 \) e a precedente determinarão a curva de contacto, isto é a directriz da superfície conica.

No caso em que a superfície, a qual o cône é circunscrito, é do segundo grau, a curva de contacto será representada pelo sistema de equações

\[
A x^2 + B y^2 + C z^2 + D x y + E x z + F y z + G x + H y + K z = 1
\]

(2 \(A x + D \beta + E \gamma + G \) \(x \) + (\(D x + 2 \) \(B \beta + F \gamma + H y + (E x + F \beta + 2 C \gamma + K \) \(z \) +

\[+ G x + H \beta + K \gamma - 1 = o \]

a última destas equações permite reconhecer a planicidade da curva de contacto.

Consideremos, a título de exemplo característico, a determinação do cône circunscrito ao ellipsoide representado pela equação

\[a x^2 + b y^2 + c z^2 = 1\]

A equação que exprime que, ao longo da curva de contacto, o plano tangente é o mesmo para o ellipsoide e para a superfície conica, é

\[a x (x - a) + b y (y - b) + c z (z - c) = 0\]

ou

\[a x + b y + c z = a x^2 + b y^2 + c z^2\]

ou, levando em conta a equação do ellipsoide.

\[a x + b y + c z = 1\]

A curva de contacto ficará determinada por esta equação reunida ao ellipsoide. Para obter a condição de encontro, é preciso
eliminar \(x, y, z\) entre essas duas equações e as da geratriz \(x - z = m(z - \gamma), y - \beta = n(z - \gamma)\). Para isto comecemos por substituir \(x - z\) e \(y - \beta\) por \(m(z - \gamma)\) e \(n(z - \gamma)\) na equação (1); ela se tornará:

\[
a \ m \ x + b \ y + c \ z = 0
\]

Entre as duas equações precedentes e as da geratriz eliminemos então \(x, y, z\), virão as duas equações em \(z\):

\[
\begin{align*}
&\alpha \ a \left[x + m(z - \gamma) \right] + b \ \beta \left[\beta + n(z - \gamma) \right] + c \ \gamma \ z = I \\
&m \ \alpha \left[x + m(z - \gamma) \right] + n \ \beta \left[\beta + n(z - \gamma) \right] + c \ z = 0
\end{align*}
\]

as quais, depois de convenientemente transformadas, podem ser escritas assim:

\[
\begin{align*}
&(amx + bn\beta + c\gamma)(z - \gamma) = -(ax^2 + b\beta^2 + c\gamma^2 - I) \\
&(am^2 + b\gamma^2 + c)(z - \gamma) = -(amx + bn\beta + c\gamma)
\end{align*}
\]

Dividindo uma pela outra e eliminando os denominadores, teremos, para exprimir a condição de encontro, a relação:

\[
(\frac{amx + bn\beta + c\gamma}{z - \gamma})(\frac{ax^2 + b\beta^2 + c\gamma^2 - I}{z - \gamma}) = (\frac{amx + bn\beta + c\gamma}{z - \gamma})^2
\]

Substituindo \(m\) e \(n\) respectivamente por \(\frac{x - a}{x - \gamma}\) e \(\frac{y - \beta}{z - \gamma}\), teremos para equação da superfície conica circumscripfa ao ellipsoide:

\[
\begin{align*}
&\left[a\left(\frac{x - a}{x - \gamma}\right)^2 + b\left(\frac{y - \beta}{z - \gamma}\right)^2 + c \right] ax^2 + b\beta^2 + c\gamma^2 - I = \\
&\left[a\left(\frac{x - a}{x - \gamma}\right) + b\beta\left(\frac{y - \beta}{z - \gamma}\right) + c\gamma \right]^2
\end{align*}
\]
ou

\[a(x-x)^2 + b(y-\beta)^2 + c(z-\gamma)^2 = \]
\[(ax^2 + b\beta^2 + c\gamma^2 - I)^2 = \]

ora, o segundo membro pode ser transformado como se segue:

\[a(x-x)^2 + b(y-\beta)^2 + c(z-\gamma)^2 = \]
\[(ax^2 + b\beta^2 + c\gamma^2 - I)^2 = \]
\[(ax^2 + b\beta^2 + c\gamma^2 - I)^2 = \]

substituindo na equação precedente e passando os dois últimos termos para o primeiro membro, teremos

\[a(x-x)^2 + b(y-\beta)^2 + c(z-\gamma)^2 = \]
\[(ax^2 + b\beta^2 + c\gamma^2 - I)^2 = \]

d'onde, fazendo-se os desenvolvimentos indicados dentro do primeiro parenthesis:

\[a(x-x)^2 + b(y-\beta)^2 + c(z-\gamma)^2 = \]
\[(ax^2 + b\beta^2 + c\gamma^2 - I)^2 = \]

ou, fazendo-se as reduções:

\[(ax^2 + b\beta^2 + c\gamma^2 - I)^2 = (ax^2 + b\beta^2 + c\gamma^2 - I)^2 = \]

Revestida deste aspecto, a equação manifesta claramente o fenômeno da tangência entre o cone e o elipsoide, dando-se o contacto.
ao longo da curva plana, interseção do ellipsoide com o plano representado pela equação \(a x + b y + c \gamma z = 1 \).

O problema que acabamos de resolver nos dá a equação do cone visual quando o ponto \((z, \beta, \gamma)\) for um ponto de vista, e o cone dos raios luminosos quando esse ponto for um ponto luminoso; no primeiro caso, a curva de contacto representará o contorno apparente do ellipsoide relativamente ao vértice do cone, no segundo, ela constituirá a separamatriz de sombra e de luz. Para ter a imagem do ellipsoide, supondo o plano dos \(x, y \) tomado para quadro, ou a sombra projetada, escolhendo o mesmo plano para superfície de projeção, bastará fazer \(z = 0 \) na equação da superfície conica, o que dará:

\[
(ax^2 + by^2 - 1)(ax^2 + b\beta^2 + c\gamma^2 - 1) = (a x + b \beta y - 1)^2
\]

para a equação plana da prespectiva ou da linha de contorno de sombra projetada.

Podemos exprimir o coeficiente constante do primeiro membro da equação do cone em função do comprimento da recta que liga o vértice do cone ao centro do ellipsoide, tomado para origem das coordenadas, e da parte desta linha que constitue o semi-diametro do ellipsoide. Representando por \(S \) a primeira, a fórmula da distancia entre dous pontos nos dá imediatamente

\[
S^2 = \alpha^2 + \beta^2 + \gamma^2
\]

As equações da recta que passa pelo centro do ellipsoide e pelo vértice do cone sendo

\[
x = \frac{\alpha}{\gamma} z, \quad y = \frac{\beta}{\gamma} z,
\]

as coordenadas dos pontos de encontro dessa recta com o ellipsoide serão dadas pelas fórmulas seguintes, provenientes da combinação das duas equações precedentes com a do ellipsoide:

\[
x_1^2 = \frac{\gamma^2}{ax^2 + b\beta^2 + c\gamma^2}, \quad x_2^2 = \frac{\alpha^2}{ax^2 + b\beta^2 + c\gamma^2}, \quad \beta_1^2 = \frac{\beta^2}{ax^2 + b\beta^2 + c\gamma^2};
\]
d'onde

\[x^2 + y^2 + z^2 = \frac{a^2 + \beta^2 + \gamma^2}{\alpha a^2 + \beta b^2 + \gamma c^2} \]

Representando por \(R \) a distância do ponto \((x_1, y_1, z_1)\) ao centro do elipsoide, virá

\[R^2 = \frac{S^2}{\alpha a^2 + \beta b^2 + \gamma c^2}, \]

d'onde

\[ax^2 + b\beta^2 + \gamma c^2 - 1 = \frac{S^2}{R^2} - 1 = \frac{S - R^2}{R^2}. \]

A equação da superfície conica tomará então a fórmma

\[(ax^2 + b\beta^2 + \gamma c^2 - 1) (S^2 - R^2) = R^2 (ax^2 + b\beta^2 + \gamma c^2 - 1)^2.\]

FAMÍLIA DAS SUPERFÍCIES DE REVOLUÇÃO

Este terceiro grupo natural é geometricamente caracterizado pelo perpendicularismo do plano tangente ao plano do meridiano que passa pelo ponto de contacto, ou ainda pelo encontro da normal à superfície com o eixo. Traduzida analyticamente, qualquer destas duas propriedades equivalentes conduz à equação às derivadas parciais da família das superfícies de revolução. Consideremos primeiramente a propriedade do plano tangente.

Sejam \(x', y', z'\) as coordenadas do ponto de contacto, \(x = ax + x\), \(y = bx + \beta\) as equações do eixo. Vamos determinar a equação do plano do meridiano.

Devendo este plano passar pelo ponto de contacto, a sua equação será da fórmma

\[z - z' = m (x - x') + n (y - y'); \]
devendo este plano conter o eixo, tornam-se necessárias as duas rela-
ções:

\[1 - ma - nb = 0 \quad z' + m (x - x') + n (\beta - y') = 0 \]

eliminando \(m \) entre as duas equações e depois \(n \) obtem-se successiva-
mente

\[m \left[a (\beta - y') - b (x - x') \right] = \beta - y' + \beta z' \]
\[n \left[a (\beta - y') - b (x - x') \right] = - (x - x' + \alpha z') ; \]

resolvendo estas duas equações em relação aos paramêtros \(m, n \) e
substituindo na equação anterior, obtemos, para equação do plano do
meridiano que passa pelo ponto de contacto

\[(z-z') \left[a (\beta - y') - b (x - x') \right] = (x - x') (\beta - y' + \beta z') -
\]
\[- (y - y') (x - x' + \alpha z') \]

Pór outro lado a equação geral do plano tangente é

\[z - z' = \frac{dz'}{dx'} (x - x') + \frac{dz'}{dy'} (y - y') \]

A condição de perpendicularismo entre esses dois planos será
então

\[(\beta - y' + \beta z') \frac{dz'}{dx'} - (x - x' + \alpha z') \frac{dz'}{dy'} + a (\beta - y') - b (x - x') = 0 \]

Tal é o typo diferencial proprio á representação collectiva das
superfícies de revolução.
Esta equação diferencial ainda pode ser obtida exprimindo que nas superfícies de revolução a normal tirada por um ponto qualquer encontra sempre o eixo. Com efeito, sendo, como se sabe, as equações da normal

\[x - x' + (z - z') \frac{dz'}{dx'} = 0 \]
\[y - y' + (z - z') \frac{dz'}{dy'} = 0 \]

ou

\[x = -\frac{d z'}{d y} \left(x' + \frac{d z'}{d x} z' \right) \]
\[y = -\frac{d z'}{d y} \left(y' + \frac{d z'}{d y} z' \right) \]

para que a normal e o eixo se encontrem é preciso que a diferença entre os coeficientes angulares dessas duas rectas seja proporcional à diferença dos seus coeficientes lineares, o que dá

\[\frac{a + \frac{d z'}{d x}}{b + \frac{d z'}{d y}} = \frac{x' + \frac{d z'}{d x} z' - a}{y' + \frac{d z'}{d y} z' - \beta} \]

d’onde

\[\left(b + \frac{d z'}{d y} \right) \left(x' + \frac{d z'}{d x} z' - a \right) = \left(a + \frac{d z'}{d x} \right) \left(y' + \frac{d z'}{d y} z' - \beta \right) \]

ou

\[b \left(x' - a \right) + b \frac{d z'}{d x} z' + \frac{d z'}{d x} \left(x' - a \right) + \frac{d z'}{d x} \frac{d z'}{d y} z' = a \left(y' - \beta \right) + \]
\[+ a \frac{d z'}{d y} z' + \frac{d z'}{d y} \left(y' - \beta \right) + \frac{d z'}{d x} \frac{d z'}{d y} z' \]
ou

\[
\left(\beta - y' + b z' \right) \frac{dz'}{dx} - \left(x - w' + a z' \right) \frac{dz'}{dy} + a \left(\beta - y' \right) - b \left(x - w' \right) = 0
\]

Esta equação, empregando-se as notações habituais, pode ser escrita assim

\[
\left(\beta - y + b z \right) \frac{dz}{dx} - \left(x - w + a z \right) \frac{dz}{dy} + a \left(\beta - y \right) - b \left(x - w \right) = 0.
\]

Como se vê as duas marchas seguidas são equivalentes.
Mostremos agora como o tipo diferencial que acabamos de obter directamente, também pode ser instituído por via indirecta, partindo da equação collectiva finita das superfícies de revolução. Esta equação é, como se sabe,

\[
(x - x')^2 + (y - y')^2 + z^2 = \varphi(z + a x + b y)
\]

Tratando \(x \) como constante e diferenciando, vem

\[
2\left(y - y' \right) + 2 z \frac{dz}{dy} = \left(\frac{dz}{dy} + b \right) \varphi' \left(z + a x + b y \right)
\]

Considerando \(y \) constante e diferenciando, vem

\[
2\left(x - x' \right) + 2 z \frac{dz}{dx} = \left(\frac{dz}{dx} + a \right) \varphi' \left(z + a x + b y \right)
\]
Para eliminar a função ϕ' basta dividir a segunda destas equações pela primeira, o que dá

$$
\begin{align*}
 x - a + z \frac{dz}{dx} &= a + \frac{dz}{dx} \\
 y - b + z \frac{dz}{dy} &= b + \frac{dz}{dy}
\end{align*}
$$

Esta relação é a mesma que obtivemos exprimindo o encontro da normal com o eixo. A eliminação dos denominadores dará imediatamente a equação obtida directamente. Entre a equação finita desta família geométrica e o tipo diferencial collectivo, a harmonia existente é irrecusável.

Para reconhecer, por meio da equação às derivadas parciais, se uma superfície especial é ou não de revolução, e, no caso afirmativo, determinar o eixo e a directriz, basta tomar os coeficientes diferenciais

$$
\frac{dz}{dx} \text{ e } \frac{dz}{dy}
$$

tirados mediante a equação da superfície dada, substituí-los no tipo diferencial collectivo e exprimir que a igualdade resultante desta substituição deve ser satisfeita para todos os valores de x, y, z, o que exige que os coeficientes das mesmas potencias de x, y, z sejam separadamente iguais nos dois membros da igualdade. Sendo $f(x, y, z) = 0$ a equação da superfície dada, os coeficientes diferenciais parciais serão

$$
\frac{df}{dx} = \frac{dz}{dx}, \quad \frac{df}{dy} = \frac{dz}{dy}, \quad \frac{df}{dz} = \frac{dz}{dz}
$$

e, substituí-lys no caracter diferencial collectivo, darão a relação

$$
(\beta - y + bz) \frac{df}{dx} - (a - x + az) \frac{df}{dy} + \left[b(x - x) + a(\beta - y) \right] \frac{df}{dz} = 0
$$
que deve ser identicamente satisfeita, d'onde resulta que os coeficientes das diversas potências de \(x, y, z \) devem ser separadamente nulos. Convém notar que esta condição se refere ao caso em que a equação é algébrica e racional, não se podendo indicar a priori a condição, desde que a equação seja transcendente ou mesmo irracional. Supondo a equação algébrica, devemos então igualar separadamente a zero os coeficientes das diversas potências das coordenadas; se as equações assim obtidas fornecerem os mesmos valores reaes para \(a, b, z \) e \(\beta \), a superfície dada será de revolução, e conhecida estará a situação do eixo, restando apenas determinar uma directriz, o que se conseguirá muito simplesmente fazendo passar pelo eixo um plano qualquer e formando as equações do meridiano segundo o qual elle corta a superfície; no caso contrario poderemos estar certos de que o logar geométrico da equação proposta não pode ser gerado pela rotação de uma curva em torno de um eixo.

Esta marcha sendo aplicável a uma equação em cuja constituição algébrica entrarem coeficientes disponíveis, vamos considerar a equação geral do segundo grão, e, por meio della, desvendar as relações que devem ligar os parâmetros que essa equação encerra para que o respectivo logar geométrico seja de revolução.

Formando os coeficientes diferenciaes parciaes do primeiro membro da equação do segundo grão e substituindo na equação que precede, virá:

\[
(\beta - y + bz)(2Ax + By + Cz + G) - (x - x + az)(2By + Dx + Ez + \\
+ H) + [b(x - x) + a(\beta - y)](2Cz + Ez + Fy + K) = 0
\]

Effectuando as multiplicações indicadas, ordenando e igualando separadamente a zero os coeficientes totaes das diversas potencias das coordenadas e, entre as equações assim estabelecidas, eliminando \(a, b, z, \beta \) obteremos as condições necessárias e suficientes para que a equação do segundo grão represente uma superfície de revolução.

Supondo que se queira formar a equação de uma superfície de revolução circumscrita a uma superfície dada \(f(x, y, z) = 0 \), tornase necessário, antes de tudo, proceder à determinação da curva de contacto, ao longo da qual tanto a superfície dada, como a superfície
de revolução têm os mesmos planos tangentes. Sendo assim, a equação

\[(\beta - y + bx) \frac{df}{dx} - (z - x + az) \frac{df}{dy} - \left[b (x - z) + \alpha (\beta - y) \right] \frac{df}{dz} = 0 \]

deverá ser verificada para todos os pontos da curva de contacto, que ficará determinada por essa equação reunida à da superfície dada.

Quando o eixo da superfície de revolução coincide com o eixo dos z temos \(a = o, b = o, x = o, \beta = o \) e a equação precedente recebe a forma mais simples

\[y \frac{df}{dx} - x \frac{df}{dy} = 0 \]

Supondo que se queira estabelecer a equação da superfície de revolução circunscripta ao elipsoide

\[\alpha (x - z)^2 + b (y - \beta)^2 + c (z - \gamma)^2 = 1 \]

a curva de contacto será representada por essa equação reunida à que se segue:

\[(\alpha - b) xy - axy + b \beta x = o \]

Supondo a diferente de \(b \), a representação geométrica desta última equação será uma superfície cilíndrica hiperbólica de gerais paralelas ao eixo dos \(z \); esta superfície cilíndrica cortará o elipsoide segundo uma curva de dupla curvatura, que será a curva de contacto procurada. Quando for \(a = b \) a equação precedente, que então se reduzirá a \(y = \frac{\beta}{a} x \), representará um plano passando pelo eixo dos \(z \) e pelo diâmetro vertical do elipsoide; então a curva de contacto será justamente um dos meridianos deste elipsoide, e,
pela rotação em torno do eixo dos \(z \), essa curva gerará uma superfície annular circumscrita ao elípsoide.

Para estabelecer a equação dessa superfície, sejam

\[
z = h, \quad x^2 + y^2 = R^2
\]

as equações do círculo gerador. Eliminando \(x, y, z \) entre estas equações e as da directriz, obteremos a condição de encontro. Ora, as equações desta curva são

\[
y = \frac{\beta}{a} x, \quad \alpha (x - a)^2 + \alpha (y - \beta)^2 + c (z - \gamma)^2 = 1
\]

Eliminando \(y \) entre a terceira e a segunda das equações precedentes obtem-se

\[
x^2 + \frac{\beta^2}{a^2} x^2 = R^2
\]

onde

\[
x = \frac{x_R}{\sqrt{\frac{a^2}{\alpha} + \beta^2}}
\]

Representando por \(D \) a distância \(\sqrt{\frac{a^2}{\alpha} + \beta^2} \) do centro do elípsoide à origem das coordenadas, temos

\[
x = \frac{x_R}{D} \quad \text{e portanto} \quad y = \frac{\beta R}{D}
\]

Fazendo a substituição na quarta equação, temos para condição de encontro da geratriz circular com a directriz elliptica:

\[
a \left(\frac{x_R}{D} - \alpha \right)^2 + a \left(\frac{\beta R}{D} - \beta \right)^2 + c (h - \gamma)^2 = 1
\]
ou
\[
\frac{a^2}{D^2} (R - D)^2 + \frac{a^2}{D^2} (R - D)^2 + c (h - \gamma)^2 = 1
\]
ou
\[
\frac{a (x^2 + y^2)}{D^4} (R - D)^2 + c (h - \gamma)^2 = 1
\]
ou
\[
a(R - D)^2 + c (h - \gamma)^2 = 1
\]

Referindo os parâmetros variáveis \(R \) e \(h \) às coordenadas correntes da geratriz e substituindo na relação precedente, teremos para equação da superfície de revolução procurada:

\[
a \left(D \pm \sqrt{x^2 + y^2} \right)^2 + c (z - \gamma)^2 = 1
\]

A geração desta superfície anular de meridiano elíptico é analoga a do tóro de revolução; o estudo das secções feitas na mesma superfície por planos paralelos ao eixo constitui interessante exercício de geometria algébrica.

Fica assim terminada esta parte do estudo diferencial da família das superfícies de revolução.

FAMÍLIA DAS SUPERFÍCIES CONÓIDES

No estudo desta família, feito à luz da álgebra ordinária, vimos que as superfícies conóides são sempre geradas por uma recta móvel obrigada a conservar-se paralela a um mesmo plano e a apoiar-se sobre uma recta fixa e sobre uma curva qualquer. A recta fixa tem a denominação, aliás impropria, de eixo, e o plano fixo é o plano director.
A propriedade que serve de base ao estabelecimento do caráter diferencial próprio a esta família, consiste em que o plano tangente cortado paralelamente ao plano director produz uma recta que deve encontrar o eixo da superfície.

Supporemos o eixo do conoide numa situação qualquer; as suas equações serão \(x = az + x' \), \(y = bz + b' \). Tomaremos para plano dos \(xy \) o plano director da superfície.

A equação geral do plano tangente é

\[
\frac{dz'}{dx'} (x - x') + \frac{dz'}{dy'} (y - y') = 0
\]

Cortado pelo plano cuja equação é \(z = z' \), a interseção será representada pelas equações

\[
z = z' , \quad \frac{dz'}{dx'} (x - x') + \frac{dz'}{dy'} (y - y') = 0
\]

Para instituir directamente o typo diferencial desta família, é preciso estabelecer a condição de encontro da recta representada pelas duas equações precedentes com o eixo da superfície; o que se consegue eliminando, \(x, y, z \) entre estas equações e as do eixo. Esta eliminação conduzirá a uma relação diferencial que, sendo independente da directriz curvilinea do conoide, convirá a todos os generos destas superficies, representará portanto a familia sob o aspecto diferencial. Para proceder a eliminação indicada, substituamos \(z \) por \(z' \) nas equações do eixo; teremos

\[
x = az' + a , \quad y = bz' + b
\]

Substituindo estas expressões na segunda das equações da interseção, vem

\[
\frac{dz'}{dx'} (x' - az' - z) + \frac{dz'}{dy'} (y' - bz' - b) = 0
\]
ou, empregando a notação habitual

$$\frac{dz}{dx} (x - az - z) + \frac{dz}{dy} (y - bz - \beta) = 0$$

Si o eixo do conoide passar pela origem das cordedadas teremos $x = o, \beta = o$ e a equação às derivadas parciais se tornará.

$$(x - az) \frac{dz}{dx} + (y - bz) \frac{dz}{dy} = 0$$

Si o mesmo eixo for situado parallelamente ao dos z, teremos $a = o, b = o$ e o caracter diferencial collectivo será

$$(x - x) \frac{dz}{dx} + (y - \beta) \frac{dz}{dy} = 0$$

Si, emfim, o eixo da superficie coincidir com o eixo dos z teremos $a = o, b = o, x = o, \beta = o$, e o typo diferencial da familia será

$$x \frac{dz}{dx} + y \frac{dz}{dy} = 0$$

d'onde

$$x \frac{dz}{dy} = - y \frac{dz}{dx}$$

este resultado quer significar que a relação das duas derivadas parciais é inversa e de signal contrario á das coordenadas correspondentes.
O typo diferencial que obtivemos directamente, traduzindo uma propriedade característica das superfícies que compõem o grupo natural dos conoides, também pode ser instituído de modo indirecto partindo da equação que representa, debaixo de forma finita, essa família geométrica. Com efeito, considerando esta equação,

\[
\begin{align*}
z &= \frac{y - bz - \beta}{x - az - \alpha} \\
\end{align*}
\]

tomemos os coeficientes diferenciais parciais, primeiro supondo \(y \) constante e depois \(x \). Obtéremos successivamente

\[
\begin{align*}
\frac{dz}{dx} &= \frac{(x - az - x) \left(1 - b \frac{dz}{dy} \right) + (y - bz - \beta) a \frac{dz}{dy} - (y - bz - \beta) \left(1 - a \frac{dz}{dx} \right)}{(x - az - x)^2} \\
\frac{dz}{dy} &= \frac{(x - az - x) \left(1 - b \frac{dz}{dy} \right) + (y - bz - \beta) a \frac{dz}{dy} - (y - bz - \beta) \left(1 - a \frac{dz}{dx} \right)}{(x - az - x)}
\end{align*}
\]

Para eliminar a função \(\varphi \) basta dividir a primeira das relações precedentes pela segunda o que dá

\[
\begin{align*}
\frac{dz}{dx} &= \frac{(x - az - x) \left(b \frac{dz}{dx} \right) - (y - bz - \beta) \left(1 - a \frac{dz}{dx} \right)}{(x - az - x)^2} \\
\frac{dz}{dy} &= \frac{(x - az - x) \left(1 - b \frac{dz}{dy} \right) + (y - bz - \beta) a \frac{dz}{dy} - (y - bz - \beta) \left(1 - a \frac{dz}{dx} \right)}{(x - az - x)}
\end{align*}
\]

d'onde

\[
\begin{align*}
\frac{dz}{dx} \left[(x - az - x) \left(1 - b \frac{dz}{dy} \right) + (y - bz - \beta) a \frac{dz}{dy} \right] = \\
= \frac{dz}{dy} \left[- (x - az - x) b \frac{dz}{dx} - (y - bz - \beta) \left(1 - a \frac{dz}{dx} \right) \right]
\end{align*}
\]
A equação a que acabamos de chegar é a mesma que obtivemos utilizando a propriedade característica do plano tangente. A correspondência analítica entre o tipo diferencial e a equação finita desta família geométrica está reconhecida de modo decisivo.

Ainda em relação às superfícies conoides, como em relação às anteriores, convém considerar o problema em que em vez de se dar imediatamente a directriz do coneide, se exige que elle seja circunscrito a uma superficie dada.

E' claro que se determinarmos a curva de contacto, facil se tornará formar a equação procurada, porque a curva constituirá a directriz da superficie coneide circunscrita á superficie dada. Sendo \(f(x, y, z) = 0 \) a equação desta superficie, os coeficientes diferenciaes parciaes da coordenada dependente, tirados dessa equação, serão:

\[
\frac{dz}{dx} = -\frac{\frac{df}{dx}}{\frac{df}{dz}}, \quad \frac{dz}{dy} = -\frac{\frac{df}{dy}}{\frac{df}{dz}}
\]

Mas como, ao longo da curva de contacto, o plano tangente é comum ao coneide e á superficie dada, é claro então que estas expressões dos coeficientes diferenciaes sendo substituídas na equação às derivadas parciaes da família, a equação resultante

\[
\frac{df}{dx} (x - az - z) + \frac{df}{dy} (y - bz - z) = 0
\]

deverá ser verificada para todos os pontos dessa curva. A equação precedente e a da superficie dada determinarão completamente a directriz da superficie coneide procurada.

Aplicuemos esta marcha ao caso em que a directriz rectilínea do coneide é o eixo dos \(z \), e a superficie á qual o coneide deve ser circunscrito é o elipsoide representado pela equação

\[
m(x - z)^2 + ny^2 + pz^2 = 1
\]
Neste caso temos \(a = o, b = o, z = o, \beta = o \), \(\frac{df}{dx} = 2 \cdot m \cdot (x - a) \), \(\frac{df}{dy} = 2ny \); e a curva de contacto será representada pela equação do ellipsoide reunida à seguinte:

\[
mx (x - a) + ny^2 = 0
\]

Temos então para representar a curva de contacto o sistema

\[
m \cdot x - 2m \cdot x + n \cdot x^2 + n \cdot y^2 + p \cdot z^2 = 1
\]

\[
m \cdot x - m \cdot x + ny = 0
\]

Subtraendo da primeira equação a segunda obtemos

\[
px^2 - m \cdot x + m \cdot z^2 = 1
\]

Então ainda a curva poderá ser representada pelo sistema

\[
mx^2 - m \cdot x + ny = 0
\]

\[
px^2 - m \cdot x = 1 - m \cdot z^2
\]
equivalente ao primeiro. A representação plana da primeira destas equações é uma ellipse que passa pela origem das coordenadas; a da segunda é uma parábola ordinária, cujo parâmetro pôde ser facilmente determinado. Conhecemos assim a natureza de cada uma das projeções da curva de contacto. No caso em que se tivesse \(m = n \) o ellipsoide seria de revolução em torno de um eixo paralelo ao dos \(z \) e situado no plano dos \(x \) e \(z \), a uma distância \(z \) da origem, e a projeção da curva de contacto sobre o plano dos \(xy \) (plano director) seria circular.
EXAME DE ALGUMAS OUTRAS FAMÍLIAS

As definições próprias aos dois grupos precedentes podem ser generalizadas, obtendo-se então novas famílias cujos caracteres diferenciais podem ser estabelecidos a título de exercícios destinados a esclarecer a bela concepção de Monge. Assim, supondo que o centro do círculo gerador das superfícies de revolução percorra uma recta fixa sem que o seu plano fique perpendicular a essa recta, mas conservando este plano uma direcção invariável obtêm-se uma segunda família de superfícies circulares; estas, porém, já não são superfícies de revolução.

As superfícies circulares de que estamos nos ocupando gozam da propriedade collectiva de que em cada um de seus pontos o plano tangente e o plano passando pelo eixo, fornecem traços perpendiculares entre si, quando cortados paralelamente aos círculos geradores. Para traduzir algebricamente esta propriedade, de modo a obter a equação que representa, sob o aspecto differencial, a família considerada, supporremos os eixos coordenados escolhidos da modo que o plano xy seja paralelo aos planos daquelles círculos.

A equação geral do plano tangente é

$$z - z' = \frac{dz'}{dx'} (x - x') + \frac{dz'}{dy'} (y - y')$$

Cortando este plano por um plano paralelo aos círculos geradores, para o que é preciso fazer na equação $z = z'$, a equação plana da intersecção será

$$\frac{dz'}{dx'} (x - x') + \frac{dz'}{dy'} (y - y') = 0 \quad \text{ou} \quad y - y' = -\frac{dz'}{dx'} (x - x')$$

Por outro lado, sendo $x = ax + a$ e $y = bx + b$ as equações da directriz rectilínea do centro, a equação do plano que passa por esta directriz e pelo ponto de contacto é

$$(z - z') [a (y - y') - b (x - x')] = (x - x') (y - y') (z - z' + ax')$$
A equação plana da intersecção deste plano pelo plano $z = z'$ será

$$(x - x')(\beta - y' + bz') - (y - y')(a - x' + az') = 0$$

ou

$$y - y' = \frac{\beta - y' + bz'}{a - x' + az'}(x - x')$$

A condição de perpendicularismo entre os traços será, portanto:

$$\frac{dz'}{dx'} \left(\frac{\beta - y' + bz'}{a - x' + az'} \right) + 1 = 0$$

donde tiramos

$$\frac{dz'}{dx'} (\beta - y' + bz') - \frac{dz'}{dy'} (a - x' + az') = 0$$

ou em pregando a forma e notação habituais

$$\frac{dz}{dx} (y - bz - \beta) - \frac{dz}{dy} (x - az - x) = 0$$

Tal é a equação que, traduzindo a propriedade do plano tangente, representa o grupo geométrico considerado. Vamos agora obtê-la, de modo indireto, partindo do tipo collectivo finito proprio a esse grupo.
O círculo gerador será representado pelo sistema das duas equações seguintes:

\[z = c, \quad (x - az - a)^2 + (y - bz - \beta)^2 + (z - \sigma)^2 = r^2 \]

a primeira das quais corresponde a um plano e a segunda a um cilindro circular.

Então, em virtude dos princípios que já nos são familiares, a equação colectiva firsta será

\[(x - az - a)^2 + (y - bz - \beta)^2 = \varphi(z) \]

D'ella desprendemos as duas relações seguintes:

\[
2 \left(1 - a \frac{dz}{dx} \right) \left(x - az - z \right) + 2 \left(y - bz - \beta \right) \left(-b \frac{dz}{dx} \right) = \varphi' \left(x \right) \frac{dz}{dx}
\]

\[
2 \left(x - az - z \right) \left(a \frac{dz}{dy} \right) + 2 \left(y - bz - \beta \right) \left(1 - b \frac{dz}{dy} \right) = \varphi' \left(z \right) \frac{dz}{dy}
\]

Dividindo uma pela outra para eliminar a função \(\varphi' (z) \) vem

\[
\frac{\left(1 - a \frac{dz}{dx} \right) \left(x - az - z \right) - \left(y - bz - \beta \right) b \frac{dz}{dx}}{- \left(y - bz - \beta \right) \left(1 - b \frac{dz}{dy} \right) - \left(x - az - z \right) a \frac{dz}{dy} + \left(y - bz - \beta \right) \left(1 - b \frac{dz}{dy} \right)} = \frac{dz}{dx} \cdot \frac{dz}{dy}
\]

d'onde

\[
\frac{dz}{dx} \left[- \left(x - az - z \right) a \frac{dz}{dy} + \left(y - bz - \beta \right) \left(1 - b \frac{dz}{dy} \right) \right] = \frac{dz}{dy} \left[\left(1 - a \frac{dz}{dx} \right) \left(x - az - z \right) - \left(y - bz - \beta \right) b \frac{dz}{dx} \right]
\]
du

\[
\frac{dz}{dx} \left[\left(-a \frac{dz}{dy} (x - az - a) + (y - bz - \beta) \right) - b \frac{dz}{dy} (y - bz - \beta) \right] = 0
\]

d'onde feitas as reduções, tiramos

\[
\frac{dz}{dx} (y - bz - \beta) - \frac{dz}{dy} (x - az - a) = 0
\]

A conformidade da equação colectiva com o typo differencial está, portanto, posta em evidencia.

Para generalizar as superfícies conoides basta substituir a directriz rectilínea por uma curva determinada, plana ou de dupla curvatura. A cada forma atribuída a esta curva corresponderá uma família geométrica porquanto existirá ainda uma directriz arbitraria, que poderá receber todas as formas imagináveis e desde então o typo analyticó finito que representa o grupo encerrará na sua constituição uma função arbitraria para corresponder à indeterminação d'essa unica directriz arbitraria. Assim, supondo que a directriz determinada é o eixo do conoide, em vez de ser rectilíneo afecta a forma de uma helice de Archimedes, teremos uma primeira família a que somos conduzidos pela generalização dos conoides ordinarios; atribuindo ao eixo a figura da parábola ordinaria ou do segundo grao, teremos um segundo grupo natural constituindo uma família, e assim por diante. E' claro que as superfícies rectilíneas que compõe essas múltiplas e variadas famílias são necessariamente reversas.
A instituição do caráter diferencial coletivo é mais simples do que no caso das superfícies circulares, pois que a propriedade consistente em que o plano tangente, cortado parallelamente ao plano director, fornece uma recta que encontra o eixo, essa propriedade subsiste quando o eixo em vez de ser rectilíneo, afecta a forma curvilínea.

Consideremos, como primeiro exemplo, o caso em que o eixo é uma parábola ordinaria situada no plano dos \(xy \), e o plano director é o plano dos \(xy \). As equações desta curva, que supomos colocada em situação especial no seu proprio plano, serão \(y = mz^2 \), \(x = 0 \).

As equações da interseção do plano tangente com o plano tirado pelo ponto de contacto parallelamente ao plano director, serão

\[
\begin{align*}
 z &= z' \\
 (x - x') \frac{dz'}{dx'} + (y - y') \frac{dz'}{dy'} &= 0
\end{align*}
\]

A eliminação das coordenadas \(x, y, z \) entre as quatro equações precedentes dará a condição do encontro

\[
-x' \frac{dz'}{dx'} + \left(mz^2 - y' \right) \frac{dz'}{dy'} = 0
\]

ou

\[
x \frac{dz}{dx} + \frac{dz}{dy} \left(y - mz^2 \right) = 0
\]

que é o typo diferencial procurado.

A equação colectiva finita da família geométrica que estamos estudando é

\[
\frac{y - mz^2}{x} = \varphi \left(z \right)
\]
Desta equação emanam, por diferenciação, as duas relações seguintes:

\[-2mxz \frac{dz}{dx} - \left(y - mz^2 \right) x^2 = \frac{dz}{dx} \varphi'(z)\]

\[x \left(1 - 2mx \frac{dz}{dy} \right) x^2 = \frac{dz}{dy} \varphi'(z)\]

Dividindo uma pela outra, para eliminar a função \(\varphi'(z) \), vem

\[-2mxz \frac{dz}{dx} - \left(y - mz^2 \right) x^2 = \frac{dz}{dx} \frac{dz}{dy} \]

D'onde

\[\frac{dz}{dx} \left| x - 2mx \frac{dz}{dy} \right| = -\frac{dz}{dy} \left| 2mx \frac{dz}{dx} + y - mz^2 \right|\]

ou

\[x \frac{dz}{dx} + \frac{dz}{dy} \left(y - mz^2 \right) = 0\]

O resultado assim obtido coincide, como se vê, com o tipo diferencial instituído directamente, de acordo com a propriedade do plano tangente.

Consideremos em segundo logar o caso em que o eixo da superfície é uma hélice de Arquimedes, tendo o cilindro de revolução, sobre o qual ela existe, o eixo dos \(z \) para eixo de figura e sendo o
plano dos \(xy \) adoptado para plano director. Nestas condições as equações da helice ordinaria são

\[
x = r \cos \left(\frac{2 \pi}{h} z \right), \quad y = r \sen \left(\frac{2 \pi}{h} z \right)
\]

Cortando o plano tangente por um plano paralelo ao dos \(xy \) tirado pelo ponto de contacto, as equações da intersecção são

\[
z = z' - \frac{dz'}{dx'} (x - x') + \frac{dz'}{dy'} (y - y') = 0
\]

Esta intersecção devendo encontrar o eixo helicoidal, as quatro e equações precedentes devem ser simultaneas, o que exige a relação

\[
\frac{dz'}{dx'} \left[r \cos \left(\frac{2 \pi}{h} z' \right) - x' \right] + \frac{dz'}{dy'} \left[r \sen \left(\frac{2 \pi}{h} z' \right) - y' \right] = 0
\]

ou

\[
\frac{dz}{dx} \left[x - r \cos \left(\frac{2 \pi}{h} z \right) \right] + \frac{dz}{dy} \left[y - r \sen \left(\frac{2 \pi}{h} z \right) \right] = 0
\]

Esta equação às derivadas parciais traduz a propriedade característica do plano tangente às superfícies consideradas; é, portanto, o caracter diferencial proprio à família constituida por essas superfícies. A equação que precede pôde ainda se revestir do seguinte aspecto

\[
\frac{dy}{dx} = \frac{y - r \sen \left(\frac{2 \pi}{h} z \right)}{x - r \cos \left(\frac{2 \pi}{h} z \right)}
\]
peço qual se vê que a relação entre as derivadas parciais é inversa e de sinal contrário à das diferenças entre as respectivas variáveis e o coseno ou o seno de um múltiplo da ordenada.

Para tornar patente a harmonia entre o tipo diferencial e a equação collectiva finita, vamos mostrar como, partindo desta, se pôde chegar ao conhecimento daquelle tipo, já obtido de modo directo.

Elaborando convenientemente a denominação da família geométrica que estamos estudando, obtemos as equações da geratriz somente com dois parâmetros arbitrários. Estas equações são

\[z = c, \quad y - r \sin \left(\frac{\theta}{h} z \right) = a \left(x - r \cos \left(\frac{\theta}{h} z \right) \right) \]

e os parâmetros variáveis são \(c \) e \(a \). Formulando esses parâmetros em função das coordenadas correntes da geratriz, vem

\[c = z, \quad a = \frac{y - r \sin \left(\frac{\theta}{h} z \right)}{x - r \cos \left(\frac{\theta}{h} z \right)} \]

Instituindo entre estas duas funções determinadas uma relação arbitrária, teremos, para representar, sob forma finita, o grupo geométrico, a equação collectiva:

\[\frac{y - r \sin \left(\frac{\theta}{h} z \right)}{x - r \cos \left(\frac{\theta}{h} z \right)} \equiv f(z) \]

Tomando os coeficientes diferenciais parciais de ambós os
membros desta equação primeiramente em relação a x, depois em relação a y, virá

$$\frac{dz}{dx} \varphi'(z) = \frac{\left[x - r \cos \left(\frac{2 \pi}{h} z \right) \right] \left[1 - r \frac{\partial}{\partial x} \cos \left(\frac{2 \pi}{h} z \right) \right] - \left[y - r \sin \left(\frac{2 \pi}{h} z \right) \right] \left[1 + r \frac{\partial}{\partial x} \sin \left(\frac{2 \pi}{h} z \right) \right]}{\left[x - r \cos \left(\frac{2 \pi}{h} z \right) \right]^{2}}$$

$$\frac{dz}{dy} \varphi'(z) = \frac{\left[x - r \cos \left(\frac{2 \pi}{h} z \right) \right] \left[1 - r \frac{\partial}{\partial y} \cos \left(\frac{2 \pi}{h} z \right) \right] - \left[y - r \sin \left(\frac{2 \pi}{h} z \right) \right] \left[1 + r \frac{\partial}{\partial y} \sin \left(\frac{2 \pi}{h} z \right) \right]}{\left[x - r \cos \left(\frac{2 \pi}{h} z \right) \right]^{2}}$$

Dividindo a primeira pela segunda, para eliminar a função $\varphi'(z)$, teremos

$$\frac{dz}{dx} = \frac{\left[x - r \cos \left(\frac{2 \pi}{h} z \right) \right] \left[-r \frac{\partial}{\partial x} \cos \left(\frac{2 \pi}{h} z \right) \right] - \left[y - r \sin \left(\frac{2 \pi}{h} z \right) \right] \left[1 + r \frac{\partial}{\partial x} \sin \left(\frac{2 \pi}{h} z \right) \right]}{\left[x - r \cos \left(\frac{2 \pi}{h} z \right) \right]^{2}}$$

$$\frac{dz}{dy} = \frac{\left[x - r \cos \left(\frac{2 \pi}{h} z \right) \right] \left[1 - r \frac{\partial}{\partial y} \cos \left(\frac{2 \pi}{h} z \right) \right] - \left[y - r \sin \left(\frac{2 \pi}{h} z \right) \right] \left[1 + r \frac{\partial}{\partial y} \sin \left(\frac{2 \pi}{h} z \right) \right]}{\left[x - r \cos \left(\frac{2 \pi}{h} z \right) \right]^{2}}$$
onde

\[
\frac{dz}{dx} \left[x - r \cos \left(\frac{2 \pi}{h} z \right) + r^2 \cos \left(\frac{2 \pi}{h} \frac{dz}{dy} \right) \frac{dz}{dy} - \frac{2 \pi}{h} \frac{dz}{dy} \cos \left(\frac{2 \pi}{h} \frac{dz}{dy} \right) \right] \\
- \frac{r y}{h} \frac{dz}{dy} \sen \left(\frac{2 \pi}{h} z \right) + r^2 \frac{2 \pi}{h} \frac{dz}{dy} \sen \left(\frac{2 \pi}{h} \frac{dz}{dy} \right) \right] = \\
\frac{dz}{dy} \left[-r x \frac{2 \pi}{h} \frac{dz}{dx} \cos \left(\frac{2 \pi}{h} \frac{dz}{dx} \right) + r^2 \frac{2 \pi}{h} \cos \left(\frac{2 \pi}{h} \frac{dz}{dx} \right) \frac{dz}{dx} - \\
y + r \sen \left(\frac{2 \pi}{h} \frac{dz}{dx} \right) - \frac{r y}{h} \frac{dz}{dx} \sen \left(\frac{2 \pi}{h} \frac{dz}{dx} \right) + r^2 \frac{2 \pi}{h} \frac{dz}{dx} \sen \left(\frac{2 \pi}{h} \frac{dz}{dx} \right) \right]
\]

ou

\[
\frac{dz}{dx} \left[x - r \cos \left(\frac{2 \pi}{h} z \right) \right] + \frac{dz}{dy} \left[y - r \sen \left(\frac{2 \pi}{h} z \right) \right] = 0
\]

Obtemos assim, por via indirecta, a equação diferencial que a propriedade do plano tangente já tinha permitido instituir.

Algumas reflexões se tornam necessárias ao terminar esta parte da teoria diferencial das famílias de superfícies. Meditando sobre a correspondência analítica que o soberbo espírito do fundador da geometria comparada instituiu entre as equações finitas e os tipos diferenciais próprios à representaçã de algebraica das famílias geométricas, somos naturalmente levados a perguntar se a equação diferencial de um grupo natural deve ser sempre instituída directamente ou si deve algumas vezes resultar do typo collectivo finito. Dois são os motivos que nos autorizam a afirmar categoricamente que é necessário em alguns casos proceder ao estabelecimento indirecto da equação diferencial. O primeiro resulta de que a equação finita de algumas famílias é susceptível de mais fácil formação do que o caráter diferencial correspondente. O segundo provém de que, si exigíssemos a instituição directa, ficariamos privados de obter os caracteres diferenciais que conviriam a tipos arbitralmente formulados com uma
relação indeterminada. A este respeito convém lembrar que a concepção de Monge nos habilitou a criar famílias de superfícies com essa facilidade maravilhosa que o sublime pensamento matemático de Descartes introduziu na descoberta das curvas.

Em quanto que no mundo grego a criação de um tipo geométrico era o apanágio do genio inventivo, o ideal supremo para onde convergiam as aspirações dos geômetras, a invenção das curvas desde a concepção de Descartes, e a das famílias de superfícies desde a concepção de Monge, ficaram ao alcance das mais modestas inteligências. Com efeito, considerando duas funções determinadas, que podemos sempre escolher com a maior facilidade, e entre elas instituindo uma relação arbitrária temos a representação algébrica de uma família de superfícies.

E como o número de funções determinadas que podemos imaginar é infinito, segue-se que infinito é o número de famílias geométricas cujas equações colectivas finitas podemos escrever. Assim, por exemplo, as equações

\[x^2 + y^2 + z^2 = f(z, y) \]
\[x^3 + y^3 = f(x + y - z) \]
\[y - lg x = f(sen z) \]
\[\sqrt{x} + \sqrt{y} = f(x + y) \]

representam quatro famílias de superfícies cujas equações das gera-trizes podem ser obtidas com extrema facilidade. Relativamente a grupos destas condições, a equação diferencial deve ser formada indirectamente, isto é, partindo da equação finita correspondente.

Considerando a primeira, temos

\[2 \, x + 2 \, z \, \frac{dz}{dx} = y \, \frac{dz}{dx} + \psi(z, y) \]
\[2 \, y + 2 \, z \, \frac{dz}{dy} = (z + y \, \frac{dz}{dy}) \, \psi(z, y) \]
Dividindo uma pela outra, temos

\[
\frac{x + z \cdot \frac{dz}{dx}}{y + z \cdot \frac{dz}{dy}} = -\frac{y \cdot \frac{dz}{dx}}{z + y \cdot \frac{dz}{dy}}
\]

d'onde

\[
x^2 + \frac{dz}{dx} (z^2 - y^2) + xy \frac{dz}{dy}
\]

que será a equação diferencial correspondente.

Para a segunda temos

\[
3 \ x^2 = \left(1 - \frac{dz}{dx}\right) \varphi' \left(x + y + z\right)
\]

\[
3 \ y^2 = \left(1 - \frac{dz}{dy}\right) \varphi' \left(x + y + z\right)
\]

d'onde

\[
x^2 = \frac{1 - \frac{dz}{dx}}{
\frac{1 - \frac{dz}{dy}}{
\frac{dz}{dx}}
\}
\]

e portanto virá

\[
x^2 - y^2 + y^2 \frac{dz}{dy} - x^2 \frac{dz}{dy} = 0
\]

para equação diferencial.

Em relação a terceira, temos

\[
-\frac{1}{x} = \cos z \frac{dz}{dx} \varphi' \left(\text{sen} \ z\right)
\]

\[
1 = \cos z \frac{dz}{dy} \varphi' \left(\text{sen} \ z\right)
\]
d'onde

\[-\frac{1}{x} = \frac{dz}{dx} - \frac{dz}{dy}\]

o caracter diferencial será portanto

\[x \frac{dz}{dx} + \frac{dz}{dy} = 0\]

Considerando a quarta, obtemos

\[\frac{1}{2 \sqrt{x}} = \left(x + \frac{x}{z} \frac{dz}{dx} \right) \varphi'(x lx)\]

\[\frac{1}{2 \sqrt{y}} = \frac{x}{z} \frac{dz}{dy} \varphi'(x lx),\]

d'onde

\[\sqrt{\frac{y}{x}} = \frac{tx + \frac{x}{z} \frac{dz}{dx}}{\frac{x}{z} \frac{dz}{dy}};\]

a equação diferencial será pois

\[z \sqrt{\frac{x}{lx} + x} \sqrt{\frac{dz}{dx}} - x \sqrt{\frac{dz}{dy}} = 0\]

Em relação às famílias geometricamente definidas será sempre possível e habitualmente preferível recorrer à marcha directa para o estabelecimento da equação diferencial, mediante um estudo especial.
do plano tangente. Formulando a vontade tipos diferenciais podemos em sentido inverso, desprender d'elles indicações bastante claras para definirem a família, nos casos suficientemente simples em que, entretanto, a imperfeição do cálculo integral torna impossível o conhecimento da equação finita.

EQUAÇÃO DIFERENCIAL DAS SUPERFÍCIES DESENVOLVÍVEIS

A denominação de superfícies desenvolvíveis foi empregada por Monge para designar as superfícies rectilíneas que podem ser distendidas sobre um plano sem que apresentem dobra ou ruptura. Estas superfícies gozam da propriedade de que, nelas o plano tangente é tangente ao longo da geratriz rectilínea que passa pelo ponto de contacto. Tal é a propriedade que traduzida algébricamente nos vae conduzir á equação diferencial de segunda ordem própria á representação analítica do vasto grupo geométrico constituído por essas superfícies. D’elle resulta que as coordenadas do ponto de contacto podem variar sem que o plano tangente mude de posição. Tomando então a equação geral do plano tangente e escrevendo-a debaixo da forma

\[z' = px' + qy' + z - px - qy \]

em que \(p = \frac{dz}{dx} \) e \(q = \frac{dz}{dy} \) é necessário que as coordenadas \(x, y, z \) do ponto de contacto possam variar, conservando-se constantes os coeficientes \(p, q, z - px - qy \), que entendem com a situação do plano tangente. Então devemos ter

\[dp = 0, \ dq = 0, \ dz - px - qy = 0. \]
Theoria das superfícies envoltórias

Em 1692 a teoria das curvas envoltórias surgiu das reflexões leibnizianas. Tínham decorrido oito anos da data gloriosa em que as «Actas de Leipsic», já tantas vezes iluminadas pelos lampejos das mais vigorosas mentalidades, apresentavam ao mundo científico a sublime invenção do cálculo infinitesimal, o maravilhoso instrumento criado por Leibniz para resolver de modo geral o problema das tangentes.

É verdade que já no semi-seculo memorável que separa as duas mais eminentes conquistas realizadas no domínio matemático, o privilegiado espírito de Huyghens tinha publicado na terceira parte do seu «Horologium Oscillatorium» a teoria das evolutas das curvas planas, que fornece o primeiro exemplo de curvas envoltórias; é verdade ainda que já em 1682 Tschirnhausen tinha-se immortalizado pela invenção das causticas pela reflexão, que deram lugar mais tarde a estudos notáveis de Mac-Laurin e de l'Hospital, publicados respetivamente no «Traité des fluxions» e na «Analyse des infiniment petits», e que conduziram a descobertas ainda mais notáveis de João e Jacques Bernoulli, que se encontram nas bellas páginas da «Opera Omnia» e nas «Actas de Leipsic.» Mas, por mais preciosa que fosse a criação huygheniana, por mais interessante que fosse a concepção das causticas, não só a natureza das envolvidas, nestes dois casos, é extremamente particular, mas, além disso, a sua lei de variação fica necessariamente subordinada à figura primitiva; de sorte que,
tornava-se necessário generalizar esta noção, substituindo as envolvidas rectilíneas por envolvidas curvilíneas, compreendidas numa mesma equação, da qual elas emanam pela variação de um parâmetro arbitrário, sendo a envoltória constituída pelas intersecções contínuas dessas envolvidas; foi o que conseguiu Leibniz, que publicou o producto das suas locuções nas «Actas de Leipsie» (1692), onde ele se exprime assim:

«De la ligne formée des rencontres successives d'une infinité de lignes menées régulièrement et les touchant toutes, ainsi que d'un nouvel usage, dans cette recherche, de l'Analyse des infinis.

Telle est la courbe que en engendre une autre par évolution et dont l'invention est due à Huyghens; telles sont aussi les courbes imaginées par Tschirnhausen, et qui sont comme des foyers linéaires.

J'appelle ici ordonnées, des courbes quelconques définies pourtant de telle manière, que chacune d'elles est determinée lorsqu'on en connaît un point. Deux quelconques d'entre elles, infiniment peu distantes, se coupent en un point qu'on peut assigner, et la suite de ces points forme une ligne que a cela de remarquable qu'elle est tangente à toutes les courbes ordinées, comme on reconnaître aisément, mais ce n'est pas le lien de la démonstrer.»

«Lorsqu'on recherche la tangente à une courbe, il faut différencier son équation, et alors les paramètres sont supposés invariables ou indéfiniment variées, tandis que l'abscisse aussi bien que l'ordonnée est variable ou différentiable.»

«Au contraire, dans la question présente où l'on ne recherche pas la tangente à l'une des courbes, en un de ses points, mais la courbe qui est leur tangente commune, ce seront les coordonnées x e y qui seront indéfiniment variables, tandis que le paramètre dont dépendra chaque courbe sera différentiable, parce que c'est en variant qu'il fait varier la courbe.»

Assim, Leibniz não só concebe claramente as curvas envoltorias mas reconhece a propriedade fundamental de que elas são sempre tangentes às envolvidas; depois de haver fundado o cálculo transcendent e resolvido com plena generalidade o problema, historicamente memorável, da determinação das tangentes às curvas planas, ele aborda a mais eminente das questões relativas a essas curvas e a resolve magistralmente. As vistas que então emitiu, e que inspiram a maior admiração pela grandeza do seu genio, foram por elle
completadas em 1694, ainda nas «Actas de Leipsie», onde por vezes se reflectiram as scintillações do seu espírito, o brilho diamantino do seu incomparável talento. Num artigo intitulado «Nouvelle application du calcul différentiel à la construction des courbes, d'après une propriété de leurs tangentes», Leibniz se manifesta nestes termos:

«J'enseignerai, à reduire sous les lois de la Géometrie commune le problème suivant: Étant données des lignes dont la position varie suivant une certaine loi, trouver celle à laquelle elles sont toutes tangentes; on bien trouver la ligne que touche une infinité de lignes données, dont la position varie suivant une loi régulière.»

«Cela posé, le calcul sera institué de la manière suivant: que l'on prenne un angle droit fixe, dont les côtés indéfiniment prolongés constitueront deux axes de relation pour les courbes, on bien un axe et son conjugué; on aura une equation (1) entre les coordonnées x et y d'un point quelconque de l'une quelconque des courbes considérées.

Si cette équation contient plusieurs coefficients arbitraires, b, c, ..., on aura des equations (2) au moyen desquelles on pourra enlever ces coefficients de l'équation (1), sauf un d'eux, b par exemple, ce qui donnera, une equation (3). En différentiant cette dernière, comme l'équation produite ne contiendra d'autre différentielle que celle de b, cette différentielle s'évanouira et il restera un equation ordinaire (4) au moyen de l'aquelle on enlévera b de l'équation (3) et l'on aura une equation (5) où il ne restera que x et y et les paramètres invariables, tels que a; ce sera l'équation de la courbe cherchée, tangente à toutes les courbes de la serie et formée de leurs intersections successives.»

«Mais le calcul peut être institué d'une autre manière en différenciant en même temps l'équation (1) et les equations (2) par rapport aux coefficients variables; on introduira ainsi plusieurs différentielles, mais on aura les équations nécessaires pour les faire disparaître toutes, excepté une, qui s'évanouira d'elle même. Ensuite on fera disparaître les coefficients variables.»

Neste artigo, tão bello pela fórma como pelo fundo, Leibniz realiza definitivamente a instituição da teoria dos envoltórios lineares, tratando, como se vê, até do caso em que a equação da envolvida encerra varios paratemos variaveis ligados entre si por equações em numero igual ao d'essas paratemos menos uma unidade:
Para completar esta teoria o illustre Lagrange instituiu o problema inverso em que, sendo dada a envoltoria assim como a natureza dos envolvidas, se trata de desvendar a lei da sua sucessão, que se traduz algebricamente pela correlação dos dois paramétros arbitrários.

A extensão da teoria das envoltorias às superfícies foi realizada por Monge e constitui o seu principal título de gloria.

Consideremos a equação

\[F(x, y, z, z') = 0 \]

na qual entra um parâmetro arbitrário \(z \). A variação do parâmetro \(z \) dá logar a uma série de superfícies cuja envoltória será o logar das suas interseções contínuas. Attribuindo ao parâmetro \(z \) um acréscimo infinitesimal \(dz \), teremos

\[F + \frac{dF}{dz} \, dz = 0 \]

ou

\[\frac{dF}{dz} = 0 \]

A eliminação do parâmetro \(z \) entre as equações \(F = 0, \frac{dF}{dx} = 0 \) fornece a equação da superfície envoltória.

As duas equações que precedem representam a curva segundo a qual se cortam duas envolvidas infinitamente vizinhas: esta curva recebeu de Monge a denominação de característica da superfície envoltória.

A envoltória é tangente a cada uma das envolvidas ao longo da característica. De facto, supondo resolvida a segunda equação em relação a \(z \), obtem-se \(z = \varphi(x, y, z) \), e substituindo-se na primeira virá:

\[F(x, y, z, \varphi) = 0 \]

onde

\[\frac{dF}{dx} \, dx + \frac{dF}{dy} \, dy + \frac{dF}{dz} \, dz + \frac{dF}{d\varphi} \, d\varphi = 0 \]
Sendo $\frac{df}{dz}$ identicamente nulo, vê-se que as derivadas parciais
\[
\frac{dz}{dx}, \quad \frac{dz}{dy}
\]
que determinam a inclinação do plano tangente são as mesmas quer para a envoltória, quer para a envolvida, onde se conclue que os planos tangentes, tirados em cada ponto, coincidem.

Se a equação que representa as envolvidas encerram dois parâmetros z e x_1, ligados por uma equação, de sorte que se tenha

\[
F(x, y, z, z_1) = 0, \quad f(x, x_1) = 0,
\]

o problema relativo à formação da equação da envoltória apenas se complicará sob o ponto de vista algebrico. A eliminação de $z, x_1, \frac{dz_1}{dx}$ entre as duas equações precedentes e as que se obtêm igualando a zero as suas derivadas, fornecerá a equação da superfície envoltória.

De modo geral, supondo que a equação contivesse n parâmetros, ligados entre si por $n - 1$ equações dadas, ainda a derivação das funções compostas permitiria obter a equação da superfície envoltória.

Reconhece-se que, quer no caso das linhas, considerado pelo fundador do cálculo infinitesimal, quer no caso das superfícies, elaborado pelo legislador da geometria objectiva, a envoltória é tangente a todas as envolvidas; mas no primeiro caso, o sistema formado pela equação das envolvidas e pelo que se obtém annulando a derivada do seu primeiro membro em relação ao parâmetro, esse sistema não representa, para cada valor do parâmetro, senão um ponto, que não tem forma, enquanto que no segundo caso, a representação geométrica d'esse sistema é uma linha, cuja figura influê sobre o ressultado algebrico, isto é sobre a natureza da equação própria à envoltória e desde então sobre a própria forma do logar geométrico. Si a envoltória depende do modo da sucessão das envolvidas, ela está principalmente subordinada à sua natureza que, no caso das linhas, nenhuma influencia podia exercer sobre elle.

Para que esta diferença se imponha ao nosso espírito, com irresistível evidencia, basta lembrar que tratando-se do caso linear é possível, conservando a natureza das envolvidas, modificar arbitrariamente
a natureza das envoltorias, estabelecendo convenientemente o modo de sucessão; e, sob o aspecto inverso, modificar a natureza das envolvidas sem que a envoltoria seja alterada. Tratando-se porém do caso superficial, uma equação em cuja constituição algebrica entram dois parametros arbitarios, não pôde fornecer indiferentemente uma envoltoria qualquer, instituindo entre estes parametros todas as relações possíveis. Supondo que a equação das envolvidas seja

\[F(x, y, z, a, \beta) = 0 \]

ou, considerando \(\beta \) como uma função arbitaria de \(a \),

\[F[x, y, z, a, \varphi(a)] = 0, \]

a equação da envoltoria provirá da eliminação de \(a \) entre esta ultima equação e a sua derivada em relação a esse parametro.

Ora, como a cada forma particular atribuida à função arbitaria \(\varphi \) corresponde um genero de superficies envoltorias, é claro que a indeterminação d'essa função acarretá a existência de uma infinidade de generos de superficies que, pela sua totalidade, vão constituir uma verdadeira família geometrica de acordo com a concepção d'este grupo geometrico, já familiar ao nosso espírito.

Assim, as superficies que podem emanar, como envoltorias, das que são representadas por uma equação encerrando apenas dois parametros arbitarios, formarão uma mesma família; a geratriz correspondente será determinada pela forma das superficies envolvidas, de sorte que ela será rectilínea se as envolvidas forem planas, afectará a forma circular se as envolvidas forem esféricas, e assim por diante. Quanto ao modo de sucessão das envolvidas, traduzido algebricamente pela correlação dos dois parametros arbitarios, elle só poderá influir sobre a directriz, sem jamais afectar a geratriz.

Esta nova concepção das familias geometricas, constitue historicamente a ultima grande conquista realizada no principal dominio da science fundamental; termo normal de arduo e lento trabalho do espírito humano na sua evolução secular, ella representa a cupola do edificio cujos alicerces foram lançados na antiguidade por Thales,
Pythagoras, Endoxio, Archimedes, Apolonius, etc., e em cuja construção gigantesca se immortalisaram Descartes, Fermat, Barrow, Huyghens, Leibniz, Newton, Clairaut, Euler, os Bernoulli, Lagrange e tantos outros geométras de quem a posteridade guardará eterna recordação.

A concepção precedente equivale necessariamente à que se refere à geração das superfícies pelo movimento de uma linha, da qual ela apenas difere pelo facto de que a geratriz em vez de ser definida imediatamente, resulta da intersecção de duas superfícies infinitamente vizinhas sobre as quais ela se acha simultaneamente situada. «Alors, diz Augusto Comte na Synthèse subjectiva, la géométrie objective prend une constitution plus synthétique qui sans établir une hiérarchie philosophiquement impossible, doit mieux réunir les diverses familles engendrées par une même ligne, en les faisant toutes émaner d'une souche commune.»

Já vimos que a eliminação do parâmetro definitivamente arbitrário entre a equação das envolvidas, quando já se tem substituido o outro por uma função arbitrária d’este, e a equação obtida tomando a derivada d’aquela em relação ao parâmetro arbitrário, fornece a equação finita da família correspondente. Só em casos extremamente raros se consegue realizar esta eliminação pois que ela se refere ao mesmo tempo à função arbitrária e a sua derivada, as quais embora logicamente ligadas, são algebricamente distintas. Desde então, forçoso é convir que tratando-se de formar a equação colectiva finita, seria preferível recorrer à concepção primitiva, na qual a geratriz se acha imediatamente formulada, sem resultar da intersecção das duas envolvidas infinitamente proximas, sendo a equação de uma delas resultante da outra em virtude de um acréscimo infinitesimal atribuído ao parâmetro livre. Na instituição, porém, do caráter colectivo indirecto, no qual já não entra a função arbitrária, então a concepção das superfícies como envoltoirias apresenta incontestável superioridade. Para estabelecer a equação diferencial da família de superfícies constituidas pelas envoltoirias que resultam das envolvidas representadas pela equação.

\[F(x, y, z, x, y) = 0 \]

bastará tomar as derivadas parciais de ambos os membros desta equação em relação às coordenadas livres \(x \) e \(y \), e eliminar entre elas e
a equação precedente os parâmetros arbitrários x e β. Obtem-se uma relação entre as três coordenadas variáveis x, y, z e as derivadas parciais de z em relação a x e a y, a qual traduzirá uma propriedade característica do plano tangente às superfícies que constituem a família geométrica de que se trata.

Apreciada sob o ponto de vista logico, é claro que quanto maior fôr o número de parâmetros que entram na equação geral das envolvidas, tanto mais numerosos e variados serão os grupos naturaes constituídos pelas envoltorias correspondentes a essas envolvidas; a esfera, por exemplo, cuja equação geral encerra quatro parâmetros distintos fornecerá maior variedade de grupos do que o plano, que é representado por uma equação geral que só contém três coeficientes disponíveis. Teríamos assim uma sorte de hierarquia, baseada no número de parâmetros das envolvidas ou, o que é equivalente, no número de pontos determinantes delas, si na realidade, a ponderação científica não limitasse estas investigações aos dois casos, únicos suficientemente simples, da envolvida plana e da envolvida spherica. Para se compreender quanto a classificação geométrica é assim condensada, basta dizer que no caso das envolvidas planas estão compreendidas todas as famílias de superfícies desenvolvíveis. Limitemos-nos a mostrar como a equação diferencial das superfícies cilíndricas e a das superfícies conicas podem ser instituídas partindo da concepção das envoltorias.

A equação geral do plano sendo

$$z = mx + ny + p,$$

si sujeitarmos o plano a se deslocar parallelamente á recta fixa dada pelas equações

$$x = az + a, \quad y = bz + b$$

teremos, entre os três parâmetros que entram na sua equação, a relação

$$ma + nb = 1$$
d'onde

\[m = \frac{1 - nb}{a} \; ; \]

substituindo na equação do plano, teremos

\[z = \frac{1 - nb}{a} x + ny + p \]

A existência de dois parâmetros arbitários, \(m \) e \(n \), indica que as envoltórias deste plano móvel constituem uma família, que evidentemente é a das superfícies cilíndricas.

Tomando as derivadas parciais da equação precedente em relação a \(x \) e \(y \) virá

\[\frac{dz}{dx} = \frac{1 - nb}{a} \; , \; \frac{dz}{dy} = n \]

Pela eliminação de \(n \) entre estas duas equações, obtem-se

\[a \frac{dz}{dx} + b \frac{dz}{dy} = 1 \; , \]

que é o tipo diferencial colectivo das superfícies cilíndricas.

Se sujeitarmos o plano móvel a passar constantemente por um ponto dado, teremos a família das superfícies conícas. Chamando \(z, \beta \) e \(\gamma \) as coordenadas desse ponto, que é o vértice, teremos para a equação das envoltórias

\[z - \gamma = m (x - x) + n (y - \beta) ; \]

d'onde

\[\frac{dz}{dx} = m \; , \; \frac{dz}{dy} = n \]
substituindo na equação precedente, teremos o typo diferencial:

\[z - \gamma = \frac{dz}{dx} (x - \gamma) + \frac{dz}{dy} (y - \beta) \]

que representa a família das superfícies conicas.

Tomando a equação geral do plano, supponhamos que um dos coeficientes angulares seja função arbitrária do outro, por exemplo \(n = \varphi(m) \); teremos:

\[z = mx + \varphi(m)y + p, \]

d’onde

\[\frac{dz}{dx} = m, \quad \frac{dz}{dy} = \varphi(m); \]
portanto

\[\frac{dz}{dy} = \varphi\left(\frac{dz}{dx}\right) \]

d’onde

\[\frac{d^2z}{dy^2} = \varphi^2\left(\frac{dz}{dx}\right) \frac{d^2z}{dx\,dy} \]
e

\[\frac{d^2z}{dx\,dy} = \varphi^2\left(\frac{dz}{dx}\right) \frac{d^2z}{dx^2} \]

dividindo estas duas relações uma pela outra, vem

\[\left(\frac{d^2z}{dx^2}\right) \left(\frac{d^2z}{dy^2}\right) = \left(\frac{d^2z}{dx\,dy}\right)^2 \]

que é a equação diferencial de segunda ordem das superfícies desenvolvíveis.

Assim, a envoltória de um plano movel segundo uma lei qualquer é sempre uma superfície desenvolvível. Deve-se notar que, si o plano
movel ficar sempre normal a uma curva qualquer, a envoltoria das suas posições será a superfície polar dessa curva, conforme a denominação dada por Monge; se a curva for plana, a envoltoria dos planos normaes será o cilindro polar; se ella for esférica, essa envoltoria será a superfície conica polar. Monge, extendendo as vistas manifes,
tadas por Huyghens, mostrou que sobre a superfície polar de uma curva plana ou de dupla curvatura estão situadas as evolutas, em número infinito, que essa curva comporta e, ainda mais, que essas evolutas são linhas geodesicas sobre a superfície polar e portanto helicis, visto essa superfície ser desenvolvivel. E' ainda uma bela diva que esse geometro fez á geometria abstracta.

Considerando agora a teoria das superficies envoltorias relativamente as envolvidas esféricas, compreende-se que neste caso ella comporta uma extensão superior, porque a equação geral da esfera contendo quatro paratemetros, dois delles podem ser referidos aos outros dois, por meio de funções indeterminadas.

Suppondo que o centro percorre uma linha dada pelas suas equa-
ções

\[x = f(z), \quad y = f_1(z) \]

a equação da esfera será

\[\left(x - f(y) \right)^2 + \left(y - f(y) \right)^2 + (z - \gamma)^2 = r^2; \]

substituindo \(r \) por uma função indeterminada de \(\gamma \) e tomando a derivada da equação precedente em relação a este parametoro, e em seguida procedendo á eliminação dello entre as duas equações, se obteria a equação collectiva finita do grupo geometrico constituído pelas superficies envoltorias provenientes da esfera considerada; a equação diferencial será instituida pela eliminação de \(r \) e \(\gamma \) entrea equa-
ção da esfera movel e as que se obtêm tomando as suas derivadas parciaes em relação às coordenadas livres. Se o centro da esfera descreve uma linha recta, temos a familia das superficies de revolu-
ção, caso particular do grupo precedente; formemos a equação colle-
ctiva sob fórm a differential, nesta hypothese. A equação das envolvidas esfericas será então

\[(x - a \gamma - p)^2 + (y - b \gamma - q)^2 + (z - \gamma)^2 = r^2\]

na qual a, b, p, q representam os coeficientes angulares e lineares próprios ao eixo da superfície.

A equação precedente fornece

\[\frac{dz}{dx} = \frac{dz}{dy} = 0\]

A eliminação de \(\gamma\) entre estas duas equações nos dá

\[-(y - bz - q) \frac{dz}{dx} - (x - az - p) \frac{dz}{dy} = b (x - p) - a (y - q)\]

relação differential que já sabemos que representa a família das superfícies de revolução.

Sí, deixando indeterminada a directriz do centro da esfera movel, suppostermos invariavel o raio della, na sua equação coexistirão tres parametros arbitrarios, que serão as coordenadas do centro; o grupo geometrico constituído por estas superfícies, denominadas tubos ou canes, apresentará então uma infinidade de famílias de superfícies; uma resultando desse grupo quando se obriga a curva descripta pelo centro a estar situada sobre um plano, outra correspondendo ao caso em que o logar dos centros é uma curva esferica, e assim por diante. De facto, considerando o assumpto de modo geral, sendo dada uma superficie \(f(x, y, z) = 0\) sobre a qual devem estar situados os centros de todas as envolvidas, poderemos exprimir um dos parametros variaveis, a por exemplo, em função dos outros dois; de sorte que substituindo a expressão obtida na equação da esfera movel onde o
raio já foi suposto constante, esta equação só conterá dois parâmetros variáveis: o logar geométrico correspondente será, portanto, uma verdadeira família de superfícies. Supondo plana a superfície comum às diretrizes do centro, e adoptando esta superfície para plano horisontal das coordenadas, procedemos à formação da equação indireta da família geométrica correspondente, que é a das superfícies cônica de eixo plano. O caráter diferencial é facilmente instituído, exprimindo-se que o segmento da normal à superfície, compreendido entre esta e o plano das coordenadas livres, conserva o seu comprimento constante, e igual ao raio das envolvidas esféricas. Ora, de acordo com a fórmula da distância entre dois pontos, esse segmento é dado pela expressão

\[-z' \sqrt{1 + \left(\frac{dz}{dx} \right)^2 + \left(\frac{dz}{dy} \right)^2} ;\]

portanto, o tipo infinitesimal próprio à representação algebraica da família considerada de superfícies cônica será, fazendo logo a supressão dos accentos:

\[z^2 \left[1 + \left(\frac{dz}{dx} \right)^2 + \left(\frac{dz}{dy} \right)^2 \right] = r^2\]

Monge, com a clareza e elegância familiares ao seu genio, institui na sua «Application de l'Analyse à la Géométrie» pág 37, a equação que acabamos de obter, ainda por outra marcha, que consiste em exprimir a igualdade dos diedros que com o plano das coordenadas livres formam os planos tangentes à superfície canal e à envolvida, para pontos de contacto que têm a mesma coordenada dependente.

Considerando a equação geral da esfera e admitindo sucessivamente a existência de novas relações entre os quatro parâmetros arbitrários que ella encerra, a cada uma destas relações corresponderá um grupo geométrico que, como o das superfícies cônica, compreenderá uma infinidade de famílias propriamente ditas, as quais, na sua maior parte, não têm, nem podem ter, nomes especiais. Sujeitando
aquelas parâmetros a duas relações, a extensão do grupo se restringe; a equação convém então a uma verdadeira família geométrica. A multiplicidade imensa destas famílias, quando se faz variar a fórmula analítica d'essas relações, torna inesgotável a apreciação das propriedades collectivas das superfícies que as compõem e extremamente vasto o campo que a geometria comparada oferece à meditação dos exploradores do domínio matemático.

Para completar a apreciação da teoria das superfícies envoltórias e da sua reação sobre a das família geométricas, é preciso examinar a concepção da linha resultante das intersecções continuas das geratrizes consecutivas em cada superfície determinada, concepção que constitui um laço de união entre a teoria das curvas envoltórias e a das superfícies envoltórias.

Sendo \(F = 0 \) a equação das envolvidas, o accrescimo infinitesimal \(d \alpha \), atribuindo ao parâmetro \(\alpha \), dará logar a equação

\[
\frac{d F}{d \alpha} = 0;
\]

estas duas equações representam a característica, segundo a qual se cortam as duas envolvidas infinitamente visinhas.

A característica infinitamente visinha será representada pelas equações

\[
\frac{d F}{d \alpha} = 0, \quad \frac{d^2 F}{d \alpha^2} = 0
\]

A eliminação de \(\alpha \) entre as três equações

\[
F = 0, \quad \frac{d F}{d \alpha} = 0, \quad \frac{d^2 F}{d \alpha^2} = 0
\]

dará a equação da curva notável, logar geométrico das intersecções continuas das características da superfície envoltória; esta curva
sendo a envoltoria das geratrizes da superfície envoltoria considerada, a sua apreciação constitui um vínculo entre a concepção das linhas e a das superfícies envoltórias.

Antes de terminar a apreciação da teoria das superfícies envoltórias, é forçoso reconhecer que por mais elevado que seja o valor da condensação, essencialmente diferencial, que ella permite imprimir ao estudo das famílias geométricas, elle é sobretudo logico, e não dispensa recorrer às concepções primitivas, diferenciaes ou finitas, cuja superioridade sob o aspecto científico é incontestável.

Eis, em resumo, a teoria das superfícies envoltórias que aperfeiçoando o domínio da geometria objectiva, representa a mais eminentes acquisição que a sciencia abstracta deve aos felizes e geniaes esforços de Monge.
II

Instituição das equações finitas das famílias geométricas partindo dos typos infinitesimales correspondentes

Extremamente imperfeito é o espectáculo que apresenta a geometria transcendente quanto às questões subordinadas á integração; o que se consegue ordinariamente a este respeito é transformar as dificuldades geométricas em obstáculos algebricos, diante dos quais a razão humana se detém impotente.

A primeira vista parece que desde que, pela fundação do cálculo integral, foram instituídos métodos gerais para a função uniforme das questões relativas ás retificações, quadraturas e cubaturas, immensas e variadas deveriam ser as acquisições científicas adicionadas pela ciência moderna aos resultados obtidos pelos gregos; é uma miragem que desappece desde que o espirito do geômetra, esbarrando diante da quadratura de uma curva, cuja ordenada é uma função transcendente ou mesmo irracional, não muito simples, da abscissa, adquire a compreensão nitida, o sentimento profundo, da immensa desproporção das nossas forças mentaes para com o espectáculo exterior, cujas scenas só em casos raríssimos podem ser exactamente reproduzidas nas nossas teorias.

As dificuldades crescem enormemente, adquirem uma extensão superior, quando os problemas dependem da integração das equações ás derivadas parciaes, isto é, do domínio mais vasto e mais imperfeito da integração implícita, como acontece, nas investigações que
referindo-se às famílias de superfícies, exigem a intervenção do cálculo integral.

Os primeiros estudos notáveis sobre a integração das equações às derivadas parciais são devidos a d'Alembert, que os apresentou num trabalho intitulado « Recherches sur les vibrations des cordes sonores » publicado nas Memorias da Academia de Berlim, relativas ao ano de 1747. Esses estudos foram motivados pelo problema das cordas vibrantes, cuja equação de d'Alembert integrou, por uma marcha muito simples; este geometra no quarto volume dos seus Opuscules também se preocupa com a integração das equações às derivadas parciais.

Uma noção capital foi introduzida por d'Alembert: é a das funções arbitrárias que devem entrar nas equações às derivadas parciais. Este geometra supunha, todavia, que estas funções estão sujeitas à lei da continuidade; Euler, porém, pensando com razão que o arbitrário significa o arbitrário, manifestou-se contra esta restrição. Preocupando-se com o problema das cordas vibrantes, apresentou uma solução que não difere muito da de d'Alembert; os seus trabalhos sobre a integração das equações às derivadas parciais não devem, entretanto, ficar no esquecimento.

Imensos foram os esforços feitos por Monge para instituir as equações finitas dos grupos geométricos, partindo dos seus tipos infinitesmais, problema que, encarado abstractamente, é o da integração das equações às derivadas parciais. Quer nas « Mémoires de l'Académie des Sciences de Turin », para os anos de 1770, 1773, 1784 e 1785, querem diversos volumes da « Collection des Savans étrangers de l'Académie des Sciences de Paris », quer ainda nas próprias « Mémoires de l'Académie des Sciences de Paris » e na « Correspondance polytechnique », quer finalmente na sua « Application de l'Analyse à la Géométrie », verdadeiramente notáveis foram os trabalhos que ele publicou. Os seus bellos artigos são modelos de clareza e elegância; nelles não sabemos o que mais se deva admirar: si a profundeza de conhecimentos científicos de Monge, si o seu genio altamente philosophico.

A marcha pela qual Monge passa dos tipos algebraicos finitos para as equações diferenciais das características das arestas de reversão, das envoltorias e das envolvidas, satisfaz ao espírito mais exigente. O mesmo rigor não se nota, porém, na transição dos tipos diferenciais para as equações finitas, pelo emprego das equações da característica. Monge, adoptando meios diversos, é conduzido a dez equações que representam, cada uma, a característica. Em seguida, tomando
as três primeiras dessas equações, elle mostra por meio dellas que a integração de uma equação ás derivadas parciaes a tres variaveis, linear e da primeira ordem, reduz-se á integração de uma equação diferencial ordinaria, a duas variaveis e de segunda ordem, na qual a diferencial de uma das duas variaveis é considerada constante.

Estendido ás equações -lineares da primeira ordem, ás derivadas parciaes, de um numero qualquer de variaveis, este theoremá equivale á bella' proposição dada por Lagrange nas Memorias da Academia de Berlim para o anno de 1772. n'um artigo intitulado «Sur l'integration des equations á différences partielles du primier ordre.»

As superificies representadas por equações d'essa natureza, e a tres variaveis, podem ser geradas pelo movimento de uma curva determinada, cujas equações finitas encerram dois parametros arbitrarios.

De facto, seja a equação

\[f(x, y, z, \frac{dx}{dx}, \frac{dz}{dy}) = 0; \]

eilla nos permite exprimir uma das quantidades \(x, y, z, \frac{dx}{dx}, \frac{dz}{dy} \) em função das outras quatro. Tracemos arbitrariamente no plano dos \(xz \) uma curva que suporemos ser o traço do logar geometrico da equação precedente sobre esse plano, e seja \(z = \varphi (x) \) a equação desta curva. Para um ponto qualquer dessa curva, conheceremos \(x, y \) cujo valor é nullo, \(z \) e \(\frac{dz}{dx} \); como a equação proposta nos dá \(\frac{dz}{dy} \) segue-se que a direção do plano tangente ao logar geometrico considerado está determinada em toda a extensão da curva traçada arbitrariamente. Si cortarmos o logar geometrico da equação proposta por um plano infinitamente proximo do plano dos \(xz \) e parallelo a este, teremos para equação plana da intersecção

\[z = \varphi (x) + \psi (x) dy \]

ou

\[z = \varphi (x) \]
Esta intersecção permite determinar uma nova intersecção com um segundo plano infinitamente próximo do precedente e ainda paralelo ao plano dos \(xz\); e assim por diante.

Assim, vê-se que o logar geométrico fica, de maneira geral, determinado em toda a sua extensão, desde que se dá arbitrariamente a intersecção d'elie por um plano paralelo ao dos \(xz\). E' evidente que o mesmo se daria se o plano secante fosse paralelo ao dos \(xy\).

Ora, a curva cuja equação é \(z = f(x)\) sendo inteiramente arbitrária, é claro que a ella poderemos atribuir uma infinidade de formas geométricas distintas; d'onde resulta que o logar geométrico da equação entre as tres coordenadas variáveis e as derivadas parciaes de uma d'ellas em relação às outras duas, esse logar geométrico comprehende uma infinidade de superficies, differindo entre si por uma unica directriz. Então esse logar geométrico é uma verdadeira familia de superficies, gozando todas de um caracter commum, algebraicamente traduzido pela equação proposta. Para que a integral d'essa equação tenha uma significação tão extensa como a da propria equação, é necessario que ella represente todas as superficies de que se trata. Essa integral, além da condição de satisfazer á equação diferencial proposta, deve conter uma função arbitraria. A veracidade d'essa proposição se impõe ao espírito com irresistivel evidencia, desde que se note que, tendo-se uma equação primitiva encerrando uma função arbitraria, podemos deduzir d'ella uma equação diferencial de primeira ordem, como já vimos na instituição dos tipos infinitesimaes, proprios ás diversas familias geométricas partindo das suas equações collectivas finitas.

Esta observação desvenda a aptidão da geometria objectiva para instituir no dominio mathematico a plena e irrecusavel harmonia entre a analyse e a synthese, que jamais seria conseguida pela geometria subjectiva. De facto, o exame do caracter logico proprio ás equações da geometria subjectiva nos mostra que, n'ellas, a generalidade constitue o privilegio das relações diferenciaes. A passagem das equações indirectas para as equações directas, do estado rudimentar para o estado finito, jamais poderia se realizar tratando-se de casos que não estejam especialmente determinados; a integração faz sempre desaparecer a plenitude de generalidade inherent ás relações que ligam os elementos infinitesimal. Ao inverso, no dominio da geometria objective, o typo finito de uma familia de superficies e a equação differential correspondente, apresentam o mesmo cunho de generalidade;
tem, quer algébrica quer geometricamente considerados, a mesma amplidão.

Feitas estas considerações, lembremos que sendo \(F(x, y, z, a, \beta, \rho) = 0 \) a equação das envolvidas correspondentes a uma família geométrica, um acréscimo infinitesimal \(dx \), atribuído a um só dos parâmetros arbitrários, dará logo ao sistema \(F = 0, \frac{dF}{da} = 0 \), que representará uma característica pertencente a uma certa superfície envoltória; do mesmo modo, um acréscimo infinitesimal \(d\beta \), atribuído ao segundo parâmetro, conduzirá ao sistema \(F = 0, \frac{dF}{d\beta} = 0 \) que representará uma outra característica relativa a uma outra superfície envoltória infinitamente vizinha da primeira. É claro desde então que os pontos de intersecção destas características terão para coordenadas as soluções comuns do sistema \(F = 0, \frac{dF}{da} = 0, \frac{dF}{d\beta} = 0 \), e que a eliminação dos dois parâmetros entre essas três equações conduzirá a uma equação entre as três coordenadas variáveis, equação que representará o logarítmico do logarítmico de todos esses pontos de intersecção. Este logarítmico é uma superfície envoltória de todas as envoltórias a que já nos referimos, e á qual todas as características são tangentes; superície á qual a equação differencial posta deve ainda convir, mas que evidentemente só corresponde a uma solução particular dessa equação.

Isto posto, seja a equação linear às derivadas parciais da primeira ordem, a três variáveis

\[
P \frac{dz}{dx} + Q \frac{dz}{dy} = R
\]

sendo \(P, Q, R \) funções quaisquer das três coordenadas variáveis:

Notando que a differencial total da coordenada dependente é igual á soma das suas diferenças parciais relativas a cada uma das variáveis livres, obtem-se

\[
(Pdy - Qdx) \frac{dz}{dx} = Rdy - Qdz
\]
\[(Pdy - Qdx) \frac{dz}{dy} = Pdz - Rdx\]

As equações da característica serão:

\[Pdy - Qdx = 0\]
\[Pdz - Rdx = 0\]
\[Qdz - Rdy = 0\]

das quais, duas quaisquer acarretam a terceira. A integração de duas quaisquer destas equações diferenciais, nos dá:

\[f_1(x, y, z) = a \quad f_2(x, y, z) = b\]

A equação finita que convém a uma qualquer das superfícies envoltorias, representadas pela equação às derivadas parciais proposta, será portanto:

\[f_1(x, y, z) = \varphi [f_2(x, y, z)]\]

Tal é a integral geral que convém à totalidade das superfícies que constituem a família geométrica, tendo para caracter indirecto a equação dada.

Vamos aplicar a marcha precedente ao estabelecimento das equações colectivas finitas das famílias geométricas usadas, partindo dos respectivos tipos diferenciais.

Nas superfícies cilíndricas, o parallelismo do plano tangente à direcção común das geratrizes dá como se sabe a equação às derivadas parciais:

\[a \frac{dz}{dx} + b \frac{dz}{dy} = 1\]
As equações diferenciais ordinárias da característica serão

\[ady - bdx = 0 \]
\[adz - dx = 0 \]
\[bdz - dy = 0 \]

A integração das duas últimas nos fornece

\[x = az + a \]
\[y = bz + b \]

sendo \(a \) e \(b \) dois parâmetros arbitrários. A equação coletiva finita será pois

\[\psi (x - az, y - bz) = 0 \]

Para as superfícies conicas, o plano tangente passando constantemente pelo vértice, a equação às derivadas parciais, própria à representação algebraica da família correspondente, será

\[(x - a) \frac{dz}{dx} + (y - b) \frac{dz}{dy} = z - \gamma \]

Para as equações da característica teremos

\[(x - a) dy - (y - b) dx = 0 \]
\[(x - a) dz - (z - \gamma) dx = 0 \]
\[(y - b) dz - (z - \gamma) dy = 0 \]
As duas últimas nos fornecem

\[
\frac{dx}{x - \alpha} = \frac{dz}{z - \gamma}
\]

\[
\frac{dy}{y - \beta} = \frac{dz}{z - \gamma}
\]

e integrando:

\[
l(x - \alpha) = l(z - \gamma) + la
\]

\[
l(y - \beta) = l(z - \gamma) + lb
\]

sendo \(\alpha \) e \(\beta \) duas constantes arbitrárias. Estas duas equações ainda podem ser escritas assim

\[
l(x - \alpha) = l\left(\frac{x - \alpha}{z - \gamma}\right)
\]

\[
l(y - \beta) = l\left(\frac{y - \beta}{z - \gamma}\right)
\]

donde

\[
\frac{x - \alpha}{z - \gamma} = \alpha
\]

\[
\frac{y - \beta}{z - \gamma} = \beta
\]

A equação collectiva finita, peculiar à família das superfícies cónicas será então:

\[
\psi\left(\frac{x - \alpha}{z - \gamma}, \frac{y - \beta}{z - \gamma}\right) = 0
\]

Considerando a família das superfícies de revolução, o caracter collectivo indirecto é

\[
(y - bz - \beta) \frac{dz}{dx} - (x - au - \alpha) \frac{dx}{dy} = b(x - \alpha) - a(y - \beta)
\]
As equações da característica serão

\[(y - bz - \beta) \, dy + (x - az - z) \, dx = 0\]

\[(y - bz - \beta) \, dz - \left[b \, (x - a) - a \, (y - \beta) \right] \, dx = 0\]

\[-(x - ax - z) \, dz - \left[b \, (x - a) - a \, (y - \beta) \right] \, dy = 0\]

Multiplicando a segunda por \(a\) e a terceira por \(b\), somando-as e suprimindo o factor comum \(a \, (y - \beta) - b \, (x - a)\), obtem-se

\[dz + adx + bdy = 0\]

Multiplicando a segunda por \(x - a\) e a terceira por \(y - \beta\) e somando-as, encontra-se, feita a suppressão do mesmo factor comum,

\[zdz + (x - a) \, dx + (y - \beta) \, dy = 0\]

Representando por \(p\) e \(q\) dois parâmetros arbitrários e integrando as duas equações precedentes, obtem-se

\[z + ax + by = p\]

\[z^2 + (x - a)^2 + (y - \beta)^2 = q,\]

donde resultará para equação collectiva finita das superfícies de revolução:

\[\psi \left[ax + by + z, \ (x - a)^2 + (y - \beta)^2 + z^2 \right] = 0\]
Tratando-se, finalmente, da família das superfícies conoides e adoptando para plano dos *xy* o plano director, a equação collectiva e indirecta é, como já sabemos,

$$\frac{dz}{dx} (x - az - \alpha) + \frac{dz}{dy} (y - bz - \beta) = 0$$

Para se obter a integral geral desta equação, bastará fazer

$$dz = 0, (x - az - \alpha) dy - (y - bz - \beta) dx = 0;$$

onde, designando por *p* e *q* duas constantes arbitrarias e integrando,

$$\psi \left(z, \frac{y - bz - \beta}{x - az - \alpha} \right) = 0$$

que é o typo algebrico finito da família das superfícies conoides.

O exame das quatro famílias geometricas mais simples e usuaes é suficiente para mostrar como se effectua, no limitadissimo numero de casos em que é possivel, a passagem dos typos infinitesimaes das familias de superfícies para as equações finitas correspondentes.

Posto que uteis, sob o ponto de vista logico, as acquisições deste ramo extre mo da geometria integral são scientificamente illusorias.

Num interessante trabalho, publicado em 1787 na *Histoire de l'Académie Royale des Sciences de Paris* e intitulado "Memoire sur l'intégration de quelques équations aux différences partielles", Legendre, seguindo as vistas indicadas por Lagrange, considera as equações às derivadas parciaes de primeira ordem e indica os casos em que a integração pôde ser efectuada. Apesar dos trabalhos desse geometra e dos de Laplace, Ampère, Cauchy, Darboux, Jacobi, Mayer, Lie, etc., o estudo relativo à integração das equações às derivadas parciaes é extremamente imperfeito.

Em relação a passagem das equações diferenciaes, proprias a grupos mais vastos do que as familias propriamente ditas, para as
equações collectivas finitas, as dificuldades são immensas: a equação diferencial de segunda ordem das superfícies desenvolvíveis, instituída por Euler, tem resistido a todos os esforços feitos pelos geométras para integral-a.

Confirma-se assim a superioridade philosophica do calculo diferencial sobre o calculo integral, relativamente a geometria objectiva.

Chegamos emfim ao termo do trabalho científico que empreendemos. A concepção de Monge foi examinada, nos limites das nossas forças, primeiramente sob o aspecto elementar e em seguida sob o aspecto transcendente; e d’esse exame resultou para o nosso espírito a convicção inabalável de que, completada a geometria subjectiva—esse attestado eterno da grandeza immensa dos genios de Descartes e Leibniz— pela geometria objectiva—essa admirable instituição de Monge—, ao seu conjuncto deve ser aplicado, a inspirada phrase de Laplace na Exposition du systeme du Monde:

«Ce rapprochement de la Geometrie et de l’Analyse, repand un nouveau jour sur ces deux sciences : les operations intellectuelles de celle-ci, rendues sensibles par les images de la première, sont plus faciles à saisir, plus interessantes à suivre ; et quand l’observation réalise ces images et transforme les résultats géométriques en lois de la nature ; quand ces lois, en embrassant l’univers, dévoilent á nos yeux, ses états passés et à venir; la vue de ce sublime spectacle nous fait éprouver le plus noble des plaisirs reservés á la nature humaine».
PROPOSIÇÕES
Applicação geral do estudo das curvas planas à construção das equações determinadas

I

A resolução graphica das equações constitui um dos mais bellos atestados do aperfeiçoamento impresso ao domínio abstrato pela aliança entre as apreciações algebricas e as inspirações geometricas.

II

A notável equação transcendent (4 — 3 x^2) sen x — 4 cos $x = 0$, que se encontra na theoria das vibrações de uma esphera elastica, pôde ser resolvida graphicamente, sendo as suas raizes reaes, em numero infinito, representadas pelas abscisas dos pontos de intersecção da curva correspondente á equação $y = tangx$ com uma curva hyperbólica do terceiro grao. De modo analógo às raizes reaes, tambem em numero infinito, da equação $x = tangx = 0$, que se encontra na theoria do calor e no estudo das vibrações dos corpos elásticos, podem ser determinadas graphicamente, pela construção das abscissas dos pontos de intersecção da primeira das curvas precedentes com a bissectriz de dois dos angulos formados pelos eixos coordenados.

III

As equações do terceiro e do quarto grao, para cuja resolução algebrica existem, entre outros, os métodos de Hudde, Ferrari, Descartes,habitualmente expostos no ensino da algebra ordinaria,e os de Tschirnhausen, Euler e Besou, que recordam as celebres tentativas feitas para estender aquella resolução além dos quatro primeiros gráos, — comportam tambem a resolução graphica emanada da geometria geral.
Theoria do movimento curvilíneo

I

Fundada por Galileu nos seus «Dialogos», que apareceram em Leyde, no ano de 1638, a teoria do movimento curvilíneo só ficou definitivamente constituída depois do advento do cálculo infinitesimal.

II

A teoria do movimento curvilíneo, parecendo à primeira vista ser constituída por concepções puramente ideais, adquire um cunho de realidade incontestável no estudo do movimento dos sistemas invariáveis ou variáveis.

III

A teoria do movimento curvilíneo pode ser instituída diretamente ou pode ser tirada da equação geral da dinâmica. No primeiro caso, duas marchas distintas e opostas podem ser adoptadas, conforme se parte do movimento livre ou do movimento forçado. Qualquer que seja a marcha seguida, o que ordinariamente se consegue é a transformação do problema dinâmico numa questão algébrica insolúvel; só em casos extremamente raras se obtêm soluções especiais.
SEGUNDA CADEIRA DO TERCEIRO ANNO

Entropia

I

Sempre que na evolução de um corpo, cujo estado é definido por meio de duas variáveis, o ponto figurativo descreve um ciclo fechado, a variação da entropia desse corpo é necessariamente nula.

II

A função característica de Massieu permite referir a pressão, a energia interna e a entropia de um sistema ao volume e à temperatura absoluta.

III

No caso em que o sistema é formado por um líquido e pelo respectivo vapor, a expressão algébrica da entropia encerra uma função arbitrária. Admitindo-se que o calor específico do líquido, sob pressão constante, não depende da temperatura, o que constitui hipótese bastante aproximada da realidade, e procedendo-se à determinação da função arbitrária, reconhece-se que essa função equivale a um produto de três factores, dos quais o primeiro é o calor específico sob pressão constante, o segundo é a temperatura absoluta, e, emfim, o terceiro é a diferença entre o logaritmo neperiano desta temperatura e a unidade.