





































































































































































































































































































CHAPTER VII.

FORCES IN THREE DIMENSIONS.

257. To find the resultants of any number of forces acting on «
body in three dimensions. Poinsot's method.

Let the forces be Py, P,, &c., and let them act at the points
4,, 4,, &c. Let O be any point arbitrarily chosen. It is proposed
to reduce these forces to a single force
acting at O and a couple.

Let the point O be taken as the origin
of a system of rectangular coordinates.
Let P be any one of the forces, let
z=0M, y=MN,z=NA be the coordi-
nates of its point of application 4.

We begin by resolving P into its three axial components P,
P,, P,; we shall then transfer each of these (as in Art. 104) to act at
the point O by introducing into the system the appropriate couple.
At M apply two opposite forces each equal and parallel to P, and
at O apply two other opposite forces each also equal and parallel to
P,. Then since P, may be supposed to act at XN, the force P, is
equivalent to a force P, acting at O, and two couples whose
moments are yP, and —«P,, and whose planes are respectively
parallel to yz and zz. The signs + and — are given according as
they tend to rotate the body in the positive or negative directions
of the coordinate planes in which they act. In the same way, by
drawing a perpendicular from A on the plane yz, we can prove
that the component P, may be replaced by an equal force acting
at the point O together with two couples 2P, and — y P, acting in
the planes wz, zy respectively. Lastly, the component P, may be
replaced by an equal force at O, and the two couples #P, and
— zP, acting in the planes zy, yz. Summing up, we see that the
force P may be replaced by the three axial components Py, Py, P,
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acting at O, and three couples whose moments are yP,—zP,,
2P, —aP,, P, — yP,, and whose planes are yz, 2z, xy respectively.

Repeating this for all the given forces, we see that they may
be replaced by three forces X, ¥, Z acting along the axes of
coordinates, and three couples whose moments are L, M, N, and
whose axes are the axes of coordinates, where

XnSE, L=5 (yP,-zP,),
Y=3P,, M=3, (P, —zP,),
Zo5p N=S (zP,—yP,).

These are called the stz components of the forces.

The three components X, ¥, Z may be compounded into a
single force. Let R be its magnitude, and (I, m, n) the direction
cosines of its positive direction, then

Rl=X, Rm=Y, Rn=2,
. BR=X+Y+2
This force is called by Moigno the principal force at the point O.

The three components L, M, N in the same way may be
compounded into a single couple whose moment G and the
direction cosines (A, u, ») of whose axis are given by

Gr=L, Gu=M, Gv=N,
G? =1+ M*+ N
The couple ( is called the principal couple at the point 0. The
components L, M, N of the principal couple are also called the
moments of the forces about the axes.

258. The base of reference O to which the forces have been
transferred, has been taken as the origin of coordinates. But when
it is necessary to distinguish between these points we must modify
the expressions for the components. Let some point 0" whose
coordinates are & 7,  be the base of reference. The expressions
for the six components for this new base may be deduced from
those for the origin by writing 2 — &, y—u, z2— ¢ for =, ¥, 2.

The expressions for the components of the force R do not confain
, 3, 2, hence the principal force R 1s the same in magnitude and
direction whatever base is chosen.

The expressions for the components of the couple G become
L'=3{(y—n) P,—(z - Pj=L—9Z +tY,
M=3{(z—-8 P,—(2—E) Pl=M—-tX+EZ
N'=3{(z—& Py—(@y—n) P =N - EV +7X.
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Thus the magnitude and the axis of the principal couple G are in
general different at different bases.

259. Conditions of equilibrium. It has been proved in
Art. 105 that the forces on a body can be reduced to a single force
R and a single couple G. By the same reasoning as in Art. 109 it
is necessary and sufficient for -equilibrium that these should
separately vanish. We therefore have R=0 and G =0.

If the axes of reference are at right angles, these lead at once
to the six conditions

X=0, Y=0, Z=0, L=0, M=0, N=0;
we may, however, put these results into a more convenient form.

In order to make the resultant force R zero, 1t is necessary and
sufficient that the sum of the resolutes of all the forces along each of
any three straight lines (not all parallel to the sume plane) should
be zero. To prove this, let 04, OB, OC be parallel to the three
straight lines. If the resolute of R along 04 is zero, it is evident
that either R is zero, or the direction of R is perpendicular to O4.
If R is not zero, its direction is perpendicular to each of three
straight lines meeting in O, not all in one plane, which is impossible.

In the same way, since couples are resolved according to the
same laws as forces, we infer that to make the principal couple G
zero, it is necessary and sufficient that the component couple of
all the forces about each of any three straight lines intersecting in
the base O but not all in one plane, should be zero. It will be
presently seen that the moment of the component couple for
any axis through O is also the moment of the forces about that
axis, Art. 263.

Since a couple may be moved into a parallel plane without
altering its effect, it is clear that, when the force R 1s zero, the
moments about all parallel straight lines are equal. It is therefore
sufficient for equilibrium that the moment of the forces about each of
any three straight lines (whether intersecting or not) should be zero,
but all three must not be parallel to the same plane, and no two must
be parallel to each other. The method of finding these moments
will be more fully explained a little further on.

260. Components of a force. Usually we suppose a force
to be given when we know its magnitude and the equations of its
line of action. We see from the results of the proposition in Art.
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257 that it will sometimes be more convenient to determine a force
P by the values of its six components, viz. Py, P,, P,, and
yP,— 2Py, 2Py — aP,, «P,—yP,. The advantage of this repre-
sentation s that the 9°emltmg effect of any nuwmber of forces is
Jound by adding their several corresponding components.

If we wish to represent the line of action of the force apart
from the force itself, we may regard the straight line as the seat
of some force of given magnitude, and suppose the line itself
determined by the six components of this chosen force, Let
(I, m, n) be the direction cosines of the straight line, (z, ¥, z) the
coordinates of any point on it. Then, if the force chosen is a unit,
the six components or coordinates* of the line are

Lm, n, N =yn —zm, p =2zl —an, v=azm—yl,
with the obvious relation
INEmp =0 iiiiiiiinninn,, sl

If a force P act along this straight line, its six components or
coordinates are Pi, Pm, Pn; P\, Pu, Py.

If we compound several forces together, the six components become
X=2Pl, Y=3Pm, Z=32Pn; L=3P\ M=3Pu, N=ZPy,
but the relation

] _ XEATMLZN =0 iciiiinnnnsnnnvnnes (2)
is not necessarily true. '

261. We have seen in Art. 257 that all these forces may be
Joined together so as to make a single force R and a couple G.
This combination of a force and a couple has been called by
Pliicker a dyname. The six quantities X, ¥, Z, L, M, N are the
components of the dyname. The three former components are
multiples of some unit force, the three latter of some unit couple.

It will be shown further on that when the coordinates of the
dyname satisfy the condition (2), either the force R or the couple
@ of the dyname is zero.

262, Ex.1. The six components of a force are 1, 2, 7; 4, 5, —2. Show that
the magnitude of the foree is /54, and that the equations to its line of action are
(Ty - 2)/4=(e~ Ta)[5= (22 - y)|( - 2) =1.
Ex. 2. The six components of a dyname are 1,2, 8; 4, 5, 6. Show that the
magnitude of the foree is /14, and that its direction cosines are proportional io

1,2,8. TIf this foree act at the origin the magnitude of the couple is /77, and the
direction cosines of its axis are proportional to 4, 5, 6.

* The six coordinates of a line are deseribed in Salmon’s Solid Geometry (fourth
edition, Art.51) from an analytical point of view. See also Cayley, Quart. Journal,
1860; Camb. T'rans. 1867 ; Pliicker, Phil. Trans. 1865 and 1866.
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263. Moment of a force. It has already been stated that
the expressions for L, M, N in Art. 257 are usually called the
moments of the forces about the axes of x, 3, z respectively. These
expressions are :
L=3(yP, - 2Py), M=3 (2P, —2P,), N =3 (aP,~yP,).

To show how far this definition agrees with that already given
in Art. 113, let us examine how the expression for IV has been
obtained. The force P has been resolved into its components
P,, P,, P,; the two former act in a plane perpendicular to the
axis of z, hence by the definition given in Art. 113, the expressions
yP, and — zP, are respectively equal to their moments about that
axis. The latter P, acts parallel to the axis of 2z, and if the
moment of this component is defined to be zero, the expression N
will become the moment of the forces about the axis of 2. Let @
be the resultant of the two components P,, P,, then the moment
of @ about the axis of z is equal to the sum of the moments of P,
and P,, Art. 116.

Since any straight line may be taken as the axis of z, this
explanation applies to all straight lines. It appears therefore
that the moment of the component couple for any axis is the
same as the moment of all the forces about that axis.

We thus arrive at the following definition of the moment of a
force about any straight line. Let the straight line be called CD.
Resolve the force P into two components, one parallel and the other
perpendicular to the strarght line CD. The moment of the former
is defined to be zero. The moment of the latter is obtained by
maultiplying its magnitude by the shortest distance between it and the
gven straight line CD.,

It is evident that this shortest distance is equal to the shortest
distance between the original force P and the straight line CD,
each being equal to the distance between CD and the plane of
the components. Let » be the length of this shortest distance.
Let 6 be the angle between the positive directions of the force
P and the line CD, then the resolved part of the force P
perpendicular to CD is Psin 6. We therefore find that the
moment of the force P about CD s equal to Prsin 6.

When the moments of several forces round the same straight
line D are to be added together, we must take care that these
have their proper signs. Any direction of rotation round CD
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having been chosen as the positive direction, the moment of any
force is to be taken as positive when the force acts round CD in
the positive direction,

264. It follows from Art. 263 that, if two equal forces act
along the positive directions of two straight lines 4B, CD, the
moment of the former about CD is equal to the moment of the
latter about AB.

The product 7 sin & is sometimes called the moment of either of
the straight lines AB, CD about the other. Let ¢ be the moment of
one straight line about the other, and let either line be occupied
by a force P. Then the moment of P about the other line is Px.

265. In some cases it may be necessary to take account of the signs of r and 6.
Supposing the positive direction of the common perpendicular to 4B and GD to
have been already determined, the shortest distance r must be measured in that
direction. The angle # must then be measured in any plane perpendicular to r
from the projection of one line to the projection of the other in such a direction
that when r and sin 6 are positive, a positive force acting along either line will tend
to produce rotation round the other in the positive direction. See Art, 97.

266. Geometrical representation of i. The volume of a tetrahedron is known*
to be equal to one-sixth of the continued product of the lengths of two opposite
edges, the shortest distance between the edges and the sine of the angle between
them., Let AB, OD be any lengths conveniently situated on the two straight lines.

, where Vis the volume of

m Eer g 6V
The mutual moment of the two lines is equal to 450D

the tetrahedron whose opposite edges are 4B, CD,

Analytical representation of i. Let (fgh), (f'g'R') be the coordinates of 4, C,
and (lmn), (I'm'n’) the direction cosines of the positive | f-f, g-g, h—FI
directions of AB, CD. The mutual moment of AB, CD, is L m, !
the determinant in the margin. The order of the terms in U, w, |
the determinant is as follows; if f, g, & precede f*, ¢', &' in the first row, then
1, m, n precedes I', m’, n' in the order of the rows.

To prove this we take C as origin, and let z=f-f", y=g-g’, 2=h-1'. The

required moment is then Al'+ pm'+vn/, where \, u, » have the meanings given in
Art. 260,

* To find the volume of a tetrahedron. Pass a plane through CD and the
shortest distance EF between CD and the opposite edge. Then since the tetrahe-
dron ABCD is the sum or difference of the tetrahedrons
yvhose vertices are 4 and B and eommon base is DEC, D
its volume is one third the area DEC multiplied by
AB.sin §, where 6 is the angle 4B makes with the b
plane DEC,

It a straight line 4B cut a plane in E and be at right
angles to a straight line EF in that plane, its inclina- 4 ¢
tion to the plane is the angle it makes with a straight
line drawn in the plane perpendicular to EF. Eue. x1, 11. E
But 0D lies in the plane and is perpendicular to EF, Jit
hence 6 is equal to the angle between the opposite edges
4B, CD. The volume is therefore equal to 3 AB.CD.EF . sin 4.
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267. BEx. 1. Two straight lines are given by their six coordinates (lmnhuv),
(U'm'n'\'p/»') ¢ show that their mutual moment is é=IN+mp'+m' + UA+mp+n'y.
This quantity is therefore invariable for the same two lines, to whatever rect-
angular axes their coordinates are referred. If i=0, the lines intersect.

Other theorems on the moments of lines are given in Scott’s Determinants.

Ex. 2. If (wyzu), (2'y'z'w') are the tetrahedral coordinates of any two points I, .

I on the line of action of a force P, show that the moment of the force about the

61 2y 8

HK .AB |u,

If the forece, when positive, acts from H towards K and the terms in the
determinant are taken in the order shown, this expression gives the moment of
the force round 4B in the direction from the corner C to the corner D.

Tx. 8. If in a tetrahedron the mutual moments of the opposite edges are equal,
prove that the product of their lengths are also equal. If (r, s, t) are the lengths of
the lines joining the middle points of opposite edges and (z, B, ~) are the angles at
which they intersect, prove also that

14— 2922 cos? y + si =5 — 2% cosPa + =14 - 2% % cos? B+l [St John's, 1891.]

Ex. 4. Two triangles ABC and 4'B'C” are seen in perspective by an eye placed
at O forces P, Q, R act in BC, C4 and 4B, another set P/, @, R’ in ¢'B', A'C’
and B'4’ respectively, and the whole system is in equilibrium. Show that

A.P.0A" AN.P'.04A A.Q.0B' AN.Q.0B_A.R.OC'_A'.R.OC

BC.4A4' _ BC .44’ CA.BE ~C4'.BB_ AB.GC' 4B .CC’

where A and A’ are the volumes of the tetrahedra O4BC and 04'B’C’ respectively.
[Math, Tripos, 1883.]

The six lines 04, OB, 0C, AB, BC, C4 form a tetrahedron. If we equate to
gero the sum of the moments of the six forces about the edge 04, we find that the
first and second of the above given expressions are equal. In the same way taking
moments about the edge 4B, we find that the second and fourth are equal. If
follows by symmetry that all the six expressions are equal. The moments may be
found by using the rule given in Art. 266.

edge AB of the tetrahedron, is P.

’

268. Problems on Equilibrium, Ex. 1. 4 body, free to turn about a straight
line as a fized axis, is acted on by any forces. It is requived to Jind the condition of
equilibrium and the pressure on the axis.

Let the straight line be the axis of z, and let «, y be two perpendicular axes.

The pressures on the elements of length of the axis constitute a system of forces.
i the body is free to slide smoothly along the axis, each of
these pressures will act perpendicularly to the axis. But
as this limitation does not simplify the result, we shall
guppose the direction of the pressure to be perfectly
general, Taking any arbitrary point B on the axis as a F,
base of reference, each pressure may be transierred to act
at B, by introducing a couple whose plane passes through
the axis. All the pressures are therefore equivalent to a I
resultant pressure which acts at B together with a resultant 0
couple whose plane passes through the axis. Let one of the 5
forces of this couple act at B and let the arm be so altered . ]
(if necessary) that the other force acts at some other arbitrary point C of ihe axis.
Then compounding the forces which act at B, we see that the pressures on all the

N
> G

5
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T

R
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elements of length of the axis are equivalent to two pressures which may be made
to act at any two arbitrary points B, C of the awis. We may suppose the body
attached to its avis at these two points by smooth hinges.

Let F,, Fy, F,and G,, Gy, G, be the resolutes of the pressures at B and C re-
spectively. Let b, ¢ be the ordinates of these points, Let X, Y, Z, L, 3, N be the
six components of the given forees. Then resolving parallel to the axes and taking
moments as in Art. 257,

Fx+Gx+X:OW —Fb—Gye+L=0
Fy+G3,+1’=D[. Fb+Ge+ M=0}-
P+ G+ Z=0) N=0)

The last equation determines the condition of equilibrvium, and shows that the
body will turn about the axis unless the moment of the given forces about it is zero.

‘We have therefore five equations to determine the six component pressures on
the axis. The pressures F,, F,, G,, G, are obviously determinate, but only the sum
of the components F_, G, can be found.

The solution of these equations will be simplified by a proper choice of the
arbitrary points B and €. The position of the origin is generally determined by
the circumstances of the problem. If we place B at the origin we have b=0, and
the values of G, G, become evident by inspection.

Suppose for example the body to be a heavy door constrained to turn round an
axig inclined at an angle a to the vertical. In this case, since the moment of
the forces about the axis must be zero, the centre of gravity of the door must lie in
the vertical plane through the axis. Let us take this plane as the plane of az, the
axis of the door being as hefore the axis of 2. Let T, 0,  be the coordinates of the
centre of gravity, and let 17 be the weight of the door. To simplify the moments -
we resolve 17" parallel to the axes; we therefore replace I/ by the two components
Wsin a and — W cos o acting at the centre of gravity parallel to the axes of x and 2.
We shall choose the arbitrary point B to be at the origin, while the other C is at
a distance ¢ from it. Resolving and taking moments as before, we have

F:+G¢+I-Vsina=01 —Ge=0
Fy+Gy =0r, G+ WEsina+ Wz cosa=0
F,+G,— T cos a=0J

a

It follows from these equations that ¥, and G, are both zero, so that the resultant
pressures act in the vertical plane through the axis. The values of F,, G, and
F,+ @, may be easily found,

Ex. 2. Three equal spheres, whose centres are 4, B, C, are placed on a smooth
horizontal plane and fastened together by a string which surrounds them in the plane

4 .V
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of their centres, and is just not tight. A fourth equal sphere, whose centre is D, is
placed on the top of these touching all three. Prove that the tension of the string is
T=W/[3./6.

Let R be the reaction of any one of the lower spheres on the upper, DN a
perpendicular from D on the plane ABC, then 31 cos ADN=. Consider next tl'le
sphere whose centre is 4; the other two of the lower spheres exert no pressure on it.
The resolved part of R in the direction N4 balances the two tensions of the parts
of the string parallel to 4B and AC. Hence R cos DAN=2T cos BAN. The angle

BAC=60° and
in ADN<AN _ g AV _, 2rsin 60
AN =l T ¢
‘We now easily find 7' in terms of W.

~— Ex. 3. Four equal spheres rest in contact at the bottom of a smooth spherical
bowl, their centres being in a horizontal plane. Show that, if another equal sphere
be placed upon them, the lower spheres will separate if the radius of the bowl be

greater than (2,/13 +1) times the radius of a sphere. [Math. Tripos, 1883.]

Ex. 4. Six thin uniform rods, of equal length and equal weight W, are
connected by gmooth hinge joints at their extremities so as to constitute the six
edges of a regular tetrahedron; one face of the tetrahedron rests on a smooth
horizontal plane. Show that the longitudinal strain of each of the rods of the
lowest face is W/[2,/6. [Coll. Ex.]

Ex. 5. A heavy uniform ellipsoid is placed on three smooth pegs in the same
horizontal plane, so that the pegs are at the extremities of a system of conjugate
diameters. Prove that there will be equilibrium, and that the pressures on the pegs
are one to another as the areas of the conjugate central sections. [Coll. Ex.]

Ex. 6. Four equal heavy rods are jointed to form a square. One side is held
horizontal and the opposite one is acted on by a given couple whose axis is vertical.
Show that in a position of equilibrium the lower rod makes an angle 2 sin™! G[/W1
with the upper, G being the couple, and ¥ and [ the weight and length of a rod.
Find the action at either of the lower hinges. [Coll. Ex., 1880.]

Ex. 7. An equilateral triangular lamina, weight W, hangs in a horizont.f:.l
position with its angles suspended from three points by vertical strings each equal in
length to the diameter 2a of the circle circumseribing the tri&n.gle.' .Il’rove t%la'\t ﬂ?e
couple required to keep the lamina at a height 2 (1-n) a above its initial position is
Wan/(1-7%. [Coll. Ex., 1886.]

Ex. 8. A weightless rod, of length 2, rests in a given horizontal position with
its ends on the curved surfaces of two horizontal smooth circular eylinders, each of
radius @, which have their axes parallel and at a distance 2¢c. The rod is acted o‘n
at its centre by a given force P and a couple. Find the couple when there is
equilibrium, and prove that the magnitude of the couple will be least when P acts
vertically, provided that c<Ising+3a A2 sec ¢, where ¢ is the angle l?etween the
rod and the axss of the eylinders. [Math. Tripos, 1889.]

Bx. 9. A solid circular eylinder, of height k and radius a, iz enclosed in a rigid
hollow eylinder which it just fits, and is formed of an infinite number of parallel
equally elastic threads, which will together support a weight " when stretohed'to
a length 2k, The ends of these strings are fastened firmly to two discs, one of which
is then turned through an angle « in its own plane : assuming each thread to form
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a helix, prove that there is a force exerted in the direction of the axis of the eylinder

QW fat R g 2 o
equ.al to = (3 =5 J W2+ ala® sz) ; [Math. Tripos, 1871.]
Ex. 10. Three equal heavy spheres, of weight 17" and radius a, are suspended
from a fixed point by three equal strings each of length 1. A very light smooth
spherical shell of radius b is placed symmetrically on the top of them, and water is
poured very gently into it. Show that the greater the amount of water poured in
the closer must the three lower spheres be to one another in order that equilibrium
may be possible, and that equilibrium will be impossible if the weight of the water
poured in exceed n}¥, where n is the positive root of the equation
02 (1= 0) (1420 + D) + (2n+3) (a® - 6ab — 302) =0,
it being assumed that b is so small as to admit of the strings being straight.
[Math. Tripos, 1890.]

269. Ex. 1. 4 heavy rod OAB can turn freely about a fized point O, and rests
over the top CAD of a rough wall. If OC be a perpendicular from O on the top of the
wall, prove that the angle 8 which the rod makes with OC when the equilibrium is
limiting is given by p=tanBsin 6, where B is the angle OC makes with the per-
pendicular OF drawn from O to the vertical face of the wall.

To assist the description of the figure, let 0B be called the axis of =. Let z be
normal to the plane A0C, and let y be perpen-
dicular to x and z The weight W of the rod
acting at G is equivalent to TF cos 8 parallel to
z, and W sin 8 acting parallel to C0O. This latter
is equivalent to TV sin 8 cos # and TV sin g8 sin 6
parallel to @ and y respectively.

The reaction R at 4 is perpendicular to both 04
and €D, and is therefore parallel to z. The point
4 of the rod can only move perpendicularly to OA.
The friction therefore acts, not along the top of the wall, but opposite to the
direction of motion, i.e. parallel to y.

Taking moments about y and z respectively, we have
WeosB.0G=R.04, TWsingsind.O0G=uR.04d.
These give u=tan g8 sin 6.

~ Ex. 2. Three equal heavy spheres, each of weight 77, are placed on a rough
ground just not touching each other, A fourth sphere of weight nI¥ is placed on
the top touching all three. Show that there is equilibrinm if the coefficient of
friction between two spheres is greater than tan la, and that between a sphere
and the ground is greater than tan Ja.n/(n+3), where a is the inclination to the
vertical of the straight line joining the centres of the upper and one lower sphere.

Ex. 8. A pole of uniform section and density rests with one end 4 on the ground
(which is sufficiently rough to prevent any motion of that end) and with the other
against a rough vertical wall whose coefficient of friction is . If AB be the limiting
Pbosition of the pole for any position of A, AN the perpendicular from 4 on the wall,
a the angle BAN, and ¢ the inclination of BN to the vertical, prove that tana tan ¢
is constant, and find the whole frietion exerted at B. Find also the equation
to the locus of B on the wall, N being fixed, and prove that the deviation of B from

the vertical through N is greatest when a=6=tan"? /u. [Coll. Ex., 1886.]
R 8. I 13
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Tx. 4. A narrow uniform rod of length 2a rests in an oblique position with one
end on a rough horizontal table and the other against a rough vertical wall, the
coefficients of friction at the table and wall being p, and u,, and the distance of the
foot of the rod from the wall being J; ghow that the rod is on the point of slipping
at the lower end if the vertical plane in which it lies makes an angle 6 with the wall
given by kp, (pg?sin® 0 — cos® 8f‘1= k—2pu, (4a®sin® 0 — kﬂ}’}, and that the inclination
of the tangential action at the upper end to the horizon is then sec™ (u, tan 6).

[Math. Tripos, 1887.]

Ex. 5. A curtain is supported by an anchor ring capable of sliding on a
horizontal cylinder by means of a hook fixed at that point of the ring which is lowest
when the curtain is hanging. Show (1) that the ring may touch the cylinder at one
or two points but not more, (2) that if there be double contact and the weight of
the ring can be neglected the ring will not slip along the cylinder however it be

e ph e (2a + b) cos @
pulled unless the coefficient of friction be less than (2a+0)sin 6 b’
vadius of the generating circle, « that of the cirele described by its centre and 6 the
inclination of the plane of this latter eircle to the axis of the eylinder.  [Math. T.]

in which & is the

Tor the sake of the perspective take the axis of the anchor ring as axis of z, and
let the plane of the cirele whose radius is @ be the plane of ay. Let the axis of «
pass through the hook. Let B, B’ be the two points of contact of the eylinder and
ring, B' being nearest the hook. Let (B, pR) (R', wI') be the reactions at these
points, then these four forces lie in the plane xz. Taking moments about an axis
through the hook and solving, we find -

2 (20 + 1) cos & — pb cos §
#= Gt by sin 0 — b+ pb (L+5in 0)
where p is the ratio of R to . As long as there is double contact R and I’ are
both positive. But if p is greater than the value given in the question, this equation
chows that p must be negative.

Ex. 6. A solid heavy cone, placed with a generating line in contact with a
rough vertical wall, can turn freely about its verfex which is fixed, and is acted on
by a couple whose moment is L and whose plane is parallel to the base. Prove
that in equilibrium the inclination @ to the vertical of the generating line in contact
with the wall is given by L=2Whsin 6 tan a, where a is the semi-vertical angle of
the cone and % its altitude. If the rim only of the cone is rough, prove that the
least value of the coefficient of friction is 2 tan 8. cosec 2a.

The central axvs and the tnvariants.

970. Poinsot’s Central Axis. Any base O having been
chosen, the forces of a system have been reduced to a force R
acting at O and a couple G. We shall now examine whether
this representation of the forces can be further simplified by a
proper choice of the base. .

Let @ be the angle between the direction of the force R
and the axis of the couple G. We may resolve G info two
couples, one @ cos @ whose plane is perpendicular to R, and
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the other ( sin @ whose plane contains that force. This latter
couple together with the force R may be replaced by a single
force in its plane equal and parallel to R, but situated at a
distance G sin §/R from O.

We have therefore reduced the system to a force R (acting in a
direction parallel to the principal force at any base) together with
a couple whose plane is perpendicular to the force. The line of
action of this force R is called Poinsot’s central axis.

To construct geometrically the central axis when the couple
and the force R at any base of reference O are given, we notice
that (1) the central axis is parallel to R, (2) it is ab a distance
G sin /R from R, (3) the perpendicular from O on the central axis
is at right angles both to R and the axis of @, (4) the perpendicular
from O must be so drawn that its foot is moved by the couple
G sin @ in. the same direction as that in which R acts.

271. Screws and wrenches. A body is said to be screwed
along a straight line when it is rotated round this straight line as
an axis through any small angle df, and at the same time trans-
lated parallel to the axis through a small distance ds. The ratio
ds/d0 is called the pitch of the screw. If the pitch is uniform, it
may also be defined as the space described along the axis when
the angle of rotation is a radian, i.e. a unit of circular measure.
The pitch of a screw is therefore a length. For the sake of brevity
the axis of the screw is often called the screw.

The term wrench has been applied by Sir R. Ball to denote a
force and a couple whose axis coincides with or is parallel to the
force. The phrase wrench on @ screw denotes a force directed
along the axis of the screw and a couple in a plane perpendicular
to the screw, the moment of the couple being equal to the product
f’f the force and the pitch of the screw. The force is called the
ntensity of the wrench. When the pitch of the screw is zero the
wrench is simply a force. When the pitch is infinite the wrench
reduces to a couple. The phrase wrench on a screw is sometimes
abbreviated into the single word, wrench.

A wrench is a dyname in which the direction of the force
18 perpendicular to the plane of the couple.

1.‘0 determine a screw five quantities are necessary. Four are
I‘equl%‘ed to determine the position of the axis, for example the
coordinates of the points in which it cuts two of the coordinate

13—2
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planes. One more is necessary to determine the pitch. To
determine a wrench on a screw a sixth quantity is required, viz.
the magnitude of the force.

272. Screws are distinguished as right or left-handed according
to the direction in which the body is rotated for the same translation.
Let an observer stand with his back along the axis, so that the
translation is called positive when it is in the direction from the
feet to the head. The screw is then called right or left-handed
according as the rotation appears to be opposite to or the same
as that of the hands of a watch; see Art. 97, .

As an example, the common corkscrew is a right-handed
screw. As another example, let the reader push his two hands
forward horizontally, turning at the same time his right thumb to
the right and his left thumb to the left. The motion of the right
hand will illustrate a right-handed screw, that of the left a left-
handed screw.

In this chapter the figures are drawn in agreement with the system of coordinates
usually adopted in solid geometry. The left-handed screw will therefore represent
the conventions adopted to distinguish the positive and negative directions of
rotation and franslation. By interchanging the positions of the axes of # and y the
figures may be adapted to the ofher system,

273. 'The equivalent wrench. A system of forces vs given
by s siz components X, Y, Z, L, M, N referred to any rectangular
axes with the origin O as the base of reference. It is required to
find analytical expressions for the equivalent wrench.

It is obvious that the axis of the equivalent wrench is Poinsot’s
central axis, and that it is parallel to the principal force R at any
base of reference. Hence

(1) the direction cosines of the central axis are

; I=X/R, m=Y/R, n=Z/R,

(2) the force or intensity of the wrench is R.

(3) Let I' be the required couple of the wrench. Then
by Poinsot’s theorem all the forces are statically equivalent to
R and T', so that the moment of all the forces of the system about
any straight line is equal to that of R and I' about the same line.
If this straight line be parallel to the central axis, the moment of
R is zero and that of the couple is T. It follows that the moment
of the forces of a system about all straight lines parallel to the
central azis are equal to the moment about the central aais.
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The principal force R at the origin is parallel to the central
axis, hence, if @ be the angle the axis of (¢ makes with R,
['= Gcos 8= LI+ Min + Nn.
S TR=LX + MY+ NZ
The pitch of the screw on which the wrench acts is therefore
' LX+MY+NZ
2SR
(4) Let (£98) be the coordinates of any point on the central
axis. When this point is chosen as the base, the components
L', M’, N' of the couples are given in Art. 258 and these com-
ponents are proportional to the direction cosines of the axis of
the principal couple. We have therefore by (1)
L—nZ+ ¥ M-{X+E8 N-_F¥+aX

X i 4 Z '
These arve therefore the equations to the central axis.

It we multiply the numerator and denominator of each fraction
by X, ¥, Z respectively and add them together, we see that each
Jraction is equal to the expression found above for the pitch p.

274 If X, Y, Z are each equal to zero the principle on which
these equations have been obtained becomes nugatory. But in
this case the given system is equivalent to a resultant couple.
Any straight line parallel to its axis is the central axis.

If the couple I' =0, the given system is equivalent to a single
force R. Since the components L', M’, N’, at any point (&) on
this force are zero, we have

L—9Z+¢Y =0, M-tX+EZ=0, N—-§(V+9X=0.
Any two of these are the equations of the single resultant.

275. We may obtain the equations to the central axis in another way. The
moments of the force B and the couple I' about the axes are L, M, N. Hence the
moments of the forece R alone are L-T1, M =Tm, N-1'n, ie, they are L—Xp,
M—Yp, N-Zp. The six components of the force R are therefore X, Y, Z, L — Xp,
M—Yp, N-Zp. These ave the six coordinates of the central axis.

276. Conversely, the equivalent wrench being given, we may
find the siz components of the forces at any base of reference.

Let Oz be the given axis of the wrench, and let 0’ be any
point at which the components are required. Let 00 be a
perpendicular on Oz and let O’ =». Let O'C be parallel to Oz
and O'B perpendicular to the plane 0’0z



/4 lles 1n the plane 500 and makes an o
ngle @ with O'C, where / '
2= 2r Rare tan @ = Rr/T. ¥ R

277. From these values of R and G we may draw several
bvious conclusions.

(1) We see that G is always numerically greater than T,
o that the principal couple (¢ is least when the base of reference
s on the central axis.

(2) Since 00" may be drawn in any direction from 0z, it
ollows that the locus of the base at which the principal couple @

as a given value is a right circular cylinder whose axis is the
entral axis.

(3) The locus of the axis, viz. 0’4, of the principal couple of
iven magnitude is a system of hyperboloids of revolution.

278. Bxamples. Ex.1l. The equivalent wrench being given, show that the
ase on a given straight line af which the prinecipal couple is least is the point at
vhich the straight line is intersected by the shortest distance between itself and the
entral axis. Find also the base at which the axis of the principal couple makes
he least angle with the given straight line.

Ex. 2. The base being the origin of coordinates, show that the plane containing
he force B and the axis of G is given by the determinantal | & 5 ¢ | =0,
quation in the margin, Show also that the minors of the first | X ¥ %
ow, after division by RZ, are the coordinates of the foot of the | LMN
erpendicular from the origin on the central axis. Thence find the equations to the
entral axis regarding it as a straight line drawn through this point parallel to .

Ex. 3. Twelve equal forces oceupy the edges of a cube, the parallel forees acting
n the same direction: prove that their central axis is a diagonal. If the forces
re replaced by twelve equal couples whose axes occupy the edges, prove that
heir central axis is parallel to a diagonal.

Ex. 4. Six equal forces act along the edges 4B, BC, €4, D4, DB, DC of a
egular tefrahedron: show that their central axis is the perpendicular from the
orner D of the tetrahedron on the face ABC,

Ex. 5. Six forces act along the edges AR, BC, €4, AD, BD, CD of a tetra-
1edron, each force being proportional to the length of the edge along which it acts.
Show that their central axis is parallel to DG and is at a distance £ Acos ¢/DG
rom it, where A is the arvea of the face ABC, @ its centre of gravity, and ¢ the
mgle DG makes with the face.

X [Coll. Ex., 1889.]

Ex. 7. A system of forces intersects the plane of xy and a parallel plane z=h
in the points d,d,..., 4,'4, ... respectively; their magnitudes are a,. 4,4, ay. Ao
and the pitch of the equivalent wrench is p, Prove that the central axis intersects
these planes in the points H, H' whose coordinates (£, 3), (£, #') are given by

foa'=g-x=@-y)ph o -y=n-y=-("-z)p/h

where (wy) are the coordinates of the centre of gravity G of masses a), as,... placed
at A,4,... and ="y those of the centre of gravity G'of the same masses placed at
Ay

Show also that (1) GH is perpendicular to GK' and equal to GK'.p/h where K’
is the projection of G' on the plane of xy, and (2) HH' is parallel to GG

Ex. 8. Prove that the trilinear coordinates afy of the point in which the
central axis of a system of forces cuts the plane of any triangle ABC are given by

Zu=M,-X;p, ZB8=M,-Xop, Zy=M;~Xp,

where M, JM,, M, are the moments of the forces about the sides, X;, X,, .X;, the
vesolutes along the sides of the triangle, Z the resolute perpendicular to its plane,
and p is the pitch.

Regarding AB as the axis of @ and the plane of the triangle as that of xy, the
ordinate n, found by putting =0 in the equation of the central axis, Art. 273, is
the trilinear coordinate ~.

279. Invariants of a system. It follows from the third
result of Art. 273 that, whatever base is chosen and whatever
the directions of the rectangular axes may be, the quantity
I=LX + MY+ NZ is invariable and equal to T'R. The square
of the resultant force, viz. R*= X%+ Y2+ Z? is also invariable.
These two quantities, viz. I and R?, are called the wnvariants.
When the invariants 7 and R? are known, a third invariant, viz.
the pitch p =I/R? can be immediately deduced.

If the forces of the system are such that the first of these
invariants is zero, it follows that either R=0 or I'=0. The
condition that the forces should be equivalent to either a single force
or « single couple is therefore I =0. We may distinguish between
these two cases by examining the second invariant. If the forces
are to be equivalent to o single force we must have as « second con-
diton B not equal to zero.

280. When two systems of forces P, P, &c. and @, Q. &c.
are given we form the two expressions

SPQrsin (P, Q), S PQ cos (P; Q),
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where » is the shortest distance between the forces P, Q, and
(P, Q) is the angle between these forces, the products being
taken with their proper signs. Then each of these expressions
is invariable when we change either system wnto any equivalent
system Of f 07¢es.  This theorem is given by Chasles, Liowville’s Jowrnal, 1847,

To prove this consider both systems as one, then however

the forces may be changed, the invariant 7 of the united systems
remains the same. Hence

2P P s (P P 4 2@ sin (@1, Q) + SPQrsin (P, Q)
1s invariable. But each of the two first terms is Invariable.
Hence the last term is also invariable.

In just the same way by considering the invariant R* we may
show that 2PQ cos (P, Q) is also invariable.

281. To find the invariants of a system of forces. To find the invariants of
two forces Py, P, we refer to the figure of Art, 276, Let the line of action of the
force P, be the axis of 2, let the line of action of P, be 0’4, and let the shortest
distance 00’ between these forees be the axis of 2. The components of the forces
are X=0, Y=P,sin 4, A=P+P,cos 0,

L=0, M=-Pgcozd, N=Pysing.

Since the invariants are independent of all axes, we have

I=LX+ MY+ NZ= PPy sin 9,
B=PP+ P2+2P,P, cos 0.

Sinee I=P\N, it follows that the invariant of two forces is equal to either Jorce

nnltiplied by the moment of the other foree about the first.

Let the positive direction of a straight line be determined by the signs of the
direction cosines of the line, The positive direction of rotation round that line
is then determined by the rule in Art, 272 or Art. 97. The sign of the invariant
of two forees is positive or negative according as the sign of either force and that of
the moment of the other are like or unlike,

The forces P,, P, being represented by two lengths measured along their
respective lines of action, the invariant I is equal to sixv times the volume of the

tetrahedron having these lengths Jor opposite edges.  This tetrahedron is sometimes
called the tetrahedron constructed on two forces. See Art. 266.

To find the invariant I of any muonber of forces P, P, &e. Taking any rect-
angular axes, the six components are given in Ayt 257. It follows that I is a
quadratic function of P, P, &e. of the form

Iz-ﬂf]]P]E +A._-_.Pu2 -+ 24-115P11J2 +&e.
where 4, &e. are all independent of the magnitudes of the forces. When all the
forces except P, P, are put zero this expression should reduce to P, Pyry, sin (P, Ps),
where (P, P,) expresses the angle between the directions of the forces. Hence
A =0, 4,,=0; applying the same reasoning to the other forces, we infer that
I=3P,Pyry,sin (P,, P,).
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It follows that I is half the sum of each force multiplied by the sum of the mome
all the other forees about it, each moment being taken with its proper sign.

It also follows that the invariant of any number of forces is the sum of their
invariants taken two and two with their proper signs.

Any number of systems of forces being given the invariant I of the whole is the
sum of the invariants of each separate system plus the invariants of each two systems,

For in this summation any one force is taken in combination with every other
force in the partial invariant in which they both oeeur.

Nts of

282. The invariant I of a foree R and a couple whose moment is G is RG cos 9,
where # is the angle the direction of the forece makes with the axis of the couple.
For by definition I=RI'=1'G cos 6.

The invariant I of two couples G, G', is zero. To prove this we move the couples
in their own planes until each has a foree aeting parallel to the intersection of the
planes. The four forces being now parallel, the invariant of every two is zero, and
therefore their sum is zero.

The invariant of two wrenches whose forces are P, P',and pitches p, p', is

Pip P2p'+ PP {(p+p')cos 6 +rein g},
This is seen to be true by adding together the six invariants of the forces P, I/,
and the couples Pp, P’y taken two and two, Art. 281.

Ex. If the system is equivalent to the forces X, ¥, Z, acting along oblique
axes and the couples L, M, N, whose axes coincide with the oblique axes, show
that the invariant T is
I=LX+MY+NZ+(VN+ZM)eos (y, z2) + (ZL+XN) cos(z, v) + (X + LY) cos (x, ).

283. Examples. [x. 1. Forces la, mb, ne act in three non-intersecting edges
of a parallelepiped, where a, b, ¢ are the lengths of those edges. Prove that, if the
system be reduced to a wrench, the product of the force and couple of that wrench
is (lm+mn+nl) ¥, where 7 is the volume of the parallelepiped. [St John’s, 1890.]

Ex. 2. A system of n given forees is combined with another force P, which iz
given in magnitude and passes through a fixed point; prove that, if the n+1 forces
have a single resultant, P must liec on a right circular cone, and that, if their least
principal moment be constant, it must lie on a cone of the fourth degree. In the
second case, prove that if the n forees reduce to a couple, the central axis of the
n+1 forces lies on a hyperboloid of revolution. [Math. Tripos, 1871.]

Ex. 8. If a system, consisting of two forces whose lines of action are given
and a couple whose plane is given, admit of a single resultant, prove that the
direction of this resultant lies upon a certain hyperbolie paraboloid. [Math. Tripos.]

Ex. 4. A rigid body is acted upon by three forces 2P tan 4, — Ptan B, 2P tan C
along three edges of a cube which do not meet, symmetrically chosen with respect
to the axes of coordinates drawn parallel to them through the centre of the cube.
Prove that the forces are equivalent to a single force acting along the line whose
equations are 2a cot B — @ cot 4 =2y cot B+« cot 4= —z cot C, where 24, 2B, 2_0 are
the angles of a triangle whose sides are in arithmetical progression, a.rz.d 2a is the
edge of the cube. {Math. Tripos, 1867.]

Ex. 5. If the rectangle under the three pairs of opposite edges of a tetra.hedro.n
are equal to each other, show that four equal forces acting along the si_dcs taken in
order of the skew quadrilateral formed by leaving out one pair of opposite edges are

equivalent to a single resultant force; and that the lines of action .of the tllrfze
single resultants obtained by leaving out different pairs of OPPO_Elte 9?1333 s
succession are the three diagonals of the complete quadrilateral in which the
faces of the tetrahedron are cut by a certain plane. [Coll. Bx., 1889.]
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On Serews and Wrenches.

284. To find the resultant wrench of two given wrenches, or of

two given forces. Analytical method.
_ Let P, P’ be the forces, p, p’, the pitches of the given wrenches.
Let @ be the inclination of the two axes and % the shortest
distance between them. It is clear that if the resultant wrench of
two guven forces is required, we merely put p=0, p'=0 in the
following process.

Let R be the force of the resultant wrench, = its pitch. By
equating the invariants of the given wrenches to those of their
resultant, we have

Rew=Pp+P*p'+ PP {(p+p) cos 0 + hsin 6),
R:=P24 P24 2PP cosé.
These equations determine the magnitude of the resultant wrench.
We easily deduce
B {w —$(p+p")} =3P~ P (p—p')+ PPhsin 6.

286. We have next to find the position in space of the axis
of the resultant wrench. Let A4’ be the shortest distance
between the axes AF, A'F’ of the given wrenches, the arrows
indicating the positive directions in which the forces P, P’ act.
Since Poinsot’s central axis is parallel to the resultant of the
forces P, P', transferred to any base the central amis must be
perpendicular to AA’. Again since the moment of both the
given wrenches about 4A’is zero, the moment about the same
line of B and the couple I' (whose axis has been proved perpen-
dicular to A4A4) is also zero. This

# /;
£ i

requires that the central axis should
intersect the shortest distance A.A’ /’{ |/

in some point 0. v

Let AA’ be taken as the axis 4
of «, and let the required central A
axis be the axis of z. Let v, v/, be the inclinations of AF, A’F"
to the central axis, then 0=vy+v. By resolving the forces

Rsiny=P'sinf, Rcosy=P+ P cosé,

Rsiny’=Psinf, Rcosqy’ =P + Pcos@ } """ @).
Let ¢ be the middle point of 44’, CO=§ Equating the
moments about a parallel to Oy drawn through €' of the given
wrenches and their resultant wrench we have

RE=4h (P cosy— P cos ) — Ppsiny + P'p'sin o

we have
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Substituting for siny, cos , &c. from (1) we have
RE=4h (P> — P?)—PP'sin 0(p —p).

This equation determines the distance £ of the central azis of
the two wrenches from the middle point of the shortest distamce
measured positively towards P. A formula equivalent to this
was given in the Math. Tripos, 1887.

Ex. Prove that the central axis of two given forces P, P’ divides their shortest
AA’ distance in the ratio P’ (P'+Pcos §) : P (P+ P’ cos 8) which is independent of
the length of 4.4’, the angle between the forces being 6.

286. To jind the resultant wrench of two wrenches whose axes intersect in some
point A. The magnitudes of T' and R are found by the same invariants as in the
last proposition, but the determination of the position in space of the resultant
axiz iz much simplified.

Let the resultant R of the forces P, P, act at A in the direction AB and
make angles v, 4 with AF, AF. Then Rsiny=P"'sind,
Rsiny/=Psing. Following the rule given in Art. 270 to
construct the central axis we find the component of the
couples about a straight line 4D drawn perpendicular to I?
in the plane of the forces. This component is

Ppsiny—-Pp'siny'=PP sin 6 (p-p')/E.

We now measure a distance AO in a direction normal to
the plane of the forces equal to PP’ sin8 (p —p')|R? and draw
a purallel Oz to the direction of R. Then Oz is the central

axis.

To determine on which gide of the plane of the forces A0 should be drawn, we
notice that the couple Ppsin v should turn 40 round A towards the direction of R.

287. 'The Cylindroid. This surface has been used by
Sir R. Ball for the purpose of resolving and compounding
wrenches. Following his line of argument we shall first examine
a special case, and thence deduce the general solution.

To find the resultant of two wrenches of given intensities on screws
of given pitches which intersect at right angles. Let the axes of
these screws be the axes of @ and
y. Let X, ¥ be their forces; p,p’
their pitches. Let R be the resul-
tant of the forces X, V,and let 04
be its line of action. Let ¢ be the
resultant of the couples Xp, T’
and let OB be its axis. Let the
angle AOB=¢. By resolving ¢
into G cos ¢ about 04 and G sin ¢
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about a perpendicular to OA, it is clear (as in Art. 270) that &
anle are together equivalent to a wrench having for its axis a
straight line CD parallel to O4 such that OC = (G sin ¢)/R. The
force along the axis is equal to R and the couple round it is equal
to G cos ¢.

Since Gcos¢ and G sin¢g are the moments abous 04 and a
perpendicular to 04, we see that, if @ be the angle 204,

G cos = Xpcos 6+ Vp'sin 0= R (p cos* @ + p’ sin? 6)
Gsing=— Xpsin @+ ¥p' cos 0= R (p’ — p)sin 0 cos 6.
Let p be the pitch of the resultant wrench and z= 0C, then
p=pecos*f+p’ sinf
z=(p'—p)sinfcos
Also X =Recos 8, V= Rsin 6.

I.f the wrenches on the axes Oz, Oy, have given pitches but
varying forces, the locus of the axis C'D of the resultant wrench
will be found by writing tan 8 = y/z and eliminating € from the
second of equations (1). We thus find

2B+ ) — (P —play=0.ccceevenen..... (2).
This surface is called the cylindroid.

Describe a cylinder whose axis is the axis of z; as CD travels
round Oz beginning at Ox and ending at Oy, thus generating one
quarter of the eylindroid, its intersection with the cylinder traces
out a curve which is represented in the figure by the dotted line.
_In the next quarter of the surface, the dotted curve (not drawn)
is below the plane of #y, in the third quarter above and so on.

238.. Ea.ch generating line of the eylindroid, such as €D, is the axis of a serew
fvllose p.ltch 18 p cosf+p'sin?f. Let us then deseribe the eylinder whose base is
}'.he conic pa®+p'y*=H, where H is any constant. Let the generating line CD
:Eutersec.t the surface of the eylinder in D, Then the piteh of the serew whose axis
is CD is obviously H/CD2 The base of this cylinder has been called by Sir R.
Ball the pitch conic.

289. The forces of any number of wrenches on a gwen cylindroid
being given, it is requived to find the resultant wrench and the con-
ditions of equilibrium.

= S s

Let P,, P, &c. be the forces, 8,, 6, &e. their inclinations to the
axis of #. Referring to the figure of Art. 287, let C'D be the axis
of a wrench whose force is P and whose pitch is the pitch appro-
priate to the axis CD. If @ be the inclination of C'D to the axis
of z, the resolved parts of P along the axes of 2, y and z are
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Pecos8, Psinf and zero respectively. The process of resolving
the wrench into its components on the axes being the exact
reverse of the process in Art. 287 of compounding the wrenches
on the axes, it is clear that the moments of the force P about the
axes are Pcos@.p, Psin 8. p’ and zero.

Taking all the wrenches, the six components are

X =3Pecos0, Y=3Psin 6, Z=0,

L=Z3Pcosf.p=Xp, M=3Psinf.p'=Yp, N=0.

These constitute two wrenches on the axes of # and y, with the
same two pitches as before.

By the definition of a cylindroid the azis of the resultant wrench
lies on the same cylindroid. The pitch p and the altitude z of the
resultant wrench are given by equations (1) of Art. 287.

290. The necessary and sufficient conditions of equilibrium
are SPcos@=0, 2P sin §=0, for when these vanish all the six
conditions of equilibrium are satisfied. It immediately follows
that if the forces of wrenches on the same cylindroid when trans-
ferrved to act at any one point are wn equilibrium, then the wrenches
themselves will be in equilibrium.

For example, the wrenches on any three screws in the same
cylindroid are in equilibrium if the force of each is proportional to
the sine of the angle between the other two.

To find, also, the resultant wrench of two given wrenches in
the same cylindroid we first find the resultant of their forces.
The axis of the required wrench is parallel to this resultant and
has the pitch appropriate to that axis.

291. We may use this theorem to find the resultant wrench
of any two wrenches if we show that a unique cylindroid can be

deseribed so as to contain any two given screws.

To prove this, let CD, C'D’ be the axes of the two given screws, and let CC”" be
the shortest distance between them, then CC’ must be the z-axis of the eylindroid.
Let CC'=h, let o be the inclination of the axes CD, C'D’ to each other, and p, p’
the pitches of the screws. These four quantities being given, we have to prove
that one set of real values can be found for p, p’, (2, ), (', ). Taking the values
given for p, z, p/, 2’ in equations (1) of Art. 287 and joining to them the two
equations z —z'=h, § - §'=g, we can solve the six resulting equations. The result
is that we find unique values for p, p', &e.

292. Work of a wrench. 1 find the work done by a wrench
on a given screw when the body receives a virtual displacement on
any other given screw.
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Let us first find the work done when a given couple is moved
in its own plane from one position to another. This displacement
may be constructed by first translating the couple parallel to itself
until one extremity 4 of its arm AB assumes its new position and
then rotating the translated couple about A until the other ex-
tremity B assumes its proper position. The work done by the
two equal forces during the translation is clearly zero. The work
done by the force at 4 during the rotation is also zero. It remains
to find the work done by the force at B.

Let F be the force, ¢ the length of the arm AB, d¢ the angle
of rotation. The work done by the force at B is evidently Fadd.
If the angle of displacement is finite, the work done is found by
integrating Fad¢. Thus the work done by a couple of given
moment 1s the product of the moment by the angle of rotation in
its own plane. See Art. 203.

Next let a couple be rotated about an axis in its own plane
through any small angle d¢. It is clear that the extremities 4, B
of the arm begin to move perpendicular to the plane of the forces.
The virtual work done by each force is therefore zero.

293. Let us apply these two results to find the work done by
a wrench twisted about any screw.

Let p, p" be the pitches of the screw and wrench respectively.
Let @ be the angle between their re-
spective axes and let & be the shortest
distance between them. We suppose
that in the standard case, when 8 and
h are positive, the positive direction of
each axis is such that a force acting
along it would produce rotation about
the other axis in the positive direction ;
see Art. 265. Let R be the force of the wrench.

Take the axis of the screw as the axis of 2z and the shortest
distance OH as the axis of . Let HC and HB be drawn parallel
to the axes of 2z and y respectively. The force R may be resolved
into Recosf, Rsin@ along HC and HB. When the body is
translated a space pd¢ parallel to the axis of z and rotated an
angle d¢ about it, the work of the former force is R cos 8. pdé;
the work of the latter is R sin 6. hdd.

The couple Rp’ of the wrench may be resolved into two

¥ B
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couples Rp'cos@ and Rp'sin@ whose axes are HC and HB.
The work of the former is Rp' cos 8d¢, the work of the latter is
zero. The whole work done is therefore
dW =Rdg {(p+ p) cos 0 + hsin 8}.
We notice that this is a symmetrical function of p and P, s0
that if the two screws are interchanged the work is unaltered.

294, Reciprocal screws.* Two screws are said to be reci-
procal when a wrench acting on either does no work as the body
is twisted about the other. The analytical condition that two
screws are reciprocal is therefore

(p+p)cos8+hsind=0.

Thus, two intersecting screws are reciprocal when either they
are at right angles or their pitches are equal and opposite.

Tt follows from the principle of virtual work that a body free
to move only on a screw a is in equilibrium if acted on by a
wrench on any screw reciprocal to a.

295. If a screw ¢ is reciprocal to each of two given serews, say a and 8, it is
also reciprocal to every serew on the cylindroid containing « and 8. For a wrench
on any third serew y on this eylindroid may be replaced by two wrenches on the
serews o and j, if the forces on a and 8 are the components of the force on vy
(Art. 289). Since the virtual work of each of these when twisted along o i8 zero,
the screws 4 and ¢ are reciprocal. We may say for brevity that the screw o is
reciprocal to the eylindroid.

296. A screw o if reciprocal to a cylindroid must intersect one of the generators
at right angles. The eylindroid, being a surface of the third order, will be eut by
the screw ¢ in three points, and one screw of the cylindroid passes through each of
these points. Each of these three screws intersects the serew ¢ and is reciprocal to
it. It follows by Art. 294 that each of these is either perpendicular to o or has a
pitch equal and opposite to that of o But since the piteh p of a serew on the
eylindroid is p cos?f+p'sin®f there are only two different screws on the same
¢ylindroid of the same pitch, viz. those given by supplementary values of §. Hence
the serew ¢ must intersect one of the three screws at right angles, Also, as it
cannot be perpendicular to more than one serew on the cylindroid (unless it is the
nodal line or z axis), the pitches of the two remaining screws must be each equal
and opposite to that of o.

297. Ex.1. Show that the locus of a screw reciprocal to four serews (no
three of which are on the same cylindroid) is a cylindroid.

Since a screw is determined by five quantities it is clear that, when the four
conditions of reciprocity are fulfilled, the serew must in general be confined to a
certain ruled surface. If this surface be not a cylindroid, pass a cylindroid

* The theory of reciprocal screws is due to Sir R. Ball and the substance of
Arts. 294 to 297 is taken from his book on Serews. To this work the reader is
referred for further development.
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through any two of its generators, then any screw on this cylindroid will also be
reciprocal to the four given serews., The locus therefore would be, not a single
ruled surface, but a system of eylindroids.

Ex. 2, Prove that there is in general but one serew reciprocal to five given
serews. [As there ave five conditions to be satisfied the number of serews is finite.
But if there were as many as two there would be a eylindroidal locus of serews.]

Ex. 3. Prove that any two reciprocal screws on the same eylindroid are parallel
to conjugate diameters of the pitch coniec.

Let p, p’ be the pitches, z, 2’ the altitudes. Let z=z" and §=0"; Art. 293, If
will be seen that a foree acting along the positive direction of the axis of either
serew would tend to produee rotation round the axis of the other in the negative
direction. We therefore put h=z-2', ¢p= — (8- ¢). The condition that the screws
are reciprocal is (p+p’) cos ¢ + hsin ¢ =0, Art. 294. Substituting for p, p’, 2, 2" their
values given in Art. 287, this reduces to pcosf cos§' +p'sin §sin#'=0. This ig
the eondition that the axes of the serews are parallel to conjugate diameters of the
pitch comie, Art. 288,

On Conjugate Forces.

298. The nul plane. The locus of all the straight lines,
drawn through a gwen point O, and such that the moment of the
system about each vanishes is a plane.

This plane is called the nul plune of O and the point O is
called the nul point of the plane. Any line about which the
moment of the forces is zero is called a nul line.

To prove this proposition let us represent the system by a
couple G and a force R at O as base. It is at once evident
that the moment about a straight line through O cannot be
zero unless 1t lies in the plane of the couple. ZThe nul plane
may therefore also be defined as the plane of the principal couple
at O,

The names nul-point and nul-plane are due to Moebius, Lelwbuch der Statik,
1837. Instead of these the terms pole and polar plane have been used by Cremona,
Reciprocal Figures, 1872, translated into French, 1885, info English, 1890. The
term focus has also been used by Chasles, Comptes Rendus, 1843.

299. If any straight line in the nul plane of O and not
passing through O were a nul line, the moment of R about it
would be zero. This requires that R should either be zero or lie
in the nul plane. In the former case the system of forces is
equivalent to a single couple, and the nul plane is parallel to
the plane of the couple. In the latter, the system is equivalent
to a single force, and the nul plane passes through its line of
action. In both cases the invariant 7 of the system is zero.

ART. 303.] CONJUGATE FORCES. 209

300. If the nul plane of a point A passes through another
point B, the nul plane of B passes through the point A.

It follows from the definition of the nul plane of the point 4
that the straight line AB is a nul line. Hence also the line 4B
must lie in the nul plane of B.

301. To find the equation to the nul plane of a given point
(Enb) referred to any system of rectangular awes.

It is clear that the direction cosines of the plane are pro-
portional to the moments of the forces about axes meeting at the
nul point. Hence by Art. 258 the required equation is

(L=nZ+EY)o+(M—E,X +EZ)y+(N—EY +9X)z=LE+ Mn+N¢.
Any straight line being given by its equations (z —f)/l=(y — g)fmn=(z - k)[n,

prove that it will be a nul lineif | f g & |=Li+Mm+Nn.
X E =
Il m n

302. To find the nul point of a given plane we choose two
points conveniently situated on it. The nul planes of these points
intersect the given plane in the required nul point. Art. 300.

Ex, 1. If the system be referred o the central axis as the axis of z, prove that
the coordinates of the nul point of the plane z=Ax+ By +C are = - pB, n=pAd,
¢=C, where p is the pitch of the equivalent wrench.

Ex. 2. A plane intersects the central axis in ¢ and makes an angle ¢ with that
axis. Show by reasoning similar to that of Art. 270, that the nul point O lies in a
straight line CO drawn perpendicular to the central axis so that CO=cot ¢. I'|R.

Ex. 3. The moments of the forces about the sides of a triangle 4BC are
respectively M,, M,, M,, and Z is the resolved foree perpendicular to the plane of
the triangle. Prove (1) that the trilinear coordinates of the nul point O of the
plane referred to the triangle 4BC are M [Z, M,[Z, My/Z ; (2) that the nul planes
of the three corners 4, B, C intersect the plane of the triangle in 40, B0, CO
respectively.

303. Conjugate forces. Let O be any point on a given
straight line O4. Let the system be reduced to a couple G and
a force R at O as base. Pass a plane through
R and the given straight line 04, and let it
cut the plane BOC of the couple in OB.

Let us resolve the force R by oblique reso-
lution into two forces, one of which F acts
along OA and the other F” acts along OB.
This force F” may be compounded with the
forces of the couple into a single force which
also acts in the plane of the couple. Its line

R. 5. I S ) Py = Np ) 14
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of action is parallel to OB and distant G/F’ from it. It follows
that all the forces of the system are equivalent to some force F
acting along any assumed straight line OA together with a second
JSorce F' which acts in the nul plane of the point O. The forces are
given by Fsin AOB= Rsin ROB, F'sin AOB=Rsin ROA.

The forces F, F' are called conjugate forces, and their lines of
action conjugate lines.

304. Since O is any pointon the straight line OA, it follows
that when O travels along a straight line, the nul plane of O always
passes through the conjugate and turns round it as an aais.

805. Vanishing of the Invariant I. When the force R is zero or lies in the

nul plane BOC, the system reduces to either a single couple or a single force. In
both these cases every point in the plane BOC is a nul point.

If the system is equivalent to a single couple R=0, and if the assumed line 04
is inclined to the plane of the couple the force ¥ along it is zero; the conjugate is
at infinity and its force also is zero. If 04 is in the plane of the couple, the force
along it forms one force of the couple while the conjugate is the other force, the
distance between the conjugates, i.e. the arm of the couple, being arbitrary.

If the system is equivalent to a single resultant, OR lies in the plane BOC. If
the assumed line 04 does not intersect the single force, the force F along 04 is
zero, the conjugate heing the single resultant. If 04 interséets the single resultant,
the conjugate is any line in their plane passing through that intersection, the
conjugate forces being found by resolving the single resultant in their directions.

Conversely, since I=FF 'rsin g, (Art. 281) we see that when the invariant is zero
either one conjugate force is zero, or the two conjugates lie in one plane.

306. To find the conjugate of a nul line. In this case 04 lies
in the nul plane of 0, and if R is not zero and does not also lie in
that plane the straight lines OA, OB, are opposite to each other,
Art. 303. The components of R, viz. F and F”, are therefore both
infinite so that the two forces F, F’ act in opposite directions
along the same straight line O4. Such lines may therefore be
called self-conjugate. They have also been called double lines by
Cremona. .

In the limiting case when the invariant I is zero, any line lying in the plane of

the single couple or intersecting the single resultant is a line of nul moment. We
have seen above that their conjugates are indeterminate.

307. It has been proved that the conjugate of every line
passing through a given point O lies in the nul plane of O, we
shall now show that the conjugate of every straight line in that
plane passes through the nul point.

It is evident that if one conjugate intersect a line of nul

e
—
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moment, the other conjugate must either intersect that line or its
force must be zero. Now the nul lines of the plane BOC radiate
from O and are intersected by any chosen line DE in that plane.
It follows that the conjugate of DE must also intersect them or
its force must be zero. If [ is finite the conjugate force cannot
also lie in that plane or be zero, it must therefore pass through
the nul point 0. If 7=0 every point in the plane is a nul point
and the theorem is again true.

308. T find the equation of the conjugate of the given line

(=)l=(y—g)m=(z=h)n............... (1).

It follows from Art. 304, that if any two points 0, O’ are
chosen on the given line OA, their nul planes intersect on the
conjugate. The nul planes of the point (fgh) and of another
point at infinity whose coordinates are proportional to I, m, n are
(Art. 301) respectively

(L—gZ+hY)z+(M—hX +fZ)yy+(N—fY+9X)z=Lf+Mg+Nh

(—mZ+nY)e+(—nX +12)y+(—1Y+mX)z=Ll+Mm+ Nn.

These are the equations to the conjugate. They also take the
form

z, Y, z |=L(f-z)+M(g—y)+N(h-2), [ @ ¥ 2 |=Ll+Mm+Nn.
2%, ¥ 7 | X ¥, 2
[ o, | L m, ni

The line of action of the force F being given as above by the
equations (1), an analytical expression for the magnitude of F
can be found which may be used when the position and magni-
tude of the conjugate force I are not required. If we reverse
the force F' and join it to the given system, the compound system
will be equivalent to a single force. The invariant of the com-
pound system is therefore equal to zero. If [, m, n are the actual
direction cosines of the given line of action of the force F, the
components of the compound system are

X'=X-Fl, L' = L + Fmh — Fng,
Y=Y - Fnm, M = M + Fnf — Fih,
Z'=Z — Fn, N'= N+ Flg — Fmf.

Equating the invariant L'X’ + M'Y' 4+ N'Z’ to zero, we find

T lﬁ . h
liiY‘*‘_};,} + N L+ MntNa-| X, Y, Z
L, m, n

14—2
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In this manner a unique value of F has been found. The
value of F' can be infinite when the right-hand side is zero; this
occurs when the given line is a nul line, Art. 301.

The value of F being known, all the six components of the
compound system are known. The magnitude and line of action
of the single resultant F’ may then be found by equations (4) of
Art. 273, whence F? = X"+ V=4 Z? and T' = 0.

309. To determine the arrangement of the conjugate forces
about the central awis.

We know by Art. 285 that the central axis intersects at right
angles the shortest distance between

any two conjugates. Let Oz be the ] ;;,—;7

central axis; R, T', the given force /{F' 4

and couple. Let F, F”, be two con- = S
jugate forces acting along AF, A'F’; FrA7
A4’ being the shortest distance be- —3- O g

tween them. Let O4A=a, 04'=d
measured positively from O in oppo-
site directions, h =a+a'.
The force R may be replaced by two parallel forces acting at
A, A, respectively equal to Ra'/h and Ra/h, Art. 79. The
couple I' is equivalent to two forces acting at the same points
parallel to the axis of y equal to + I'/h. Since the forces acting
at A, A’ have F, F’ for their resultants, we find
I' = Ra tan «, Fhr=T1" 4 R*a'ﬁ} 1)
T' = Ratan FopE = 1" 4 Reg? i
When any arbitrary line AF is chosen as the seat of one force, @
and vy are given; these equations then determine F, F', o/, @'
We notice also that since the resolved parts of #, #” in the plane
xy are equivalent to the couple I, Fsiny = F'siny’ =I'/h.
810. If the figure is turned round Oz as an axis of revolution, the conjugates
AF, A'F’ deseribe co-axial hyperboloids of revolution whose real axes a, a’ are
connected by the equations (1). The imaginary axes are a cot + and a’ cot 4”; it is

easily seen from (1) that each of these is equal to aa’[p where p=T/R is the pitch
of the wrench.

811. It may be a simpler classification to arrange the conjugate forces in a
series of planes rather than in hyperboloids. If the force F' is turned round 4 so
as to describe a plane normal to Od4, the angle v varies while a is constant. The
formulee (1) then show that 4 is constant, so that the conjugate F' moves parallel to
itself and generates a second plane which passes through OA. The two planes
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intersect in a nul line, whose locus when a varies is the paraboloid pz= -y where
p is the pitch of the wrench.

Ex. Any two systems of forces being given show that they will have one
common system of conjugate lines real or imaginary. If O0'=2c is the shortest
distance between the axes of the equivalent wrenches, C the middle point of 00,
prove that the distances of the common conjugates from C are given by the
quadratic 2+ (p — p') cob 8z +pp’ — ¢* — (p+p') c cot @ =0 where p, p’ are the pitches
and ¢ the angle between the axes.

312. Ex. 1. If two straight lines intersect in a point O, their conjugates also
intersect, and lie in the nul plane of 0. Art, 303,

Ex. 2. A transversal intersects a force and its conjugate. Prove that each
intersection is the nul point of the plane which contains the transversal and the
other forece.

For every straight line drawn through one intersection to cut the other force is
a nul line, see also Art. 303.

Ex. 3. The locus of a straight line drawn through a given point O so that
the moments about it of two conjugate forces F, F’ have a given ratio u is a plane,
which becomes the nul plane of O when u= —-1. Whatever the forces and x may
be, this plane passes through the intersection of the two planes drawn from O to
contain the forces, and makes angles ¢, ¢’ with these two planes such that the
given ratio u is equal to Fpsin ¢ : F'p’ sin¢’. Here p and p" are the perpendicular
distances of O from the given straight lines,

313. Ex. 1. Two arbitrary points 4, B are taken on a nul line. Prove that
the system can be reduced to two conjugate forces acting at 4 and B, the force at
A4 making a given angle ¢ with 4B. Prove also that if ¢ is varied, the locus of the
foree at each point is the nul plane of the other point.

It ¢, ¢ arve the angles the conjugate forces make with AB, prove that
G cot ¢’ & G' cot ¢ =aX, where G, G, are the principal couples at 4, B, X the force
along AB and a=A4B,

To prove this take 4 as base (Art. 257) and change the couple G into another
whose forces pass through 4 and B.

Ex, 2. Two planes being given which intersect in a nul line, show that the
system can be reduced to two conjugates, one in each plane. [Take 4, B of Ex. 1 at
the nul points of the planes.]

Ex. 3. If AM, BN are two nul lines, show that the system ean be reduced to
two finite conjugate forces intersecting both AM, BN,

Let d be any point on AM, the nul plane of 4 will pass through 4M and cut
BN in some point B. The rest follows from Ex. 1.

814. The characteristic of a plane is the conjugate of the normal at the nul
point, Chasles, Comptes Rendus, 1843.

Ex. 1. Any two conjugates intersect a plane in I and M': show that MM’
passes through the nul point of that plane. Show also that the projections of
these conjugates on the plane intersect in the characteristic.  [Chasles’ theorem.]

Ex. 2. The locus of the axes of the principal couples at all bases situated on a
given straight line is a hyperbolic paraboloid. This paraboloid is a plane when the
straight line can be a characteristie, and in this case the envelope of the axes of the
prineipal couples is a parabola whose focus is the pole of the plane, [Chasles.]
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Let 4B be the straight line, 0D its conjugate. The axis of the principal couple
at any point O on 4B is perpendicular to the plane OCD, Art, 308, If the straight
line AB were turned round CD as an axis of rotation through any small angle de,
each point O on 4B would move a small space perpendicular to the plane OCD,
i.e. it would move a small space along the axis of the principal couple. Hence
these axes all intersect two straight lines, viz. 4B and its consecutive position, and

are all parallel to a plane which is perpendicular to ¢D. The locus is therefore a
hyperbolie paraboloid.

Theorems on forces.

315. Three forces. If three forces are in equilibrium, they
mast lie 1n one plane.

Let 4 and B be any two points on two of the forces. Since
the moment about the straight line AB is zero, this straight line
must intersect the third force in some point ¢\ Let 4 be fixed
and let B move along the second line; the straight line 4B will
describe a plane, and the second and third forces must lie in
this plane. If we fix ' and let B move as before, we see that the
first force must also lie in the same plane.

Ex.1. The forces of a system can be reduced to three forces F,, F,, F, which
act along the sides of an arbitrary triangle ABC together with three other forces

4y, 4y, Zywhich act at the corners 4, B, C at right angles to the plane of the
triangle.

Resolve each force P of the system into two, one in the plane 4BC and the
other perpendicular to that plane. The former can be replaced by three forces
acting along the sides (Art. 120, Ex. 2), and the latter by three parallel forces at
the corners (Art. 86, Ex. 1). If P is parallel to the plane 4B we can transfer it
to act in the plane by introducing a couple. Turning the couple round in its own
plane we can include its forces among those normal to AB(,

Ex. 2. The forces of a system can be reduced to three forces which act at the
corners of an arbifrary triangle and satisfy three other conditions.

Replace Fy by Fy+u at B and —u at C; F, by F,+vat C and —v at 4; F, by
Fy+w at 4 and —w at B. Compounding the forces at the corners, the arbitrary
quantities w, v, w may be used to satisfy three conditions.

Ex. 3. A system of forces is reduced to three acting at fixed points 4, B, C.
If the force at A4 is fixed in direction, prove that each of the other two lies in a
fixed plane. Show also that these planes intersect along the side BC.

[Coll. Ex., 1891.}

316. Four forces. If four non-intersecting forces are in
equilibrium, they must be generators of the swme system of a
hyperboloid. Mcebius, Lehrbuch der Statik.

If a straight line move so as always to intersect three given
straight lines, called directors, the locus is known to be a hyper-
boloid and the different positions of the moving straight line form
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one system of generators. An infinite number of tragsversals can
be drawn to cut three of the forces, but each must intersect the
fourth force. also, for otherwise the moment of the four forces
about that transversal is not zero. Taking any three of thlese
transversals as directors, the four forces lie on the corresponding
hyperboloid.

The following theorems will serve as examples, as the proofs
are only briefly given.

Ex.1. If n forces act along generators of the same system and have a single
resultant, prove by drawing transversals that the resultant acts along another
generator of the same system.

Ex. 2. When two of the forces P, P', act along generafors of one system and
two @, @', along generators of another system, they form a skew quad.rilatera..l.
The properties of such a combination of forces have been already considered in
Art. 103. Their invariants are given in Arts, 317 and 323.

Prove, by drawing transversals through the intersection of P and @', that the
forces cannot be in equilibrium except when they lie in one plane.

Ex. 3. When three of the forces P;, P,, P;, act along generators of one system
and the fourth Q along a generator of the other system, prove tpa,t they cannot be
in equilibrium except when all the forces lie in a plane. For if every tra.nsvers'al
of P, P,, P; could intersect @, this last would intersect all the generators of its
own system.

Ex. 4. Four forces act along generators of the same system of & hyperboloid.
Their magnitudes are such that if transferred parallel to themselv.eg to act at &
point they would be in equilibrium. Prove that they are in equilibrium when
acting along the generators.

Let Q be any generator of the other system, which therefore intersects the four
forces. Transfer the forces to act at any point of ¢, then the transferred £orc'es are
in equilibrium and the axes of the four couples thus introduced are perpendicular
to . The four forces are therefore equivalent to a resultant c?t%ple such that
either its moment is zero or its axis is perpendicular to every position of Q. The
latter supposition is impossible. Pliicker and Darboux.

Ex. 5. If four forces Py, P,, Py, P are in equilibrium, prove that the invariant
of any two is equal to that of the remaining two (this theorem is due to Chasles).
Also the invariant of any three of the forces is zero.

Reversing the directions of Py, P,, the forces P,, P, become equivalent to
P,, P,. Their invariants are therefore equal. .

Ex. 6. TFour forces acting along the straight lines a, b, ¢, d are in eqmlihg'l}lT-
If the symbol ab represent the product of the shortest dista.r.me betweenha, 11111 0E
the sine of the angle between them, show that the forces acting along these line

¥
i ] 3 b.bd)f, (ab.be.ca)’.
ced. db)®, (cd.da.ac)®, (da.a )
are proportional to (be.ed . db)%, ( ) ([C&}rlgy, s Bl 10001

We have by Chasles’ theorem P,P,. ab=P,P,. cd and P\P; . ac=P;P,. bd.

Multiplying these together we have the ratio of Py?: PP
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317.  Analytical discussion of the hyperboloid.  Refer the
system to the axes of the hyperboloid as coordinate axes, and let
@, b, co/—1, be these axes. Let any generator be

r—acost y—Dbsingd 2
asind ~ —bcosf® teo’
where 6 is the eccentric angle of the intersection with the plane
of ay, and the generator belongs to one system or the other
according to the sign of ¢. Let P be the force along this
generator, X, ¥, Z, L. M, NV its six components, We see that

N U5 S 1
X—iéZsmS, I’=+EZco.36, L=0bZsin 6, M= —aZcos 8, .{V=T-Ec—bZ

where all the upper signs are to be taken together.

; Ex. 1.. If four t:orees act along generators of the same system prove that the
51x.eq1:fa.t10ns of equilibrium reduce to the three 37 sin =0, ZZ cos =0, ZZ=0.
This gives an analytical proof of the theorem in Art. 316, Ex. 4.

Ex. 2. Prove that the invariant I of two forces which act along generators of

y 2ab i
the same system is I= = = Zh %y versin (6, — 6,). If the forces act along generators

of different systems, their invariant is zero because the generators intersect. If
forces act along several generators, the invariant is the sum of the invariants
talen two and two, Art, 281,

Ex 3 When four generators of the same system are given, the ratios of the
equilibrium forces are given by

Zl2 _ Zﬂe

Thvers (65— }f‘s) v:rs (05— 6,) vers (8,— ;) — vers (6, - 0,) vers (8, - 0,) vers (6, — ) —E

ese may be obfained by equating the invariants two and two, as in the

= ’ £

Cayley’s theorem, Art. 316. Y

Etx. 4. Four forees in equilibrium act along four generators of a hyperboloid
and intersect the plane of the real axes in Ay, 4y, Ay, A;. Show that the resolved
parts ‘of the forces parallel to the imaginary axis are proportional to the areas of
the triangles A,d,4,, 4,44, &o., the forces at adjacent corners of the quadrilateral
44,444, having opposite signs,

Ex. 5. ' Forces act along generators of the same kind, say e positive. Prove
that the piteh p of the equivalent screw lies between —abfc and the greater of the

quantities befa and eafb. For p= I 2L 2X+do. PiE-1

: B~ 3Xpr&e. Cahpripe e T b
Fla.ve l.)e'en written for 27 cos §/2Z and 27 sin 0/SZ. We see at once that p+able
18 positive and p — befa negative if b= a,

Ex. 6. Forces act along generators of the same system and the piteh p of the

equivaln.aut wrench is given. Prove that the central axis is that generator of the
coneyelic hyperboloid

be ca ab b >
be 2, fCa 2 [ab o ca ab
‘ (a 3’)” +(a P)*" (c *P)z —(;‘P) (b’ “P) ('?*P)
which intersects the plane of ay in the point

x___ac—bljg‘,ZcosB _be—ap EZ sing
¢ FES I TS S e
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Ex. 7. Forces act along generators of the same system and admit of a single
resultant, which intersects the plane of zy in D. Prove that OD and the projection
of the resultant force are parallel to conjugate diameters.

Ex. 8. Forces act upon a rigid body along generators of the same system of a
hyperboloid. Prove that the necessary and sufficient condition of their being
redueible to a single resultant is that their central axis should be parallel to one of
the generating lines of the asymptotic cone. [Math, Tripos, 1877.]

Ex. 9. A system of forces have their directions along any non-intersecting
generators of a hyperboloid of one sheet; show that the resultant couple af the
centre of the hyperboloid lies in the diametral plane of the resultant force, and the
('ié_-i-—?a_"‘-(?c—RTDf 3 Dy and D, being the semi-axes of
the section of the hyperboloid by the plane of the couple, and a, b, ¢ the semi-axes
of the surface, and R the resultant force. Explain the difficulty in the geomefrical
interpretation of these results for a single force. [Math. Tripos, 1880.]

least principal moment is

818. Relation of four forces to a tetrahedron. Ex. 1. Forces act at the
centres of the circles circumscribing the faces of a tetrahedron perpendicular fo
those faces and proportional to their areas. Prove that they are in equilibrium if
they act either all inwards or all outwards.

Ex. 2. Torces act at the corners of a tetrahedron perpendicularly to the
opposite faces and proportional to their areas. Prove that they are in equilibrium
if they act either all inwards or all outwards. [Math. Tripos, 1881.]

Let ABCD be the tetrahedron, 4K, BL &ec. the perpendiculars, Since the
product of each perpendicular into the area of the corresponding face is equal fo
three times the volume of the tetrahedron, the forces are inversely proportional to
the perpendiculars along which they act. Let the forees be pf/AK, u/BL &e.

Let us resolve the force u/4K into three components which act along the edges
AB, AC, AD. The component F which acts along 4B is found by equaiing the

: s BL :
resolutes perpendieular to the plane ACD. This gives F cos 0, where 8 is

4E &
AB T AK
the angle between the perpendiculars 4K and BL. In the same way we resolve
the force p/BL into components along the edges. The component F' which acts
along B4 is found from F’. j—g = I_f}—‘ cosf. Hence F and F' are equal and oppo-
s

site forces, In the same way it may be shown that the forces along all the other
edges are equal and opposite. The system is therefore in equilibrium.

Ex. 3. Forces act at the centres of gravity of the four faces of a tetrahedron
perpendicularly to those faces and proportional to them in magnitude, all inwards
or all outwards. Prove that they are in equilibrium.

Joining the centres of gravity we construet an inscribed tetrahedron, the faces
of which are parallel to those of the former and proportional to them in area. The
given forces act at the corners of this new tetrahedron and are therefore in equili-
brinm by Ex. 2.

Ex. 4. TForeces act at the centres of gravity of the faces of a closed polyhedron
in directions perpendicular to the faces and proportional to their areas in magni-
tude. Prove that they are in equilibrium,

Divide each face into triangles by drawing a sufficient number of diagonals,
By joining any internal point P to the several corners we divide the polyhedron
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into tetrahedra, Forces acting at the centres of gravity of the faces of each tetra-
hedron are in equilibrium by Ex. 3. Removing the equal and opposite forces
which act at the eentre of gravity of each internal face, the forces which act at the
external faces must be in equilibrium.

Ex. 5. Forces act at the middle points of the edges of a closed polyhedron, in
directions bisecting the angles between the adjacent faces, and having magnitudes
proportional to the product of the length of the edge by the cosine of half the angle
between the faces. Prove that they are in equilibrium.

Let forces act at the middle points of the sides of each face in the plane of the
face perpendicularly to and proportional to the sides. These are in equilibrinm by
Art, 37. Compounding the forces at each edge the theorem follows.

819. Normal forces on surfaces. Ex. 1. Forces act normally at every element
of a closed surface. Prove that they are in equilibrium if each force is either
(1) proportional to the area of the element, or (2) proportional to the product of the

i 1 :
area by Py + - where p, p’ are the principal radii of eurvature,
Since the surface may be regarded as the limiting case of a polyhedron, the
first theorem follows from Ex. 4.

By drawing the lines of curvature the surface may be divided into rectangular
elements which may be regarded as the faces of a polyhedron. The second
theorem then follows from Ex. 5. Let ABCD be any element, the external angle
between the faces which meet in BC is ABfp. The force across this edge is
therefore $ BC . AB/p and ultimately acts perpendicularly to the element.

M. Joubert deduces the second of these theorems from the first. He also
deduces from the second that normal forces proportional to the quotient of each
elementary area by pp’ are in equilibrium. Liowville’s J. vol. xI1., 1848,

Ex. 2. One-eighth of an ellipsoid is cut off by the principal planes, and along
the normal at any point a force acts proportional to the element of surface at that
point. Show that all these forces are equivalent to a single force acting along
the line a (z — 4a/3w)=0 (y — 4b/3w) = ¢ (2 - 4¢/3w), where 2a, 2b, 2¢ are the principal
axes of the ellipsoid, [June Exam.]

320. Five forces. If five finite non-intersecting forces are in
equilibriwm, they must intersect two straight lines which may be
real or vmaginary. Mebius.

First, we shall prove that any four straight lines a, b, ¢, d can
be cut by two transversals. TFor, describing the hyperboloid
which has a, 0, ¢ for directors we notice that the line d cuts this
hyperboloid in two points real or imaginary. One generator of
the system opposite to a, b, ¢ passes through each of these points
and therefore intersects the straight lines «, b, ¢ as well as d.
Assuming this lemma we draw the two transversals of any four of
the forces. Each of these must intersect the fifth force, for other-
wise the moments about them would not be zero. These two
transversals may be called the directors of the five forces.
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321. Let the shortest distance between two straight lines be
taken as axts of z Let any five forces intersect these straight
lines at distances (ry7y) (rory) &e. from that axis, and let Z,, Z, &e.
be the z resolutes of these forces respectively. Prove that the condi-
tions of equilibrium are 2Z=0, 2Zr=0, 3Zr'=0, 3Zrr'=0.

Let the origin bisect the shortest distance between the two
directors of the forces, and let this shortest distance be 2¢. Let 20
be the angle between the directors, and let the axes of # and y be
its bisectors. The equation to any force may then be written

(@ — 7 cos 0))(r — ') cos 6 = (y —r sin 0)/(r +7)sin 8 = (2 —¢)/2c.
Writing  1/p?=(r — ") cos? @ + (r +7/)*sin? 0 4 4¢?,
and representing the forces by Pi...P;, the equations of equilibrium
formed by resolving along the axes are

SPu(r—7)cos8=0, ZPu(r+1)sinf=0, 2IPuc=0.
The equations of moments are

S(yZ—-2Y)= ZPu(r—1)csinf=0,

S(eX —wZ)=—Z2Pu(r+1)ccos =0,

2 (@Y —yX)= 2ZPurr'sinfcosd=0.

When ¢ and gin 26 are not zero, these six equations reduce to the
four given above. These four equations determine the ratios of
the five forces P,...P; when the intersections of their lines of

i

action with the directors are known.

822, Let the two directors be moved so that either their mutual inclination 26
or their distance apart 2¢ is altered, but let them continue to intersect the axis of 2
at right angles. It follows from these results that equilibrium will continue to
exist provided (1) the forces always intersect the directors at the same distances
from the axis of z, and (2) the z component of each is unchanged.

When five forces in equilibrium are given in one plane, which besides the three
conditions of equilibrium also satisfy the condition ZZr”’'=0, we may by this
theorem construct five forces in space which are also in equilibrium.

323. Ex. 1. Any number of forces intersect two directors in the points
ABC..., A'B'C"..., prove that the invariant I=sin 2027, Z,. AB . A'B’|2c.

Ex. 2. Four forces act along the sides of a skew quadrilateral taken in order
and their magnitudes are respectively «, 8, v, 0 times the sides along which they
act, as in Art. 103, Ex. 5. Prove that the invariant I=2csin 26 (ay-83) DD’
where D, D’ are the lengths of the diagonals, 2¢ their shortest distance and 26 the
angle between them,

Ex. 3. Any number of forces intersect two directors and a plane is drawn
through each parallel to the other. Find the coordinates of the points in which
the eentral axis intersects these planes. The result is given in Art. 278, Ex. 7.
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Ex. 4. Five forees in equilibrium intersect their two directors in the points
ABCDE and A'B'C'D'E', and their magnitudes are a.44’, 8.BB’, &c. Prove
{1) that the sum of the coefficients a, 8, &ec. is zero and (2) that

} CD.BE, DB.CE _1' DE.C4A, EC.DA
o| O . B, ’B'".CF |~ 8 ‘ D'E.C'4, B¢ . D4’
Ex. 5. Show that the force along 44’ is zero when the other four lines cut the

two directors in the same anharmonic ratio. This is also a known property of any
four generators of a hyperboloid intersected by two fixed lines,

=&e. [Coll. Ex., 1892,]

Ex. 6. Show that, if the algebraic sums of the moments of a system of forces
about (1) three, (2) four, (3) five straight lines are gzero, the central axis of the
system (1) lies along one of the generators of a system of coneyclic hyperboloids,
(2) intersects a fizxed straight line at right angles, (3) is fixed. [Math. Tripos, 1888.]

Replace the system by two conjugate forces, one of which cuts the three given
straight lines. Then the other force also cuts the same three lines, They are
therefore rectilinear generators of a fixed hyperboloid, The first result follows at
once by Art. 317, Ex. 6.

Choose one of the conjugates to cut the four given straight lines as in Art. 320.
The other also cuts the same four lines. Both these forces are therefore fixed in

position. By Art. 285 the central axis cuts the shortest distance between these
at right angles,

If the moments about five straight lines are zero, we can by taking two sets of
four forces obtain two straight lines each of which is cut at right angles by the
central axis, The central axis is therefore fized.

324 Six forces®. Analytical view. Forces acting along
swe strasght lines are in equilibrium. Show that, five of these lines
and a point on the sizth being given, the sizth line must lie on a
certain plane.

Let a force P be given by its six components Pl Pm, Pn;
P), Py, Py, Art. 260. If (fgh) be any point on its line of action,

then A=gn—hm, p=hl—fa, v=fm —gl

Let us suppose that each of the six forces P;...P; is given in this

* The theorem that the locus of the sixth force is a plane is due to Maebius,
Le?}rhrwh der Statik, 1837. But he omitted to give a construction for the plane.
This defect was supplied by Bylvester “sur Pinvolution des lignes droites dans
Uespace considérées comme des axes de votation.” Comptes Rendus, 1861. He gives
several theorems on the relative positions of the fifth and sixth lines. The terms
“involution” and “polar plane” are due to him. In a second paper in the same
volume he states as the eriterion for the involution of six lines the determinant
given in Art, 327, the moments (12} &ec. being replaced by secondary determinants
when the equations of the straight lines are given in their most general form. He
mentions that Cayley had found a determinant which is the square root of that
given by himself and which would do as well to define involution. A proof of this
is given by Spottiswoode, Comptes Rendus, 1868. See also Scott’s Theory of
Determinants. Analytical and statical investigations connected with involution
are given by Cayley, * On the siz eoordinates of a line,” Cambridge Transactions,
1867. The extension of the determinant of Art. 327 to six wrenches is given by
Sir R. Ball, Theory of Screws, 1876.
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way, so that (I, my, 1y, My, pa, 1) (I, &c.) &c. may be regarded as
the coordinates of their several lines of action.

Since the six forces are in equilibrium, they must satisfy
the six necessary and sufficient equations given in Art. 259.
We have therefore
SPl=0, XPm=0, 3Pn=0; ZPA=0, ZPp=0, 2Pr=0.

These six equations will in general require that each of
the forces P,...P, should be zero. But if we eliminate the
ratiog of these forces we obtain a determinantal equation which
is the condition that the forces should be finite. This determi-
nant has for its six rows the six coordinates of the six given
straight lines, viz.

L, ma, ny, o — hamy, byl — fing, iy =gy | 0
l,, &c. .

Let us suppose that five of the lines are given and that
the sixth is to pass through a given point (fs, s hs). Let
(z, y, z) be the current coordinates of the sixth line, then
writing for (I, ms ng) in the last row their ratios = — for Y =86
2 — he this determinantal equation becomes the equation to the
locus of the sixth line. It is clearly of the first degree and
this proves that the locus of the sixth line is a plane.

325. When six lines are so placed that forces can be found to
act along them and be in equilibrium, the siz lines are said to be
in tnvolution. The plane which is the locus of the sixth line when
a point O in the line is given is called the polar plane of O with
regard to the five given lines.

When five lines are so placed that forces can be found to act
along them and be in equilibrium, they are in involution with
every line taken as a sixth and the force along that sixth is zero.
This is briefly expressed by saying that the five lines are in
involution.

When lines are in involution any force acting along one of
them can be replaced by finite components acting along the
remaining lines, provided these remaining lines alone are not in
involution.

326. If the siz straight lines are the seats of siw wrenches
of given pitches, instead of siz forces, we may by an extension
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of this determinant jform the condition that these wrenches may
be in equalibrium.

Let P be the force of any wrench, p the pitch of its screw.
Let (I, m, n, \, p, v) be the six coordinates of its axis. Then,
resolving parallel to the axes of coordinates and taking moments
as before, we have

SPl=0, 3 Pm =0, SPn=0,
SPA+pl)=0, ZP(u+pm)=0, ZP(w+pn)=0.
Eliminating the forces, we have the following six-rowed deter-

minantal equation in which the first line only is written down.

by, my, m, N +}3131, M+ P, v+ Py s )
The other lines are repetitions of the first with different suffixes,
This determinant has been called the seziant by Ball.

By giving to the pitches p,...ps of these screws values either zero
or infinity we can express the condition that m forces and n couples
(m +n=6) connected with siz given straight lines should be in
equalibrium. :

327. If we take moments in turn for the six forces P,...P,
about their lines of action, we obtain six equations of the form

P,.0+P,(12)+ P;(13) + P, (14) + P, (15) + P;(16) =0,
where (12) represents the mutual moment of the lines of action of
P,, P, (Art. 264). Eliminating the six forces, we obtain a deter-
minant of six rows equated to zero. This is the necessary condition
that the six lines should be in involution.

Taking any five of these equations, we can find the ratios of
the six forces. Thus, if 7, represent the minor of the constituent
in the first row and second column, we have

Pl/Ll:szIn:Ps/Ls:&c-

Since by Salmon’s higher algebra I,,I,,=I2,, we may deduce

the more symmetrical ratios

Pﬁ/fn o= P22/Ies S Paz/Iss = &o.
This symmetrical form for the ratios of the forces is given by
Spottiswoode in the Comptes Rendus for 1868.

328. We have thus two determinants to define involution. One
expresses the condition in terms of the coordinates of the six lines,
the other in terms of their mutual moments. These are not
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independent, for one determinant is the square of the other.
This may be shown by squaring the first and remembering the
expression for the mutual moment of two lines given in Ex. 1 of
Art. 267.

320. ILet A, B, C, D, E, F be siz lines not in involution, then
any given force R may be replaced by siz components acting along
these siz lines.

Let {'mn'A'u'v’ be the six coordinates of the line of action of
R. If P,...P; are the six equivalent forces on the given lines, we
have by Art. 324 ZIPl=Rl, &c, ZPA= R\, &c These six
equations will determine real values for P...P;. They will be
findte if the determinant of Art. 324 is not zero, i.e. if the given
lines are not in involution.

We notice that the value of P, is zero if the determinant
formed by replacing [, m,, &c. in the first row by I'm’ &c. is zero,
i.e. if the line of action of R is in involution with BCDEF.

Ex. Show that in general there is only one way of reducing a system of forces
to six forces which act along six given straight lines. If the lines of action of five
of the forces be given and the magnitude and point of application of the sixth,
prove that the line of action of the sixth will lie on a certain right circular cone.

[Coll. Exam., 1887.]
330. If the moments of a system of forces about suw straight

lines not in involution are zero, the forces are in equilibrium.

If they are not in equilibrium let (I', R) be their equivalent
wrench. Let the axis of this wrench be taken as the axis of z, and
let the six lines make angles (6,, ¢, Y1), (6ay s, Yry), &c. with the
axes of z, @, y. Let (r, n/, 1), (1o, 7, ") &c. be the shortest

distances between the six lines and the axes of 2, «, 4.

Since each of the six lines must be a nul line with regard to
the wrench, we have for each I'cos 8+ Rrsin8=0. We chall
now prove that, if these six equations can be satisfied by values
of I' and R other than zero, the six lines are in involution.

If forces P,...P; can be found acting along these six lines in
equilibrium, they must satisfy the six necessary and sufficient
equations of equilibrium. These are

SPcosf=0, SPcos¢p =0, SPcosyr=0,

SPrsinf=0, ZPr'sin=0, ZPr’sinyr=0.
These six equations in general require that each of the forces
P....P; should be zero. But when the six conditions given above
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are satisfied the two equations ZPcos@=0 and =Prsin6=0
follow one from the other. There are therefore only five necessary
and sufficient equations connecting the six forces. The rat_ios of
the forces can be found. Hence the lines must be in involution.

If the lines are not in involution, they cannot all six be nul
lines of a wrench, i.e. I' and R must both be zero. It follows that
siw equations of moments about six straight lines are insu__f;‘éf:ien:t to
express the conditions of equilibrium of a system if those siz lines
are tn involution.

331. If a system of forces is such that its momem{ abozft each
of m lines is zero, and its resolute along each of n lines s also
zero, where m +n=06, the system 1s in equilibrium, provided the
siz lines are such that forces acting along the m lines and cou_p.les
having their azes placed along the n lines cannot be in equalibrium.
The forces and couples are not to be all zero.

For the sake of brevity, let us suppose that the moments of
the system about each of the four lines 1, 2, 3, 4 is zero, and that
the resolute along each of the lines 5 and 6 is zero. If the system
is not in equilibrium, let (I', R) be the equivalent wrench. L(.at
the axes of coordinates and the notation be the same as m
Art. 330. We thus have given the four equations

Tcos 6, + Rrysin6, =0, T cosb,+ Rr,sin6,=0, &c.=0,
and the two resolutions Rcos ;= 0. R cos 6, =0.

These six equations may be called the equations (A).

Let four forces P,...P, act along the four lines 1,...4 and let
two couples M;, M, have their axes placed along the linfes 5, 6.
If these can be in equilibrium, they must satisfy the equations

P.cos 6, + ...+ P,cos 8,=0,
Prysin 0, + ... + Pgrysin 0, + M, cos 85 + Mscos 6,= 0,
with four other similar equations obtained by writing ¢ and
for 8. These six equations may be called the equations (B).

The equations (B) in general require that the four .forces
P,...P, and the two couples M;, M, should be zero. .But if the
equations (A) can be satisfied by values of I' and R which are not
both zero, the six equations (B) are mnot independent. If we
multiply the first by T and the second by R anc} add the prodl.lcts
together the sum is evidently an identity by virtue of equations
(A). The equations (B) are therefore equivalent to not more than
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five equations, and thus forces P,...P, and couples M;, M, not all
zero, may be found to satisfy them.

It follows that, if the six lines are such that the forces S 2
and the conples M;, M; cannot be in equilibrium, the values of T

and R given by equations (A) must be zero, ie. the given system
is in equilibrium.

332. If four of the six given lines are occupied by the axes of
couples, the remaining two having only zero couples or zero forces,
it is possible to so choose the four couples that equilibrium shall
exist, Art. 99. It follows that m equations of moments and n
equations of resolution are insufficient to ewpress the conditions of
equilibrium if m s less than three.

833. We may also deduce the theorem of Art. 331 from that of Art. 330 by
placing some of the lines at infinity.

The expression for the moment of a system of forces about a straight line,
drawn in the plane of zz parallel to « and at a distance ! from it, is by Art. 258,
L'=L+1Y. Iflbe very great the condition L'=0 leads to ¥Y=0. It follows that
to equate to zero the resolved part of the forces along y is the same thing as to
equate to zero their moment about a straight line perpendicular to y but very
distant from it. Now a zero force along such a line at infinity is equivalent to a
couple round the axis of y. Since the axis of y is any straight line, it follows that,
if a system be such that its moments about m lines are each zero and its resolutes
along n lines are also each zero, where m+n==6, then the system will be in equi-
librium provided the six lines are such that m forces along the m lines and 2 couples
round the n lines cannot be found which are in equilibrium.

334. Geometrical view. Siz forces are in equilibrium. When
the lines of action of five are given, the possible positions of the simth
are the nul lines of two determinate forces acting along the two
transversals of any four of the five. From this we can deduce
another proof of Mebius’ theorem.,

Let us represent the lines of action of the forces P, ... P, by
the numbers 1...6 and the mutual moments of the lines by the
symbols (12), (34), &e. Art. 264.

Let @, b be the two transversals which intersect the four
straight lines 1, 2, 3, 4 (Art. 320). Since the six forces P,...P;
are in equilibrium, the moment of P, and P, about each of these
transversals is zero. Hence

Py (5a)+ P, (6a)=0, P, (5b) + P; (6D)=0...... (1).
Eliminating the ratio P,/P;, we have
(50) (6a)— (5a) (6D) =0 ..uvvevrierenns v (2,

Thus the sixth line is so situated that the sum of the moments
B80T 15
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about it of two forces proportional to (50) and (— 5a) acting along
a and b is zero. Let us call these forces P, and P;; hence

P, (6a)+ Py (6b)=0 ........ i Lkl (3).

We notice that the positions of the transversals ¢ and b depend
on the positions of the lines 1, 2, 3, 4, and are independent of the
magnitudes of the corresponding forces. The ratio of the forces
applied to these transversals depends on the position of the line 5
relatively to ¢ and b. The transversals a, b and the lines 5, 6
are so related that a, b are nul lines of the forces P;, P; and 5, 6
are nul lines of P, P;.

It follows from this reasoning that when the forces P, ... P
are varied, so that equilibrium always exists, the sixth line 1s
always a nul line of P,, P;. Hence if any point O in the line of
action of P, is given, that force must lie in the nul plane of O
taken with regard to these two forces.

335. Any conjugate forces equivalent to P,, P, may also be used. Assuming,
for example, any two points 4 and B, their nul planes with regard to these two
forees will interseet in some straight line CD which is the conjugate of 4B,
Art. 308. Any straight line intersecting AB and CD will be a nul line and is @
possible position of the sixth force.

336, The sixth line will remain in involution with the five given straight
lines 1...5 as it revolves round O in the polar plane of 0. The ratios of the forces
P,...P; will however change.

Let the straight line joining O to the intersection of its polar plane with the
transversal a be taken as the sixth line. Then since the sixth line is a nul line of
the forces which act along the transversals, it will also intersect the transversal b.
Thus the polar plane of O intersects the transversals a and b in two points which lie
in the same straight line with O.

The position in space of this straight line may be constructed when the four
straight lines 1, 2, 3, 4 and the point O are known. Let it be called the line ¢ of
the point O with regard to the four lines 1, 2, 3, 4. To construet this line, we
first find the two transversals « and b, we then pass a plane through O and each of
these transversals. The intersection of these planes is the line ¢.

If we had begun by finding the two transversals a', b’ of some other four of the
five given lines say 1, 2, 3, 5, we must have arrived at the same plane as the polar
plane of 0. Thus by combining the forces in sets of four, we may arrive at five
such lines as ¢.  All these lie in the polar plane of O, and any two will defermine
that plane.

When the four lines 1, 2, 3, 4 and the point O are given, the fifth line being
arbitrary, the polar plane of O passes through the fixed straight line c.

337. Since the forces P...P; are in equilibrium the moment of Py and Py
about each of the transversals a, b is zero, Hence as in Art. 334

P, (5a) + Py (6a)=0, Pp(5b) +Pg(6)=0.00iirveremininiees (1).
When the sixth line is in the position ¢, the moment of the sixth force about each
of the transversals @ and b is zero. When the sixth line has revolved in the polar
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plane of O from this position through an angle 6, the moment of the sixth foree
may be found by resolving P, into two forces, one along the line ¢ and the other
along a line d drawn perpendicular to ¢ in the polar plane of 0. The moment of
the first is zero, that of the second is (6a)=Psin 6. (da) or (68)=Pysing. (dp). It
follows from either of the equations (1) that the ratio P, : Py is proportional to sin g
and is therefore greatest when the sizth line is perpendicular to c.

We have assumed that the moments (5a) and (5b) are not both zero, i.e, that the
five given straight lines are not so placed that they all intersect the same two
straight lines; see Art. 320. When this happens the lines 1, 2, 8, 4, 5 alone are in
involution. The equations (1) then show that the foree P, is zero when its line of
action does not intersect the same dirvectors.

338. Ex.1 Ifd, B, C, D, E, F be six lines in involution, the polar plane of
O with regard to 4, B, C, D, E is the same as the polar plane of 0 with regard to
4, B, €, D, F, the forces along E, F not being zero.

For let M be any straight line through O in the first polar plane, then a force
acting along II cau be replaced by five forces along 4, B, C, D, E. But the force
along E can be replaced by forces along 4, B, €, D, F, hence the force along 3 is
equivalent to forces along 4, B, ¢, D, F, i.e. M lies in the second polar plane. The
two polar planes therefore coincide.

Ex. 2. Supposing two transversals, say a and b, to be known, \ve' may take with
regard to these the convenient system of coordinates used in Art. 321. Let 2¢ be the
shortest distance between the transversals, 20 the angle between their directions.
Let (1+u)/(1-p) be equal to the known ratio (5a) : (5b), i.e. to the ratio of the
moments of the fifth force about the transversals @ and b (Art. 334). Show that
the polar plane of O is

xsin @ (h+pc)+y eos 8 (h+¢) - 2 (f5in §+ pg cos 8) =e (uf sin 8 + g cos 6).

This is obtained by substituting in (2) of Art. 334 the Cartesian expression for a
moment given in Art. 266.

Tetrahedral Coordinates.

339. Show that the forces of any system can be reduced to six
Jorces which act along the edges of any tetrahedron of finite volume.
Let ABCD be the tetrahedron, let any one force of the system
intersect the face opposite U in the point ['. Resolve the force
nto oblique components, one along DD’ and the other in the plane
ABC. The former can be transferred to D and then resolved along
the edges which meet at D. The second can by Art. 120 be
resolved into components which act along the sides of ABC.
We shall suppose that the positive directions of the edges ave AB, BC, Cd, AD,
BD, CD; the order of the letters being such that a positive force acting along any
edge tends to produce rotation about the opposite edge in the same standard
direction. See Art. 97. We shall represent the forces which act along these sides
by the symbols Fy,, Fuy, Fy, Iy, F,,, Fy,, The dirvections of the forces, when
positive, are indicated by the order of the suffixes, When we wish fo measure the
forces in the opposite directions, the suffixes are to be reversed, so that Fl,= - F,;.

15—2
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The ratios of the forces F), &c. to the edges along which they act will be represented
by fi» &c. The volume of the tetrahedron is 7.

Ex. 1. Show that the six straight lines forming the edges of a tetrahedron are
not in involution. For, if forces acting along these could be in equilibrium we see,
by taking moments about the edges, that each wounld be zero.

Ex. 2. A force P acts along the straight line joining the points H, X, whose
tetrahedral coordinates are (x, v, 2, u) (', 9, 2, w) in the direction H to K. If this
force is obliguely resolved into six components along the edges of the tetrahedron
ABCD, show that the component F\, acting in the direction 4B is P ;1—;, o] ;,’ ;, :
where the terms in the leading diagonal follow the order indicated by the directions
HEK, AB, of the forces.

To prove this we equate the moments of Fy, and P about the edge CD. The
vesult follows from the expression for the moment given in Art. 267, Ex. 2.

Ex. 3. Two unit forces act along the straight lines HX, LM in the directions
H to K and L to M. If the tetrahedral coordinates of H, K, L, M are respectively
(x, ¥, 5, u), (2" &e.), (o, B, v, 8), (a’, &e.), prove that the moment of [ Ty Ay By U

617A x,y, 2w

oy hered | g ‘
is the determinant in the margin. The order of the rows is deter- | o, 8, %/, &' |
mined by the directions HE, LM in which the forces act; the order of the columns
by the positive directions of the edges. This follows from Art. 266. Notice also

that this expression is the invariant I of the two unit forces.

either about the other in the standard direction is

Ex. 4, The nul plane of the point whose tetrahedral coordinates are (a, 8, v, 8)
with regard to the six forces F, &e. is

Jio | 2w !+f21 @, U +fy | Y +.?5Ni ¥ ® |+f°_>4 X
vl  lad B, o [ Byl Ve
The nul plane of the corner D is Fou+fay+f2=0. The areal coordinates of
the nul point of the face ABC are proportional to fi,, fas, fou.

+fa |

z, y |=0,
8l

a,

Ex. 5. Prove that the invariant T of the six forces is
I=6V (frafss+losfiat o fa)-

Ex, 6. If the six forces have a single resultant prove that it intersects each
face in its nul point. Thence find its equation by using Ex. 4.

Ex, 7. Prove that the central axis of the six forces intersects the face ABC in a
point whose areal coordinates are proportional to fi,—paXy,/6V, fo,—pbX,/6F,
fa1—peX,[6V, where p is the pitch, and X, X, X, are the resolutes along the
sides a, b, ¢ of the face. )

CHAPTER VIIL
GRAPHICAL STATICS.

Analytical view of reciprocal figures.

340. Two plane rectilineal figures are said to be reciprocal ¥,
when (1) they consist of an equal number of straight lines or
edges such that corresponding edges are parallel, (2) the edges
which terminate in a point or corner of either figure correspond
to lines which form a closed polygon or face in the other figure.

If either figure is turned round through a right angle the
corresponding lines become perpendicular to each other but the
figures are still called reciprocal.

Any figure being given, it cannot have a reciprocal unless
(1) every corner has at least three edges meeting at it, (2) the
figure can be resolved into faces such that each edge forms a base
for two faces and two only.

The edges meeting at a corner in one figure correspond to the
edges which form a closed polygon in the other. Since a closed
polygon must have three sides at least, it follows at once that
three edges at least must meet at each corner.

The edges of a figure can sometimes be combined together in
different ways so as to make a variety of polygons. Only those

* The following references will be found useful. Maxwell, On reciprocal figures
and diagrams of forces, Phil. Mag. 1864 ; Edin. Trans. vol. xxvi, 1870, The three
examples mentioned in Arts. 347 and 349 are given by him. Maxwell was the first
to give the theory with any completeness. Cremona, Le figure reciproche nella
statica grafica, 1872; a French translation has been published and an English
version has been given by Prof. Beare, 1890. Fleeming Jenkin, On the practical
application of reciprocal figures to the caleulation of strains on frameworks and some

Jforms of roofs. He also notices that this method of ealeulating the stresses had

been independently discovered by Mr Taylor, a practical draughtsman. He cl_ls-
cusses the Warren girder, Edin. Trans. vol. xxv, 1869. Rankine’s Applied
Mechanics, eleventh edition, 1885. Mauvice Lévy, Statique Graphigue, second
edition, 1886, He treats the subject at great length in several volumes. Culmann,
Die graphische statik, Zurich, second edition, 1875. Major Clarke's Prw:nctples_ aof
graphie statics, second edition, 1888. Graham’s Graphic and analytic statics,
second edition, 1887. Eddy, dmerican Journal of Mathematics, vol. 1. 1878,
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_polygoens which correspond to corners in the reciprocal figure are
to-be regarded as faces. The figure is then said to be resolved
into its faces. The side of any face corresponds to an edge
terminated at the corresponding corner of the reciprocal figure.
Since an edge can have ounly two ends, it is clear that two faces

and only two must intersect in each edge.

841. Maxwell’s Theorem. If the sides of a plane figure are the orthogonal
projections of the edges of a closed polyhedron, that plane figure has a reciprocal
which ean be deduced by the following method.

Let one polyhedron be given and let its polar reciproeal be formed with regard
to the paraboloid #?+y2=2hz. Then we know that each face of either polyhedron
is the polar plane of the corresponding corner of the other. Smith’s Solid
Geometry, Art. 152,

We shall now prove that the orthogonal projections of these two polyhedra on
the plane of wy are reciprocal figures with their corresponding sides at right angles,

The intersection of two faces is an edge of one polyhedron, and the straight line
joining the poles of these faces is an edge of the other. These edges correspond to
each other. Consider the edges which meet at a corner 4 of one polyhedron ; the
corresponding edges of the second polyhedron lie in the polar plane of 4 and are
the sides of the face which corresponds to that corner. Thus for every corner in
one polyhedron there corresponds « face with as many sides as the corner has edges.

‘We shall next prove that the projection of each edge of one polyhedron is at right
angles to the projection of the corresponding edge of the other. To prove this we
write down the equations to the faces of one polyhedron which are the polar planes
of the two corners (&9¢), (£'9'¢’) of the other. These are

h(z+{)=aftyn,  h(z+{) =24y’

Eliminating z, we have the equation to the projection of an edge of the first
polyhedron, viz. I ({—{")=x (£~ &)+y (n—»'). The equation to the projection of
the edge joining the two corners is (y—u) (§-£)—(x—£) (p-n)=0. These two
projections are evidently at right angles.

It is useful to notice that the pole of the plane z=dAx+By+C is the point
whose coordinates are f=hd, n="1B, {=-C.

Ex. Bhow that Maxwell’s reciprocal is not altered (except in position) by
moving the paraboloid parallel to itself, and remains similar when the latus rectum
of the paraboloid is changed. What is the effect on the reciprocal figure of moving
the corners of the primitive polyhedron so that its projection is unchanged ?

342. Cremona’s Theorem. Another construction hasbeen given by Cremona.
Let one polyhedron be given and let a second be derived from it by joining the
poles of the faces of the first. The Cremona-pole of a given plane is a cerfain
point which lies on the plane itself. If the edges of these two polyhedra are
orthogonally projected, these projections are reciprocal figures with their corre-
sponding edges parallel.

Supposing the projection to be made on the plane of xy, the Cremona-pole may
be defined in any of the following ways. Statically, the Cremona-pole of a plane
is the nul point of that plane for a system of forces whose equivalent wrench is
situated in the axis of z and whose pitch is h. 4nalytically, the Cremona-pole of
the plane z=dAx+By+C is the point = -LB, n=hd, {=C; see Art. 302.
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Geometrically; let the plane intersect the axis of z in ' and make an angle’'¢ with
that axis. The pole O lies on a straight line CO drawn in the given plane perpen-
dienlar to the axis of z so that CO=h cot ¢.

We easily deduce Cremona’s construction from that of Mawwell. If we turn
Maxwell’s reciprocal figure round the axis of z through a right angle, the coordi-
nates of the pole nged by him become &= — kB, n=hd, {=-C. If we also change
the sign of §, the coordinates become the same as those of the pole used in Cret.nona.’s
construction, The effect of the rotation is that the corresponding lines in the
projections of the two polyhedra become parallel, instead of perpendicular. T.he
effect of the change of sign in { is that we replace the reciprocal polyl?edron 'by its
image formed by reflexion at the plane of wy as by a looking-glass. Smce this last
change does not affect the orthogonal projections on the plane of ay, it follows that
the two constructions lead to the same reciprocal figures, except that the corre-
gponding lines are in one case perpendicular to each other, in the other parallel.

843, Hzample of a reciprocal figure. The fig. 2 is composed of 8 corners,
18 edges and 12 triangular faces each having an angular point at O or 0’. " The
hexagon encloged by the six edges marked 1...6 not being included as a face, the
figure may be regarded as the orthogonal projection of a polyhedron formed by
placing two pyramids on a common base ABCDEF with their vertices on the same
or on opposite sides. The figure therefore has a reciprocal.

E

¥ 8

To construet this reciprocal we draw the two polar planes of 0, 0’; these
intersect in some line LIMN... whose orthogonal projection is by Maxwell’s theorem
at right angles to that of 00’. In fig. 1, the projection has been tm‘n?d round
through a right angle so that corresponding lines are parallel. Accordingly the
projection of the intersection LMN... has been drawn parallel to that of 00,
Since 6 edges meet at O and (', their polar planes give the two hexagons 1...6,
1'...6'. Since four edges meet at each of the other corners, the polar planes l:-’f
these corners supply six quadrilateral faces to the reciprocal figure, the edges 11,
29', 33", &e. of fig. 1 being parallel to the edges 1, 2, 3, &e. of fig. 2. _

The two edges 12, 1'2', lie in the planes of the two hexagonal faces and also in the
planes of the quadrilaterals, they therefore intersect in the straight line LMN. !

Fig. 1 will represent the general form, either of the reciprocal polyhedron, or its
projection. The reciprocal figure thus construeted has 8 faces, 12 corners and
18 edges.
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344. In the same way, when any plane figure is given, the polyhedron of
which it iz the projection can generally he found by erecting ordinates at the
corners and joining the extremities. We must however take care that the faces
thus constructed are planes. When the faces of the given figure are triangles, this
condition is satisfied whatever be the lengths of the ordinates because a face
bounded by three straight lines must be plane. It is also clear that when a figure
is the projection of a polyhedron the area enclosed in that figure must be covered
twice (or an even number of times) by the faces,

845. Reciprocal figures are usually constructed by drawing straight lines
parallel to the edges of the given figure, assuming of course the properties already
proved. To sketch fig. 1, we first draw from an assumed point I, the straight
lines LMN, L21, L2'1", parallel respectively to 00, 04, 0’A. Assuming another
point 2 on L1 we draw 22', 2 parallel to 4B, OB, then in the figure of Art. 343
2'M is parallel to O'B, The same is therefore true by similar figures (or by the
properties of co-polar triangles) for all positions of the point 2 on L1. A point 3
being taken on 2M we draw 83', 3N, 3'N parallel to BC, 0C, 0'C, and so on for
the eorners 4, 5, 6, the point 1 being known as the intersection of R6 and L2. If
any one of these corners were chosen differently, say if 6 were moved nearer @, we
obtain a new triangle R11’ having its vertices on the straight lines LM, 12, L2',
and two sides R1, R1', parallel to their former directions, Hence by the properties
of eo-polar triangles the third side 11’ is also parallel to its former direction.

346. Mechanical property of reciprocal figures. Let
two equal and opposite forces be made to act along each edge of a
framework, one force at each end. If their magnitudes are pro-
portional to the corresponding edges of the reciprocal figure, the
forces at each corner are in equilibrium.

This theorem follows at once from the fact that the edges
which meet at any corner in one figure are parallel to the sides of
a closed polygon in the other figure.

For example, let figure 1 of Art. 343 represent a framework of 18 rods freely
hinged at the corners, and let some of the rods be tightened so that the whole
figure is in a state of strain. The stress along each rod is then determined by
measuring the length of the corresponding edge of the reciprocal figure when that
figure has been drawn. See also Art, 854.

347. Since each corner of a framework is in equilibrium
under the action of the forces which meet at that' corner, a
corresponding polygon of forces can be drawn. There will thus
be as many partial polygons as there are corners, When a
reciprocal figure can be drawn, these polygons can be made to
fit into each other so that every edge is represented once and
once only in the complete force polygon. But if either of the
conditions in Art. 340 were violated, so that a reciprocal diagram
is impossible, the partial polygons may not fit completely into
each other. The result would therefore be that one or more of
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the forces would be represented by equal and parallel lines
situated in different parts of the figure. Nevertheless some of
the partial polygons may be made to fit, just as a portion of the
framework may be regarded as the projection of a portion of some
closed polyhedron. The force diagram thus imperfectly con-
structed may yet be of use to calculate the stresses.

i Y S« g

D J

Fig. 1.

As an example of this, consider the framework represented in ﬁg..l, in which
the rods F, G; L, M; &c. are supposed to cross without mutual a,etj:uu. If one
yod is tightened, the resulting stresses along the others are determinate, yet a
complete reciproeal figare cannot be constructed. The rod N forms an edge o‘f four
faces, viz. NFH, NGI, NJL, and NIM, so that if there could be a reclproca‘a.l figare,
the line corresponding to N would have four extremities, which is impossible, In
this ease we can draw a diagram, represented in fig. 2, in which each of the forces
H, I, J, K are represented by two parallel lines.

gas. Eaxternal forces. Let us remove the six bars which form the outer
hexagon of fig. 1 in Art. 343 and also the connecting bars 11', 22", &c. We now
apply at the corners 1...6 of the remaining hexagon forees P,...P; to replace the
stresses along the bars which have been removed. We thns have a framework
consisting only of the bars 12, 23, &e. hinged at the eorners and acted on by. the
now external forces Py...P;. This figure resembles the funicular polygon rleaenb.ed
in Axt. 140, except that the forces which act at the corners are not necessarily
vertical, When the external forces are given we modify the polygon in figure 2 to
suit their magnitudes, see Art. 352. When therefore the stresses of a framework
are caused by the action of external forces acting at the corners, these stresses can
be graphically deduced when we can complete the figure in such a manner that a
reciprocal can be drawn. It is however not nsual actunally to complete the fignre,
for the stresses which would exist in these additional bars if supplied are not
required. It is sufficient to draw only so much of the figure as may be necessary
to determine the stresses in the given framework.

349. A different mode of lettering the two figures is sometimes used, by which
their reciprocity is more clearly
brought into view. Since the lines
which terminate in a corner of
either figure correspond to lines
which form a closed polygon in the
other, it is obviously convenient to
represent the corner in one figure
and the polygon in the other by the
same letter. In this way, the sides

Fig. 3. Fig. 4.
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844. In the same way, when any plane figure is given, the polyhedron of
which it is the projection can generally be found by erecting ordinates at the
corners and joining the extremities. We must however take care that the faces
thus constructed are planes. When the faces of the given figure are triangles, this
condition is satisfied whatever be the lengths of the ordinates because a face
bounded by three straight lines must be plane. It is also clear that when a figure
is the projection of a polyhedron the area enclosed in that figure must be covered
twice (or an even number of times) by the faces.

3845. Reciprocal figures are usually constructed by drawing straight lines
parallel to the edges of the given figure, assuming of course the properties already
proved. To sketch fig. 1, we first draw from an assumed point I, the straight
lines LMN, L21, L2'l, parallel respectively to 00, 04, 0’A. Assuming another
point 2 on L1 we draw 22/, 2} parallel to 4B, OB, then in the figure of Art. 343
2'M is parallel to O'B. The same is therefore true by similar figures (or by the
properties of co-polar triangles) for all positions of the point 2 on L1. A point 8
being taken on 2M we draw 83/, 3N, 8'N parallel to BC, OC, 0'C, and so on for
the corners 4, 5, 6, the point 1 being known as the intersection of R6 and L2. If
any one of these corners were chosen differently, say if 6 were moved nearer Q, we
obtain a new triangle R11’ having its vertices on the straight lines L3I, L2, L2/,
and two sides R1, R1', parallel to their former directions. Hence by the properties
of co-polar triangles the third side 11’ is also parallel to its former direction.

346. Mechanical property of reciprocal figures. Let
two equal and opposite forces be made to act along each edge of a
framework, one force at each end. If their magnitudes are pro-
portional to the corresponding edges of the reciprocal figure, the
forces at each corner are in equilibrium.

This theorem follows at once from the fact that the edges
which meet at any corner in one figure are parallel to the sides of
a closed polygon in the other figure.

For example, let figure 1 of Art. 343 represent a framework of 18 rods freely
hinged at the corners, and let some of the rods be tightened so that the whole
figure is in a state of strain. The stress along each vod is then determined by
measuring the length of the corresponding edge of the reciprocal figure when that
figure has been drawn. See also Art. 354.

347. Since each corner of a framework is in equilibrium
under the action of the forces which meet at that: corner, a
corresponding polygon of forces can be drawn. There will thus
be as many partial polygons as there are corners. When a
reciprocal figure can be drawn, these polygons can be made to
fit into each other so that every edge is represented once and
once only in the complete force polygon. But if either of the
conditions in Art. 340 were violated, so that a reciprocal diagram
is impossible, the partial polygons may not fit completely into
each other. The result would therefore be that one or more of
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the forces would be represented by equal and parallel lines
situated in different parts of the figure. Nevertheless some of
the partial polygons may be made to fit, just as a portion of the
framework may be regarded as the projection of a portion of some
closed polyhedron. The force diagram thus imperfectly con-
structed may yet be of use to calculate the stresses.

Fig. 1.

As an example of this, consider the framework represented in fig. 1, in which
the rods F, G; L, M; &ec. are supposed to cross without mutual a,eti:uu. If one
vod is tightened, the resulting stresses along the others are determinate, yet a
complete reciprocal figure cannot be eonstrueted. The rod N forms a.n edge o.f four
faces, viz. NFH, NGI, NJL, and N K3, so that if there conld be a rt.eclproc?.l figare,
the line corresponding to N would have four extremities, which is impossible. In
this case we can draw a diagram, represented in fig. 2, in which each of the forces
H, I, J, K ave represented by two parallel lines.

3a8. Eaternal forces. Let us remove the six bars which form the outer
hexagon of fig. 1 in Art. 3¢3 and algo the connecting bars 11, 22/, &e. We now
apply at the corners 1...6 of the remaining hexagon forces Pp...P, to veplace the
stresses along the bars which have been removed. We thus have a framework
consisting only of the bars 12, 23, &c. hinged at the corners and acted on by. the
now external forces Py...Py. This figure resembles the funicular polygon deacrlb.enl
in Art. 140, except that the forces which act at the corners are not necessarily
vertical, When the external forces are given we modify the polygon in figure 2 to
suit their magnitudes, see Art. 352. When therefore the stresses of a framework
are caused by the action of external forces acting at the corners, these stresses can
be graphically deduced when we can complete the fizure in such a manner that a
reciprocal can be drawn. It is however not usual actually to complete the figure,
for the stresses which would exist in these additional bars if supplied are not
required. It is sufficient to draw only so much of the figure as may be necessary
to determine the stresses in the given framework.

349. A different mode of lettering the two figures is sometimes used, by which
their reciprocity is more clearly
brought into view. Since the lines

§ c " g D /ﬂQ
which terminate in a corner of D -
either figure correspond to lines g S R 4 o D
which form a closed polygon in the Q1P BS
other, it is obviously convenient to 4 /R D = D >

S

represent the corner in one figure
and the polygon in the other by the

o Fig. 4.
same letter. In this way, the sides Fig. 3. 18
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which meet in any corner 4 of fig. 3 are parallel to the sides which bound the
space 4 in fig. 4, and the sides which bound the space P are parallel to those
which meet at the corner marked P. Any side in one figure such as CD is
bounded by the spaces P and ¢ and is therefore parallel to the straight line PQ in
the other figure. This method of lettering the figures is called Bow’s system. On
the economics of construction in velation to framed structures (Spon, 1873),

Fig. 6.

Another method of lettering the two figures has been used by Maxwell. Cor-
responding lines are represented by the same letter, but with some distingnishing
mark; thus large letters may be used in one figure and small ones in the other.
This method is illustrated in the diagram, which represents two reciprocal figures.

850, d rectilinear figure being given, show how to find a reciprocal. This may
be best explained by considering an example. In the case of fig. 3 or 4, where all
the faces are triangles, the reciprocal of either can be found by circumseribing
circles about the faces. The straight lines which join the centres, two and two,
are clearly perpendicular to the six sides of the given figure. One reciprocal figure
having been thus constructed, any similar figure will also be reciprocal.

In more complicated cases such circles eannot be drawn. Let us consider
how the reciprocal of fig. 5 in Art. 349 may be constructed. In drawing the
reciprocal of a figure, it is generally convenient to begin with a corner at which
three sides meet, for the reciprocal triangle corresponding to this cormer will
determine three lines of the reciprocal figure. By drawing the lines a, b, ¢ parallel
to 4, B, ¢ we construet the triangle reciprocal to the corner at which 4, B, C
meet. Through the intersection of b and ¢ we draw a parallel ¢ to E; because
B and C form a triangle with B. In the same way d is drawn parallel to D
through the intersection of @ and b. We next notice that, since D, E, F, G form
a polygon in one figure, the lines f and y may be constructed by drawing parallels
to I and G through the intersection of ¢ and d. Again the lines 4, ¢, K, L, H
form a closed polygon, hence the lines k, I, h must all pass through the intersec-

- tion of a and ¢. The line 7 is drawn parallel to I through the intersection &, f,
Lastly the line j is drawn parallel to J through the intersection g, k, and unless it
passes through the intersection of I and ¢, a reciprocal figure cannot be formed. It
follows however from the theorem in Avt. 841 that this condition is satisfied,

Ex. 1. Two points are taken within a triangle, and the lines joining them to
the corners are drawn. Construct the reciprocal figure.

Ex. 2. Three straight lines 44’, BB', CC, if produced, meet in a point; 4B,
BC, C4, A’B', B'C", ("4’ are joined, thus forming three quadrilaterals and two
triangles. Construct the reciprocal figure.
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851, Let ¢ be the number of corners in the given figure, ¥ the number of
sides or edges, F' the number of faces or pniygons. Let C’, E', I be the number
of corners, edges and faces in the reciprocal polygon. It follows from the definition
in Art. 340 that E=F', C=F", F=C('.

The sides of the reciprocal figure are formed by drawing straight lines parallel
to those of the given figure. Taking any straight line AB parallel to one of the
lines of the figure for a base, we construct two new sides by drawing throngh 4 and
B parallels to the corresponding lines in the given figure. Continuing this process,
every new corner is determined by the intersection of two new sides. As in
Art. 151, the assumption of the first line 4B determines two corners, and the
remaining ¢’ -2 corners are deteymined by drawing 2(C’-2) lines in addition
to the assumed line AB. Hence if B'=20"-3 every corner is determined, and
the figure is stiff. This is the condition that a diagram can be drawn in which
the directions of the lines are arbitravily given. If E’ is less than 2¢’-3, the
form of the figure is indeterminate or deformable, If E’ is greater than 2C" -3,
the construction is impossible unless E’--2("+3 conditions among the directions
of the lines are fulfilled.

In the first fizure vepresented in Art. 349, there are four corners, four
triangular faces and six edges; we have therefore in this figure ¢+ F=F+2.
Let another rectilinear figure be derived from this by drawing additional lines.
The effect of drawing a line from a corner P to a point () unconnected with
the figure is to increase. hoth € and F by unity. If we complete a new polygon
by joining ( to another corner P’, we increase both I and E by unity. If we
divide any face into two parts by joining two points on its sides, we again
inerease equally C+F and E. It follows, that if the relation C+F=E+2 hold
for any one figure, the same relation® holds for all rectilinear figures derived from
that one.

Considering both the given figure and the reciprocal, we have the relations

E=F, C=1", F=0', C+F=E+2, '+ F=E+2.

If the given figure is such that C=F, we have E=2C -2, E'=2(C"-2. In this case
the number of corners in either figure is equal to the number of faces, and each
figure has one edge more than is necessary to stiffen it. That either figure may be
possible, a geometrical condition for each must exist connecting the edges. When
the given figure can be regarded as the projection of a polyhedron, it then follows
from Maxwell's theorem that a reciprocal fizure can be drawn. The conditions
just mentioned must therefore be satisfied.

If ¢ <Fasin Art. 848, we have E=2C - 2, E'<2C’ - 2; on the same supposition
the reciprocal figure is indeterminate. If C=>F we have E<2C -2, E'=2C"-2; in
this case the construction of the reciprocal figure is impossible unless € - F+1
conditions are satisfied.

# This is the same as the relation (first given by Euler) which connects the
number of corners, faces and edges of any simply connected polyhedron. We
notice that in any polygon C=F and #=1, so that C+F=FK+1. Assuming
any polygon as a base we construct the polyhedron by joining other polygons
successively to the edges. It may easily be shown that, at each addition, we
increase O+ F and F equally., IHence the relation C+F=E+1 holds for wnclosed
polyhedrons. When the final face is added, closing the figure, F' is increased by
unity, ¢ and E remaining unchanged, we therefore have C+F=E+2 for closed
polyhedrons. The limiting case of a polyhedron, all whose corners are in one
plane, is a rectilineal figure having two faces only on each side. In such a figure
Euler's relation must be true.
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Statical view,

352. The lines of action and the magnitudes of the jforces
Py, P,...P; being given, it ts required to find their resultant.

The magnitude and direction of the resultant can be found by
constructing a diagram or polygon of forces in the manner ex-
plained in Art. 36. We draw straight lines parallel and pro-
portional to the given forces and place them end to end in any
order. The straight line closing the polygon, taken in the proper
direction, represents the resultant. Let the forces P,...P, be
represented by the lines 1...5, the line 6 then represents the
resultant in magnitude and reversed direction.

In constructing this polygon no reference has been made to
the points of application of the forces, so that the forces are not
fully represented. It will therefore be necessary to use a second
diagram. This second figure is sometimes called the framework
and sometimes the funicular polygon.

From any point O taken arbitrarily in the force diagram we
draw radil vectores to the corners. These radii vectores divide
the figure into a series of triangles, the sides of which are used to
resolve the forces P, &c. in convenient directions by the use of
the triangle of forces. The side joining O to any corner occurs in
two triangles, and therefore represents two forces acting in opposite
directions. No arrow has therefore been placed on that side.
The arbitrary point O is usually called the pole of the polygon.
The corners are represented by two figures; thus the intersection
of the sides 1 and 2 is called the corner 12 and the straight line
joining O to this corner is called the polar radius 12.

We are now in a position to construct the funicular polygon.
Taking any arbitrary point L as the point of departure, we draw a
straight line LA, parallel to the polar radius 61 to meet the line
of action of P, in 4,. From 4, we draw 4,4, parallel to the
polar radius 12 to meet P, in 4,; then 4,4, is drawn parallel to
the polar radius 23 to meet P, in 4;; then A,4, and 4,4, are
drawn parallel to the polar radii 34 and 45. Finally 4,4, is
drawn parallel to 56 to meet A,L (produced if necessary) in 4,.
Then A4, is the required point of application of the resultant force.

To understand this, we notice that the force P, at 4, is re-
solved by one of the triangles of the force polygon into two forces
acting along LA, and 4,4, respectively. The latter combined

|
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with P, is equivalent to a force acting along 4,4,. This combined
with P, is equivalent to one along 4.4, and so on. We thus see
that all the forces P;, &ec. P; are equivalent to two, one along L4,
and the other along A,4;. These two must therefore intersect in
a point on the resultant force. In the figure P;, drawn parallel
to the line 6, represents a force in equilibrium with P,... P;.

Fig. 2.

Fig. 1.

If we take some point, other than L, as a point of departure
we obtain a different funicular polygon having all its sides parallel
to those of A,4....4, In this way by drawing two funicular
polygons we can obtain (if desired) two points on the line of action
of the resultant.

If we take some point other than O as the pole in the fOl‘l:,',E
diagram, but keep the point of departure L unchanged, we obtain
another funicular polygon whose sides are mot parallel to those
of A,4,...4,. A few of these sides are represented by the dotted
lines. But the resulting point A, must still lie on the resultant.
We thus arrive at a geometrical theorem, that for all poles with
the same force diagram the locus of Ag 1s a straight line.

353. Conditions of equilibrium. In this way we see that,
whenever the force polygon is not closed, the given system of forces
admits of a resultant whose position can be found by drawing any
one funicular polygon.

When the force polygon is closed the result is different. In
order to use the same two figures as before let us suppose ths?t the
six forces P,...P; form the given system. Taking any arbitrary
point L, we begin as before by drawing L4, parall!al to the polar
radius 61. Continuing the construction for the funicular polygon,
we arrive at a point 4, on the now given force Ps. To conclude
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the construction we have to draw a straight line from 4, parallel
to the same polar 61 with which we began. This last straight
line may be either coincident with, or parallel to, the straight line
LA, with which we began the construction. The whole system of
forces has thus been reduced to two equal and opposite forces, one
along 4,7 and the other along its parallel drawn from 4,.

If these two lines coincide, the equal and opposite forces along
them cancel each other. The system s therefore in equilibrium.
In this case the fumiculur polygon drawn (and therefore every
funicular polygon which can be drawn) is @ closed polygon.

If these two straight lines are parallel, the forces have been
reduced to two equal, parallel, and opposite forces. The system s
therefore equivalent to a couple. In this case the funicular polygon
is unclosed. The moment of this resultant couple is the product
of either force into the distance between them.

354. If we suppose the straight lines 4.4,, 4,4, &c., joining
the points of application of the forces to represent rods jointed at
4,, 4,, &e, the forces by which these press on the hinges act
along their lengths, Art. 131. The figure has been so constructed
that the reactions at each hinge balance the external force at that
point. The combination of rods therefore forms a framework each
part of which is in equilibrium under the action of the external
forces, and the stresses in the several rods may be found by
measuring the corresponding lines in the force diagram.

We notice that any set of forces acting at consecutive corners
of the funicular polygon (such as P,, P;, P;) are statically equiva-
lent to the tensions or reactions along the straight lines at the
extreme corners (viz. A;4,and 4,4,). These sides must therefore
intersect in the resultant of the set of forces chosen. Hence,
whatever pole O s chosen and whatever point of departure L 1s
taken, the locus of the intersection of any two corresponding sides
of the fumicular polygon (such as A4, and 4,4,) is a straight
line. In a closed funicular polygon this straight line is the line of
action of the resultant of either of the two sets of forces separated
by the sides chosen. Thus the sides 4,4,, 4,4; meet in the
resultant either of P,, P,, P, or of P,, P,, P,.

355, It may be notficed that fig. 1 does not admit of a reciproeal because the
lines representing the forces P;...F; do not form the edges of any face. Neverthe-

less a force diagram has been constructed. The reason is that fig. 1 is a part of a
more complete figure which does admit of a reeiproeal, Avt. 343. It follows from
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Art, 348 that if we complete the figure by drawing another funicular polygon

corresponding to some other pole O, the whole figure becomes the projection of a

polyhedron and therefore admits of a reciprocal. And so it will be found that the
figures drawn to calculate the stresses of a framework are, in general, incomplete
reciprocal figures, The parts essential to the problem in hand are skefehed and
the rest is omitted. The importance of the theory of reciprocal figures is that it
enables us to investigate the relations of the several parts of the figure by pure

" geometry.

356. Parallel forces. When the forces are parallel, both

the force diagram and the }
funicular polygon are sim- 1A, /
plified, see Art. 140. Thus / 3

let A,4,, 4.4., 4.4,
A, A, be light bars hinged
together at A,, 4,, 4;.
Also let the weights P,
P,, P, act at 4,, 4,, 4;. L,

Here the force diagram is a straight line ab divided into seg-
ments representing the forces Py, P,, Ps. If Oa, Ob be parallel to
the extreme bars A,4,, A,4,, then these lengths represent the
tensions of these bars, and the lengths drawn from O to the corners
12, 23 represent the tensions of the intervening bars.

To find the resultant of three given forces P, Py, P; we assume
any arbitrary pole O in the force diagram and draw the corre-
sponding funicular polygon A,A,...A,. The extreme sides 4,4,,
A4, produced meet in a point on the line of action of the
resultant. The magnitude is obviously the sum of the given
forces, and its direction is parallel to those forces.

[E]

S

@

a57. The force polygon being given, and the point L of departure, let the pole
move from any given position O along any straight line 00'. Prove (1) that each
side of the funicular polygon turns round a fized point, and (2) that all these fized

_points lie in a straight line, which is parallel to the straight line 00’. This theorem
follows from the ordinary polar properties of Maxwell’s reciprocal polyhedra,
Art. 343, The following is a statical proof.

Referring to the figure of Art. 352, let L, M, N &e. be the points of intersection
of corresponding sides of two polygons constructed with O, O respectively as poles.
Let (Ryy, Boy) (R, R'y) be the reactions along the sides which meet on the force P,
on the two polygons. Since these have a common resultant P, the four forces
Ry, Ry, Ry and Ry, are in equilibrium. Hence the resultant of Ry, R’y acting at
T. must balance the resultant of R,,, R, acting at M. Each of these resultants
must therefore act along LI, But looking at the force polygon, the forces Ry, By
are represented by the polar radii drawn from O, 0" to the corner 61. Hence the
vesultant of Ry, R’y is parallel to 00’. Similarly MN is parallel to 00’. Hence
LMN is a straight line. [Lévy, Statique Graphique.]
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Let a third funicular polygon be drawn corresponding to a third pole 0"
situated on OO0'. If this funicular polygon beginning at I, intersect the first in
M’, N’,&ec., both LMN &e. and LM'N' &c. are parallel to 000", hence M
coincides with M’, N with N’, and so on. The points M, N, &ec. are therefore
common to all the funicular polygons. \

Find the locus of the pole O of a given force polygon that the corresponding
Sfunicular polygon starting from one given point M may pass through another given
point N. The locus is known to be a straight line parallel to MN: the object is
to construct the straight line.

Case 1. If the given points M, N lie between any two consecutive forces (say
Py, Py), we may take MN as the initial side 4,4,. The pole O must therefore lie
on the straight line drawn through the corner 12 of the given force polygon parallel
to the given line 4,4, (see Art. 352).

Case 2. Let the point ] lie between any two forces (say Py, P,) and N between
any other two (say P,, P,). We can remove the intervening force P,, and replace
it by two forces acting at A and N each parallel to Py; let these be Q,, Q.', Art. 360.
Similarly we can replace the other intervening force P, by two forces, each parallel
to Py, acting also at M and N ; let these be Q,, Q5. If we now adapt the given
force polygon to these changes, the sides 2 and 3 only have to be altered. We have
to draw forces parallel to @y, @y, @), Q., beginning at the terminal extremity of
the force 1 and ending (necessarily) at the initial extremity of the force 4. The
points 3, N now lie between the two consecutive forces @y @', hence by Case 1 the
locus of O is the straight line drawn parallel to MN through the intersection of
these forces in the force diagram. [Lévy, Statique Graphigue.]

With given forees, show how to describe a Junicular polygon to pass through any
three given points L, M, N.

‘We first find the locus of the pole O when the funicular polygon has to pass
through L and M, and then the locus when it has to pass through L and N. The
intersection is the required point.

With given forces show how to describe a funicular polygon so that one side may
be perpendicular to a given straight line.

Suppose the side 4,4, is to be perpendicular to a given straight line, then the
polar radius 12 is also perpendicular to that line, Art. 352. Hence the pole O must
lie on the straight line drawn through the corner 12 of the foree polygon per-
pendicular to the given straight line,

Ex. Prove that, if the resultant of two of the forces is at right angles to the
resultant of one of these and a third force of the system, a funieular polygon can be
drawn with three right angles, [Coll. Ex., 1887.]

858. If we remove any set of consecutive forces Jrom a funicular polygon, and
replace them by other forces statically equivalent to them, show that the sides
bounding this set of forces remain fixed in position and direction though not in length.
Suppose we replace Py, P; by their resultant, then in the force diagram we replace
the sides 4, 5 by the straight line joining 34 to 56, The polar radii 34 and 56 are
therefore unaltered. But the bounding sides d,4,, 4 54 are drawn parallel to these
bounding radii from fixed points d,, 4,, hence they are unaltered in position and
direction.

859. If the jorces are not in one plane, show that in general there is o
Junicular polygon. Let the resultant of P;, P,,..P, be required, and if possible
let A;4,...d, be a funicular polygon. Then this polygon must satisfy two
conditions ; (1) since any one force P can be resolved into two components acting

T ——————
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along the adjoining sides, each foree and the two adjoining sides must lie in one

plane, (2) the components of two consecutive forces along the side joining their
points of application must be equal and opposite, When the forces lie in one
plane, the first condition is satisfied already and the second condition alone has to
be attended to, and this one condition suffices to find all the possible polygons.

If any one side 4,4, of the polygon is chosen, the first condition in general
determines all the other sides. To show this we notice that the plane through 4,4,
and P, must cut P, in A4,; thus 4,4, is determined and so on round the polygon.
Thus there are not sufficient constants left to satisfy the second condition, though
of course in some special cazes all the conditions might be satisfied together.

860. Ex. 1. Prove the following construction to resolve a given force P,
acting at a given point A, into two forces, each parallel to P, and acting at two
other given points A4,, 4;. Let a length ac represent P, in direction and magni-
tude on any given scale. Draw a0, c¢O parallel to 4,4,, 4,4, respectively, and
from their intersection O draw Ob parallel to 4,4, to intersect ac in b  Then ab
and bc represent the required components at 4, and 4,.

Another construction, Produce P, fo eut 4,4; in N. Then 4N and N4,
represent the forces at 4; and 4, respectively on the same scale that 4,4, represents
the given force P,. These would have to be reduced to the given scale by the
method used in Euelid vr. 10.

Ex. 2. Bhow that a given force P can be resolved in only one way into three
forees which act along three given sfraight lines, the force and the given straight
lines being in one plane. Prove also the following construction. Let the given
straight lines form the triangle 4 BC, and let the given foree P intersect the sides
in L, M, N. To find the force § which acts along any side 4B, take Np to
represent the force P in direction and magnitude, draw ps parallel to CN to
interseet AR in s, then Ns represents the required force S. See Art. 120, Ex. 2,

Let @, R, S be the forces which act along the sides. The sum of their moments
about ¢ must be equal to that of P. The moment of S about C is therefore equal
to that of P. Since ps is parallel to CN, the areas CNp and CNs are equal, and
therefore the moment of Ns about C is equal to that of P. Hence Ns represents S.

Ex. 3. Show how to resolve a couple by graphic methods into three forces
which shall act along three given straight lines in a plane parallel to that of
the couple. Prove also the following construction. Move the couple parallel to
itself until one of its forces passes through the corner C of the given triangle, and
let the other force intersect 4B in N. Take Np to represent this second force, and
draw ps parallel to CN to meet 4B in 4, then the required force along the side 4B
is represented by Ns.

861. A light horizontal rod A4y is supported at its two ends 4, A; and has
weights W, W,, W,, W, attached to any given points 4,, Ay, Ay, A, It is
required to find by a graphical method the pressures on the points of support.

Here all the forces are parallel, and the force diagram becomes a straight line.
Let the line ab be divided into four portions representing the four weights W,... W,
while b¢c and ca represent the pressures R' and R at d4; and 4,. We have to
determine the position of c.

Taking any pole O, we draw the polar radii joining O to the extremities of the
lines which represent the forces, Drawing parallels beginning at 4, we sketch a

R. 8. 1. 16
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funieular polygon represented by 4,B,...B;. The polar radius Oc must be parallel
to the line B4, closing the funicular. Thus ¢ has been found and therefore the
two pressures R, R'.

Ao A Ay M A, 4 4;

If the rod is heavy, the pressures R, R’ are not affected by collecting the weight
at the centre of gravity., Drawing any funicular, with this additional weight taken
into account, the pressures on the points of support ean be found as before.

362. A light horizontal rod A,d; being supported at its two ends and loaded
with weights W,... W, at the points d,...4,, it i3 required to find the stress couple at
any point M. Art. 145.

The pressures at the two ends having been determined, we describe a funicular
polygon of these six forces, such that it passes throngh 4, and 4;. We shall now
prove that the stress couple at M is Hy, where y is the ordinate of the funicular at
M and H is the horizontal tension.

Supposing the funicular polygon fo be 4,C;...0.4,;, we notice that the system
of rods represented by 4,0, C,C,...Cyd; are in equilibrium under the action of the
weights 777...77,, the vertical pressures R, I/, and the horizontal thrust H of
Aydy, Art. 354, Taking moments about P, the extremity of the ordinate through
M, for the portion 4,...P, we have Hy equal to the sum of the moments of the
pressure R and the weights W), &c. on one side of P, i.e. Hy is the bending
moment of the rod at 37, Art. 143,

To draw the funicular polygon which passes through the points 4, and 4, we
take a pole O at any point on a horizontal line through the point ¢ in the force
diagram and then construct the polygon as before. Since ¢O is parallel to 4,B;
it follows that, when O lies in ¢0’, B, must coincide with 4,. It is evident that
O'c represents the horizontal tension.

If ¢ is moved along ¢0’, the funieular polygon and therefore both the horizontal
tension ¢0’ and the ordinate MP change. The product however, being equal to
the bending moment at A, is not altered: a result which may be independently
verified.

If the rod is uniform and heavy, the moments about A of the weights of the
portions 4,0, I, are not altered by replacing those weights by half weights
placed respectively at A,, M and M, 4,, see Art. 134, If the stress couples at all
the points 4,...4, are required, we can replace the weight of each segment by two
half weights attached to its extremities. In this way the same funicular will
determine all the stress couples.
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363. Frameworks. 7o show how the reactions along the bars
of a framework may be found by graphical methods, the external
forces being supposed to act at the corners.

Let the given framework consist of a combination of three
triangles, such as frequently occurs in iron roofs. Let any forces
P, P,, P,, P,, P, act at the corners 4,, 4,, 4;, 4,, 4;, and let
the whole be in equilibrium. If these forces were parallel three

of them might represent weights placed at the joints, while the
structure is supported on its two extremities 4., 4;.

The five forces are in equilibrium, hence the five lines 1...5
which represent them in the force diagram form a closed pentagon.
We shall now sketch the lines corresponding to the stresses of the
framework.

The framework, as described above, does not admit of a
reciprocal ; let us assume for the present that it can be completed
by drawing the pentagon a,...a;; Art. 355. The proper form of
this addition to the figure is discussed in Art. 365*.

The side 4,4, forms part of a quadrilateral 4,4;a0,. This
quadrilateral corresponds to four lines in the reciprocal ﬁgl}l‘e
which meet in a point. Hence the reciprocal of the straight line

* If we do not refer to the theory of reciprocal figures the argument must be
somewhat altered. As there are more than three forces at several corners of th]i
framework, it will then require some attention to discover the force diagram, thoug
when once known it can be drawn without difficulty to suit the numerical relations
of the bars in any like structure. o .

To discover the line corresponding to 4,45 we notice that the forces at A, rl];us
be represented by a triangle two sides of which are parallel to P; and Ailig! ttﬂ_ﬁﬂi
at A, by a quadrilateral two sides of which are parallel to Py and 4,4;. Asa &*‘iﬁ,
construction we can satisfy these conditions by adopting the 1'_ttle in the text. L]
success of the drawing will test the correctness of the hypothesis, Art. 347.

16—2
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A,4, is a straight line drawn through the intersection of the
consecutive forces 1, 5 parallel to 4,4,. The same argument
applies to every bar of the frame A4,4....4,; each is represented
in the reciprocal by a straight line which passes through the
junction of the consecutive forces at its extremities. This easy
rule enables us to draw the reciprocal figure without difficulty.
Thus the reciprocal of the side 4,4, is a straight line drawn
parallel to 4,4, through the point of junction of the consecutive
forces marked 1 and 2. These straight lines are marked in the
force diagram with the suffixes of the straight lines to which they
correspond in the framework.

The triangle representing the forces at 4, having now been
constructed, we turn our attention to those at the next corner 4,
These will be represented by a quadrilateral. Following the rule,
we draw 45 parallel to 4,4, through the point of junction of the
consecutive forces 4, 5. Thus three sides of the quadrilateral are
known, viz. 5, 15, 45. Through the known intersection of 12 and
15 we draw a parallel to 4,4, completing the quadrilateral. The
sides are 5, 15, 25, 45.

Turning our attention to the corner 4,, we draw 34 by the
rule and again we know three sides of the corresponding quadri-
lateral, viz. 34, 4 and 45. The fourth side is completed by drawing
24 through the known intersection of 45 and 25. The four sides
are 4, 45, 24, 34.

The triangle corresponding to the corner A4; is completed by
Jjoining the known intersection of 34 and 24 to the point of
Jjunction of the consecutive forces 2, 3. By the rule this line
should be parallel to the side 4,4;. This serves as a partial
verification of the correctness of the drawing.

Lastly the forces at the corner 4, must be represented by a
pentagon, but looking at the figure we find that all the sides of
this pentagon, viz. 2, 23, 24, 25, 12, have been already drawn.

The magnitudes of the reactions along the bars of the given
frame may now all be found by measuring the lengths of the
different lines in the diagram.

364. The directions of the reactions along the bars of the
framework are not usually marked by arrows in the force diagram
because two equal and opposite forces act along each bar. It is
more convenient to mark them as bars in tension or in thrust.
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The former are called fies and the latter thrusts. Consider the
corner A,, the bars are parallel to the sides of the triangle 1, 12
and 15. The direction of the forces being known, those of 12 and
15 follow the usunal rule for the triangle of forces. Hence at the
point 4, the forces act in the direction 15, 21. Therefore 4,4, is
in a state of compression, ie. it is a thrust, while 4,4, is in a
state of tension and is a tie. We may represent these states by
placing arrows in the framework at 4,, 4, pointing towards 4,, 4,
respectively and arrows at 4,, 4, pointing from A4,, 4; respec-
tively. Another method has been suggested by Prof. R. H. Smith
in his work on Graphics. He proposes to indicate ties by the
sign + and struts by — These marks may be placed on either
diagram.

365. We should notice that the fizure thus constructed, though sufficient to
find the stresses in the rods, is not a complete reciprocal figure. To enable us to
complete the figure we must first draw such a polygon a,...a;, cutting the lines of
action of the forces, that the whole figure may admit of a reciprocal. Statically,
we see that this polygon must be a funicular of the given forces, for otherwise the
forces at the corners ay...a; would not be in equilibrium, Art. 354. Geometrically,
the polygon shounld be such that the five guadrilaterals aya,4,4,, &ec. are the pro-
jections of plane faces of a polyhedron. This polyhedron is constructed by drawing
ordinates at the corners. We know that, if we draw two funiculars a,...a; and
D,...by of the forces P...P;, the five intersections of aay, byby; agay, bybg; &e. lie in
a straightline LAMN, Art. 357. Referring to Art. 343 (where these funiculars are re-
presented by 1...6 and 1'...6') we see that the five quadrilaterals a,a,b;b,, &c. may
therefore be made the projections of plane faces. We construct the polyhedron by
keeping a,...a; fixed and erecting ordinates at b,...b; proportional to their distances
from LMN. Since the sides 4,4, &e. lie in the planes aya.bb,, &ec. it follows
that the five quadrilaterals a,a,4,4,, &c. are also the projections of plane faces.
The ordinates at 4,...4; may then be drawn.

Taking a,...a; to be a funicular polygon of the forces Py...P; the corresponding
lines on the force diagram are the dotted lines drawn from the corresponding pole
O to the points of junection of the forces. It is evident that these lines are
practically separate from the rest of the figure. Unless therefore we wish fo
assure ourselves that the forces P,...P; are in equilibrium, it is unnecessary to
draw either the funicular polygon a,...a; or the corresponding lines in the force
diagram, It is usual to omit this part of the figure.

866, Method of sections. We shall now show how the reactions are found
by the method of sections. Let it be required to
find the reactions along the rods A.d,, 4,4,
Agd,. Let these reactions be called Q, R, S
respectively. Draw a section cutting the frame
along these rods, and let the points of intersection
be B, C, D. If we imagine the whole structure on
one side of this seetion to be removed, the re-
mainder will stand if we apply the forces Q, R, §
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to the points B, (0, D along the three rods respectively. Let us remove the structure
on the right hand as being the more complicated, we have now to deduce the forces
@, R, S from the conditions of equilibrium of the remaining structure.

In our example not more than three bars were cut by the section, Since there
are only three forees the problem is determinate. By Art. 360, Iix. 2, each force of
any system can be replaced by three forees acting along three given straight lines,
and this resolution can be effected by a graphical construction.

These reactions may also be easily found by the ordinary rules of analytical
staties, as in Art. 120, where this problem is solved by taking moments about the
intersections of these lines.

‘When the figure is so litile complieated as the one we have just considered,
either the method of the force diagram or the method of sections may be used
indifferently. In general each has its own advantages. In the first we find all the
reactions by constructing one figure with the help of the parallel ruler, but if there
be a large number of bars the diagram may be very complicated. In the method of
sections when only three reactions are required we find these without troubling
ourselves about the others, provided these three and no others lie on one section.

867. In these frameworks, each rod, when its own weight can be neglected, is
in equilibrium under the action of two forces, one at each extremity. These forces
therefore act along the length of the rod, and thus the rods are only stretched or
compressed. This is sometimes a matter of importance, for a rod can resist,
without breaking, a tensional or compressing force when it would yield to an equal
transverse force., The structure is therefore stronger than when rigidity at the
joints is relied on to produce stiffness.

In actual structures some of the external forces may not act at a corner, for
instance, the weight of any rod acts at its eentroid. In such cases the resultant
force on any bar must be found either by drawing a funicular polygon or by the
rules of statics. This resultant is to be resolved into two parallel components
acting one at each of the two joints to whieh the rod is attached.

This transformation of the forces which act on a rod cannot affect the distri-
bution of stress over the rest of the structure, so that when these components are
combined with the other forces which act at those joints the whole effect of the
rest of the structure on each rod has been taken account of. So far as the rod
itself is concerned, it is supposed to be able to support, without sensible bending,
its own weight or any other forces which may act on it at points intermediate
between its extremities.

868. Indeterminate Tensions. Let P,, P.,...P, be a system of forces in
equilibrium. TLet 4,...4,, 4",...4’, be two funicular polygons of this system, TLet
the corresponding corners A, A';; d,, 4', &e,
be joined by rods. Let us also suppose that
the external polygon is formed of rods in a
state of tension and the internal polygon of
rods in thrust. It is elear from the properties
of a funicular polygon that the framework
thus constructed will be in equilibrium. If
is also evident that the thrusts along the
crogs rods 4,49 &e. will be equal respectively
to the original forces P;, P,,...P,. In this
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way a frame has been constructed with tensions along the rods apart from all
external forces. See Art. 237. From the property of funicular polygons proved
in Art. 357 the corresponding sides of this frame intersect in points all of which lie
in a straight line,

If there are only three forces the polygons become triangles. Since the forces
P,, P,, Py are in equilibrium the three straight lines 4,4}, 4,4, A;d’s which join
the corresponding angnlar points must meet in a point. Such triangles are called
co-polar. We see therefore that co-polar triangles admit of indeterminate tensions.

Levy's theorem, given in Art. 238, follows also from this proposition. Taking
only six forces, because the figure has been drawn for a hexagon, let (P;, P,),
(Py, y), (Py, P,) be three sets of equal and opposite balancing forces. Let 4,...4;
be any funicular polygon, but let the second funicular polygon be constructed so
that 4, coincides with 4,, and let the pole be so chosen that 4.’ and 4, coineide
with 4; and A, Art. 357. It then follows that the second funicular coincides
throughout with the first. The cross bars 4;d,, d,4;, 4,4, become the diagonals
of the hexagon. Thus a frame of any even number of sides has been constructed
in which the diagonals are in a state of thrust and the sides in tension.

860. The line of pressure. Let us suppose a series of connected bodies,
such as the four represented in the figure, to be in equilibrium under the action of
any forces, say the three P, @, R. We suppose these bodies to be symmetrical
about a plane which in the figure is taken to be the plane of the paper. The first
body is hinged to some fixed support at 4 and also hinged at B to the body BCC.
This second body presses along its smooth plane surface CC’ against a third body
CC'D. This third body is hinged to a fourth body at D, and this lagt is hinged at
E to a fixed point of support.

The pressure at 4 acts along some line 4p and intersects the force P at p.
The resultant of these two must balance the action at the hinge B, and must
therefore pass through B. This force acting at B intersects the force () at ¢, and
their resultant must balance the pressure at CC’. This resultant must therefore

A
A yr

eut 0C' at right angles in some point M. Also the point M must lie within the area
of contact, and the resultant must tend to press the surfaces at CC’ together. This
pressure on the third body acts along ¢M/D and intersects R at D. Finally the
resultant of these two must pass through E.

Tt is evident that the line ApgDE is a funicular polygon of the forces P, @, R.
When therefore such a series of bodies as we have here described rests in equili-
brium with its extremities supported it is sufiicient and necessary for equilibrium
that some one funicular polygon can be drawn which passes through all the hinges
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and cuts at right angles the surface of pressure. This particular funicular polygon
is called the line of pressure,

3870. Let us take an ideal section, such as zy, which separates the whole

system into two parts, and let it be required to find the resultant action across this
seetion,

This action is really the resultant of the forces aeross each element of the
sectional area. But since each portion of the system must act on the other portion
in such a way as to keep that portion in equilibrium, we may also find the resultant
from the general principle that it balances all the external forces which act on
either of the two portions of the system : see also Art. 143. It immediately follows
that the resultant action across zy is the force alveady described which acts along
pq. Similar remarks apply to every section ; we therefore infer that the resultant

action across any section is the force which acts along the corresponding side of the
line of pressure.

If we move the section zy from one end 4 of the system to the other B, there
may be some difficulty in determining which is the * corresponding side of the line
of pressure " when the section passes the point of application of a force. Suppose
for example a to be the point of application of P. If a section as 2y’ is ever so
little to the left of a, the corresponding side is 4p, but when the section is ever so
little on the right of a, the corresponding side is pq. If the section is parallel to
the force P, the side corresponding to any section is the side of the line of pressure
intersected by that section. When therefore the forces are all vertical it will be
found more convenient to consider the actions across vertical sections than across
those inelined.

The resultant action across any section such as 2y’ does not necessarily pass
within the area of that section. The reason is that this action is the resultant of
all the small forces across all the elements of area. As some of these elementary
forces across the same sectional area may be tensions and some pressures, the line
of action of the resultant may lie outside the arvea. If the forces all act in the
same direction like those across the section C'C’ (where two bodies press against
each other), the resultant must pass within the boundary of the section. Some-
times it is more useful to move the resultant parallel to itself and apply it at any
convenient point within the boundary ; we must then of course introduce @ couple.
This is often done when the body 4B is a thin rod. See Art. 142,

871. When the bodies are heavy we may find the action at any hinge or
boundary between two bodies by the same rule. The weight of each body is to be
collected at its centre of gravity and included in the list of external forces. The
resultant action at any boundary is the force along the corresponding side of the
funicular polygon.

But if the action across some section as xy is required, this partial funicular
polygon will not suffice. We must now consider the body BCC’ to be equivalent to
two bodies separated by the plane zy. The weights of each of these portions may
be collected at its own centre of gravity, and a funicular polygon may be drawn to
suit this case. Thus, if @ is the weight of the body BCC’ acting at its centre of
gravity B, we remove () and replace it by two weights acting at the respective
centres of gravity of the portions Bxy and xyCC’. The funicular polygon will
therefore have one more side than before. It also loses the corner on the force @
and gains two new corners which lie on the lines of action of these new weights.
But since the action at B must still balance the external forces whose points of
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application are on the left of B, and the action at M must still ba.la.uce the forces
on the right of CC, it is clear that the sides pB and MD of the funicular polygon
are not altered. Therefore the two corners of the new funicular polygon must lie
respectively on Bq and gD. Thus the new polygon is inseribed in the former partial
Sfunicular polygon.

If we continue this process of separating the bodies into parts, we go on increasing
the number of sides in the funicular polygon, but the side which passes thrc:ugh any
real section is unchanged in position. Finally, when the bodies are subdivided m.ta
elements, the line of pressure becomes a curve. T'his curve will touc{; all the partial
polygons of pressure at each hinge and at each real surface of separation.

EXAMPLES,

a72. Ex. 1. A framework is constructed of eleven equal heavy bars. Nine
of them form three equilateral triangles ABC, BDE, DFG with .their ba:ses 4B,
BD, DF hinged together in a horizontal straight line. The vertmf:s C, E, G are
joined by the remaining two bars. The Warren girder thus formed is st{.pportt.ed ab
its two lower extremities 4, F and loaded at the upper points C, B, G with weights
wy, Wy, w,. Construct a force diagram showing the stresses in the bars.

Ex. 2. A horizontal girder has four bays 4B, BC, €D, DE each 5 feet: s it is
stiffened by three vertical members BE/, CC', DD’ each 3 feet, by h_onzonta.l
members B'C', ¢D’ and by oblique members 4B, B'C, €D, D'E. Find by a
graphical construction the tensions and thrusts produced in the members when a
uniformly distributed load T is supported by the girder. [St John’s Coll., 1893.]

Ex.3. ABCDEFG is a jointed frame in a vertical plane, constructed as
follows. ABCD and GFE are horizontal, 4 being vertically above G ; tiBFG,
BCEF are squares; CD is equal to CE; also BG, CF, DE are t..hree dl{l.gon?,l
stiffening bars. The frame is supported at the points 4 and G, while a \‘vmght is
hung at D. Supposing the weights of each bar to act half at each of its ends,
exhibit in a diagram the stresses in the various bars of the frame. S:how tl.la.t-
those in GF and BC are equal, likewise those in FE and €D, and determine which
bars are struts and which are ties. The supporting force at 4 may be taken to be
horizontal. [Coll. Ex., 1894.]

Ex. 4. A roof ABCD is of the form of half a regular hexagon; it is stiffened
by two eross-beams AC BD; and it rests on the walls at 4 and D. Fi_nd,. kfy a
stress diagram, the.tensions and thrusts in its members produced by a umt.mjm
load of tiles. [8t John’s Coll., 1892.]

Ex. 5. A framework is composed of six light rods smoothly jointed so as t::n
form a regular hexagon ABCDEF whose centre is at 0. The points BF, 04, fJ_(z,
OF are also connected, without disturbing the regularity of the hexagon, by light
rods of which the first two are to be regarded as having mo contact with one
another. If the framework be suspended from 4 and a weight 7" be a.t..ts.ched to D,
show by graphical methods that the thrust in BF will be Wa/3, au.d find the for-ca
along each of the other bars. [Trin. Coll., 1895.]

Ex. 6. A regular twelve-sided framework is formed by heavy loosely ]omtu.:d.
rods and each angular point is ccnnected by a light rod to a pa:g at the centre,
The whole rests on the peg in a vertical plane with a diagonal vertical. \ Show that
the stresses in the rods are indeterminate ; and assuming that the hormonta.l‘roda
are not under stress, draw a diagram in which lines are parallel to and proportional
to the stress in each rod and calculate the stresses. [Coll. Ex., 1893.]
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Ex. 7. The lines of action of six forces in equilibrinm are known. One force
is known, one other pair of the forees are in one known ratio, a second pair ave in
another known ratio. Find a graphic construction determining the magnitudes of
the five undetermined forces. [Math. Tripos, 1895.]

Ex. 8, 4BCD is a rhombus of jointed rods, and OB, 0D are two equal rods
jointed to the rhombus at B and D and jointed at 0. Supposing all the joints
smooth and parallel forces, not in the same line, applied to the framework at 0, il
C'; construct a force diagram. Show that for equilibrium the directions of the
forces must be parallel to BD. [Math. Tripos, 1891.]

Ex.9. Four forces act in the sides AB, BC, CD, DA of a quadrilateral ABCD,

and are proportional to those sides. Construct the funieular, one of whose sides

joins the middle points of 48 and BC, when the thrust in that side is represented
by CA on the same scale as the given forces are vepresented by the sides of the
quadrilateral. [8t John's Coll., 1893.]

Ex. 10. Prove that if the lines of action of (- 1) forces be given, it is always
possible to adjust their magnitudes so that the system of (n-~ 1) forees and their
resultant reversed can hold in equilibrium a framework of jointed bars in the form
of an equiangular polygon of u sides, a force acting at each corner.

[St John's Coll., 1890.]

Ex. 11. Four points 4, B, ¢, D are in equilibrium under forces acting between
every two: prove the following construction for a foree diagram of the system.
With focus D a conie is deseribed touching the sides of the triangle ABC, and I’
is its second focus; D'A’, 'R, I¥(" are drawn perpendicular to the sides of the
triangle ABC ; then D'A'B'C’ is a force diagram in which each side is perpendicular
to the force it represents, [Math. Tripos.]

Let 4D cut B'C’in P; we notice (1) that AD, 4D’ make equal angles with the
tangents drawn from 4, hence the angles PAC’, I'4AD’ are equal; (2) that a circle
can be described about D'B'C'A, henee the angles AC"P, AD'B’ are equal, It follows
that the friangles PAC’, B'AD' are equiangular. Hence AD is perpendicular to B'C’.

Ex. 12, Nine weightless rods are jointed together at their ends; six of them
form the perimeter of a regular hexagon, and the other three each join one angular
point to the opposite one; to each joint a weight 1 is attached, and the frame
is hung in a vertical plane by strings attached to adjacent angles 4, B, so that 4B
is horizontal, and the strings bisect the hexagon angles externally. Find or show
by a diagram the forces in all the rods. [Coll. Bx., 1887.]

Ex.13. Two points P, @ are taken within a hexagon ABCDEF, the point P is
joined fo the corners 4, B, C, D, and ¢ to the corners D, E, I, 4. Construct the
reciprocal figure.

CHAPTER IX.

CENTRE OF GRAVITY.

373. The centre of parallel forces. It has been proved
in Art. 82 that the resultant of any number of Parallel forces
P,, P,, &c., acting at definite points 4,, 4, &e., rigidly connected
together, is a force ZP.

Let the rigid system of points be moved about in any manner
in space; let the forces Py, P, &e. continue to act at these points,

and let them retain unchanged their magnitudes and directions in

space. It has also been proved that the line of a.ction of the
resultant always passes through a point fixed relatively to the
points 4,, 4, &e. This point is therefore regarded as.the point of
application of the resultant. It is called t‘x?e u::entre .of the pg.rallel
forces. The chief property of this point is its fizity relative to
the system of points 4,, 4,, &c. ,

When the forces P;, P,, &c. are the weights of the partlclesf of
a body, the centre of parallel forces is called the centre of gravity.
Thus the centre of gravity is a particular case of the centre of
parallel forces.

374. Definition of the centre of gravity. We t‘ake as a system
of parallel forces the weights of the several particles of a 'bod.?r.
Each particle is supposed to be acted on by a force whlelr} }:S
parallel to the vertical. This force is called gravity. e
resultant of all these forces is the weight of the’body. “Te
infer from the theory of parallel forces that ther_e is a certain
point fixed in each body (or rigid system 0? bodies) such th&}E
in every position the line of action of the weight passes throug
that point. This point is called the centre of gravity 21

* The first idea of the centre of gravity is due to Ax:chlmfdest,;;heodgémﬁzg
about 250 5.c. In his work on Centres of gravity or aggmpo.‘uiw_‘an Sl
the position of the centre of gravity of the parallelogram, thf: imn%zi,um i
rectilinear trapezium, the area of the parabola, the pambo‘ ie Tg};)ford 1,7 92.
the edition of his works in folio printed at the Clarendon Press, g .
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It is evident from this definition that if the centre of gravity

of ia._body is supported the body will balance about it in all
positions.

3.'?5. 4 body has but one centve of gravity. This is evident from the demon-
stration in.the article already quoted. The following is an independent proof.
: I possible let there be two such points, say 4 and B. As we turn the s.stem
into all positions, the resultant keeps its direction in space unaltered. Plage the
body so that the straight line AB is perpendicular to the direction of the resultant
force. Then the line of action of that force cannot pass through both 4 and B. I

.376. Let (@, 11, 2), (., Ys, 2:) &c. be the coordinates of the
points of application of the parallel forces P,, P,, &c. respectively
Lei‘: these coordinates be referred to any axes, rectangular 01:
f}bhque, but fixed in the system. By what has been already proved
m Art. 80, the coordinates of the centre of parallel forces are
>Pu . 2Py
P I=sps =3p.

It is Important to notice that, if all the forces were altered in
the same ratio, the magnitude of the resultant would also be
altered in the same ratio, but the coordinates of its point of
application would not be changed.

PR

377. When the weight of any two equal volumes of a
substancc:: are the same, the substance is said to be homogeneous
or of uniform density. In such bodies the weights of different
volumes are proportional to the volumes. The weight of any

elementary volume dv may therefore be measured by the volume.
Hence by Art. 376 we have

__Jdv.x _  Jdv.y

T=

] _Jdv.y - [fdv.z
fdv I="Tav T Jdy
We have here replaced the 3 by an integral, because the parallel
forces we are considering are the weights of the elements of the
body.

From these equations all trace of weight has disappeared.

We might therefore call the point thus determined the centre
of volume.

When the body is not homogeneous the weights of the
elements are not proportional to their volumes, Let us represent
the weight of a volume dv of the substance by pdv. Here p will
be different, for each element of the body, and will be known as a
function of the coordinates of the element when the structure of
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the body is given. For our present purpose the body is given
when we know p as a function of z, y, 2. We therefore have

[pdv. ;’__fpdv.y ~_Jpdv.z

Jedv > VT Jpdv 0 T Jpdv

In these equations we may replace p by «p, where « is any quantity
which is the same for all the elements of the body. All that is
necessary is that pdv should be proportional to the weight of dv.

We may therefore define p to be the limiting ratio of the
weight of a small volume (enclosing the point (zyz)) to the weight
of an equal volume of some standard homogeneous substance.

For the sake of brevity we shall speak of p as the density of the
body. If the body is homogeneous the product of the density into
the volume is called the mass. If heterogeneous, then pdv is the
mass of the elementary volume dv, and [pdv is the mass of the
whole body. If we write dm = pdw, the equations become
_ Jdm.x _ Jdm.g __ Jdm.z
aj:'[._._ 4 ?‘)‘=J; ‘7“, sz-—

[dm fdm fdm

When we wish to regard the mass of an element as a quality
of the body apart from its weight, we may speak of the point
determined by these equations as the centre of mass.

a7s. Equations similar to these occur in other investigations besides those
which relate to parallel forees. In such cases the quantity here denoted by P or m
has some other meaning. Accordingly the point defined by these coordinates has
had other names given to it, depending on the train of reasoning by which the
equation has been reached. This may appear to complicate matters, but it has the

advantage that the special name adopted in any case helps the reader to understand
the particular property of the point to which attention is called. )

We here arrive at the point as that particular case of the centre of parallel
forces in which the forces are due to gravity. There may therefore be some
propriety in using the term centre of gravity. There are also obvious advantages
in using the short and colourless term of centroid. Another name, much used,
is the centre of inertin. This expresses a dynamical property of the point which
cannot be properly discussed in a treatise on statics.

379. The positions of the centres of gravity of many bodies
are evident by inspection. Thus the centre of gravity of two equal
particles is the middle point of the straight line which joins them.
The centre of gravity of a uniform thin straight rod is at its middle
point. The centre of gravity of a thin uniform circular disc is at
its centre. Generally, if a body is symmetrical about a point, that
point is the centre of gravity. If the body is symmetrical about
an axis, the centre of gravity lies in that axis, and so on.

E:
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380. Working rule. To find the centre of gravity of any
body or system of bodies, we proceed in the following manner.
We divide the body or system into portions which may be either
finite in size or elementary. But they must be such that we know
both the mass and position of the centre of gravity of each. Let
m,, M., &c. be the masses of these portions, and let the coordinates
of their respective centres of gravity be (z,, 1, 2,), (@2, s, 2.), &c.

The weight of each portion is the resultant of the weights
of the elementary particles, and may be supposed to act at the
centre of gravity of that portion (Art. 82). We may therefore
regard the whole body as acted on by a system of parallel forces
whose magnitudes are proportional to m,, m,, &c., and whose
points of application are the centres of gravity of m,, m., &ec.
The position of the centre of gravity of the whole system is
therefore found by substituting in the formule

Sma Smy

- Smz
2m ’

T Zm

381. In using this rule it is important to notice that some of
the masses may be negative. Thus suppose one of the bodies is
such that its mass and centre of gravity would be known if only a
certain vacant space were filled up. We regard such a body as the
difference of two bodies, one filling the whole volume of the body
(including the vacant space) whose particles are acted on by gravity
in the usual manner, the other filling the vacant space but such
that its particles are acted on by forces equal and opposite to that
of gravity, To represent this reversal of the direction of gravity
it is sufficient to regard the mass of the latter body as negative.
Since in the theory of parallel forces the forces may have any signs,

it is clear that we may use the same formule to find the centre of
gravity of this new system.

2]

|

L

Zm ’

382. Ex.1. A painter’s palette is formed by cutting a small circle of radins b
from a circular disc of radius a. If is required to find the distance of the centre of
gravity of the remainder from the centre of the larger circle.

Let O and C be the centres of the larger and smaller circles respectively. Let
O0C=c. We take O as the origin and OC as the axis of #. The masses of the two
cireles are proportional to their areas; we therefore put m;=wa2, m,= —w0% The
latter is regarded as negative because its material has been removed from the larger
circle. The centres of gravity of the two circles are at their centres, hence z;=0,

Zmy  wa*.0—-wb®.c  —D%

#,=c. We have therefore T="—— = ——F——_""=__~*
2 Zm wa®—wh? a*—0?
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The negative sign in the result implies that the centre of gravity of the palette is
on the side of O opposite to C. :

Ex. 2. If any number of bodies have their centre.? of gravity ou. the.same
straight line, the centre of gravity of the whole of them lies on that straight line,

Take the straight line as the axis of z, then the y and z of each centre of
gravity are both zero. Hence by Art. 380 =0, and z=0. ‘

Fx. 3. Two particles of masses m,, m, are placed at 4, B ref;pectwely.. I—‘:rove
that their centre of gravity G divides the distance AB inversely in the ratio of the
masses. Art, 53, Ex. 1. . .

BEx. 4. Three particles are placed at the corners of a triangle ; if their weights,
1y, Wy, Wy, Vary so that they satisfy the linear equx.ution F191+11;132+nﬂfu3=0, show
that the locus of their centre of gravity is a straight line. What is the areal
equation to the straight line? Art. 53, Ex. 2.

Ex. 5. Four weights are placed at four given points in space, the sum of two of
the weights is given, and also the sum of the other two: prove that the}r centre of
gravity lies on a fixed plane. [Math. Tr{pos, 1869.]

Ex. 6. Water is poured gently into a cylindrical cup of uniform thickness al.n'l
density ; prove that the locus of the centre of gravity of the water, the -::_up, and its
handle, is a hyperbola. [Math. Tripos, 1859.]

Tx. 7. Water is gently poured into a vessel of any form ; prove that, when g0
much water has been poured in that the centre of gravity of the vessel and watef is
in the lowest possible position, it will be in the surface of the water. [Math. T., 1859.]

Ex.8 In the fignre of Euclid, Book 1. Prop. 47, if the perimeters of the
squares be regarded as physical lines uniform throughou?, prove t‘hafs tlu? figure
will balance about the middle point of the hypothenuse with that line .horlzontal,
the lines of construction having no weight. [Math, Tripos, 18:{'1!.3.]

If we take the hypothenuse as the axis of x and ifs middle point as origin,
it follows immediately that z=0.

383. Area of a triangle. 7o find the centre of gravity
of a uniform triangular area ABC. :

Let us divide the area of the triangle into elementary portions
or strips by drawing straight

lines parallel to one side of 4

the triangle. Bisect BC in %{,

D and join 4D, and let AD — =8
intersect any straight line G =)

PNQ drawn parallel to BC' FPi=
in N. Then by similar
triangles

y
—
=
Ly
T
T
T
L}
¥
7

PN:NQ=BD:DC; :
but BD = DC, hence PNQ is bisected in . Thus every straight
line drawn parallel to BC is bisected at its intersection with 4D.

Since we can make each strip as narrow as we please, it follows
that the centre of gravity of each (like that of a thin rod, Art. 379)
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is at its middle point. The centre of gravity of each strip therefore
liesin AD. Hence the centre of gravity of the whole triangle lies
in AD; see Art. 382, Ex. 2.

In the same way, if we draw BE from B to bisect AC in E, the
centre of gravity lies in BE. The centre of gravity of the triangle
is therefore at the intersection G of BE and AD.

Since D and E are the middle points of CB and CA4, the
triangle CED is similar to the triangle CAB. Hence ED is
parallel to 4B and is equal to one half of it. The triangles DEG,
ABG are therefore also similar, and DG : GA = ED : AB. Thus
D@ is one half of AG, and therefore D@ is one third of AD.

384. We have thus obtained two rules to find the centre
of gravity of a uniform triangle.

(1) We may draw two median straight lines from any two
a:ngular points to bisect the opposite sides. The centre of gravity
lies at their intersection.

(2) We may draw one median line from any one angular
pomnt, say A, to bisect the opposite side in D. The centre of
gravity ( lies in AD so that AG'=34D.

It will be found useful to observe that the centre of gravity of
the area of the triangle is the same as that of three equal particles
placed one af each angular point of the triangle.

Let the mass of each particle be m. The centre of gravity of
the particles at B and (' is the point D. The centre of gravity of
all three is the same as that of 2m at D and m at 4 ; it therefore
divides AD in the ratio 1:2 (Art. 382). But the point thus
found is the centre of gravity of the triangle.

If the mass of each of these three particles is equal to one-
third of the mass of the triangle, the resultant weight of the three
particles is equal to the resultant weight of the triangle. And
these two resultants bave just been shown to have a common
pomnt of application. Hence these three particles are equivalent to
the triangle so far as all resolutions and moments of weights
are concerned.

Also, when we use the method of Art. 880 to find the centre
of gravity of any figure composed of triangles, we may replace
each of the triangles by three equivalent particles whose united
mass is equal to that of the triangle. The centre of gravity of the

- |
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whole figure hnay then be found by applying the rule to this
collection of particles.

a85. Ex.1. The centre of gravity of the area of a triangle is the same as the
centre of gravity of three equal particles placed one at each of the middle points of
the sides.

Ex. 2. Lengths AP, B(), CR are measured from the angular points of a triangle
along the sides taken in order so that each length is proportional to the side along
which it is measured. Show that the centre of gravity of three equal particles
placed one at each of the points P, ¢, B is the same as that of the triangle.

Prove also that the centres of gravity of the triangles APR, BQP, CRQ, lie on
the sides of a fixed triangle, which is similar and equal to ABC.

Ex. 3. Lengths 4P, BQ, &c. are measured from the corners of a polygon along
the sides taken in order so that each length is proportional to the side along which
it is measured, the sides not being necessarily in one plane. Show that the centre
of gravity of equal particles placed at P, @, &c. coincides with that of equal
particles placed at the corners. Art, 79.

Ex. 4. Similar triangles ABP, BC(Q, &c. are described on the sides 4B, BC,
&e. of a plane polygon taken in order. Show that the centre of gravity of equal
weights placed at P, @, d&e. coincides with that of equal weights placed at 4, B, d&e.

Ex. 5. The perpendiculars from the angles 4, B, C meet the sides of a triangle
in P, @, R: prove that the centre of gravity of six particles proportional respec-
tively to sin? 4, sin®B, sin® C, cos® 4, cos* B, cos® €, placed at 4, B, C, P, @, R,
coincides with that of the triangle PQR. [Math. Tripos, 1872.]

Ex. 6. A point G is taken inside a tetrahedron 4 BCD. Find by a geometrical
construction the plane section which having its corners on the edges D4, DB, DC,
has its centre of gravity at G. Find also the limiting positions of G that the
construction may be possible,

386. Perimeter of a triangle. Ex. 1. A triangle 4BC is formed by three
thin rods whose lengths are a, b, ¢. If H be the centre of gravity, prove that the
areal coordinates of H are proportional to b+e¢, ¢+a, a+b.

Ex. 2. The centre of gravity of the perimeter of a triangle ABC is the centre of
the eircle ingeribed in the triangle DEF, where D, E, F are the middle points of the
sides of the triangle ABC. [Lock’s Statics.]

Ex. 3. If H be the centre of gravity of the perimeter of a triangle, & the centre
of gravity of the area, I the centre of the inscribed circle, prove that H, G, I are in
one straight line, and that GH is one half of IG. If O be the centre of the cireum-
scribing circle, and P the orthocentre, show also that the triangles IGP, HGO are
similar,

Ex. 4. The sides of a polygon are of equal weight. Prove that the centre of
gravity of the perimeter coincides with that of equal particles placed at the corners.
Arxt, 385, Ex. 3.

387. Quadrilateral areas. 7o find the centre of gravity of
any quadrilateral area A BCD.

Using the rule in Art. 380, we replace the triangle 4DC by
three particles situated at A, D, C respectively, each equal to

R. 8. L 17



258 CENTRE OF GRAVITY. [cHAP. IX.

one-third of the mass of ADC. TIn the same way we replace the
triangle A BC by three masses at 4, B, C, each one-third of the
mass of ABC. Each of the masses at A and C'is therefore 31/,
if M be the mass of the whole quadrilateral.

Consider next the masses at B and D; call these m, and m,.
Their united mass is also M, but this total mass 1s une:qually
divided between the particles in the ratio of the. triangles
ABC: ADC, ie. in the ratio BE:ED. To obtain a more

¢ c
D
E

D
A B A B

convenient distribution, let us replace these two masses by three
others placed at B, D, and E. If the masses placed at B and D are
each 1M and the mass placed at & is — 3M, the‘ sum of the masses
is the same as before. It is also clear that their centre of gravity
is the same as that of the masses m, and m,. For by Art. 380 the
distance of their centre of gravity from % is given by

e=%m i :
But the distance of the centre of gravity of the masses m,, m,
from E is given by

_ m.BE—m,.DE _ J_B’_EZ:PE_‘}'_’

s My + M ~ BE+DE’
which is the same as before.

The centre of grawity of the area of the quadrilateral is therefore
the same as that of four equal particles, placed one at each angular
point of the quadrilateral, together with a fifth pgi'tzcie of equal but
negative mass, placed at the intersection of the diagonals.

We may put the result of this rule into an analytical form,
Let (@, ), (2s, ¥s), &c. be the coordinates of the four angular
points and of the intersection of the diagonals, then clearly

E=%($1+$2 + & + 2, — 595):
with a similar expression for 7. See the Quarterly Journal of
Mathematics, vol. X1 1871, p. 109. :
The reader is advised to use the rule of equivalent points
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partly because the analytical result follows at once, and partly
because these equivalent points are used in rigid dynamics to

enable us to write down the moments and products of inertia of a
quadrilateral.

We may replace the four particles at the angular points by four others, equal to
these, placed at the middle points of the sides, or in any of the equivalent positions
deseribed in Art. 385,

388. Ex. 1. Prove the following geometrical construction for the centre of
gravity of a quadrilateral area. Let P, ¢) be points in BD, AC such that Q4, PB
are equal respectively to KC, ED; the centre of gravity of the quadrilateral coincides
with that of the triangle EPQ. Quarterly Journal of Mathematics, vol. vi. 1864.

Ex. 2. A quadrilateral is divided into two triangles by one diagonal BD, and
the centres of gravity of these triangles are I and N. Let MN cut BD in I , from
the greater NT take NG equal to MI the lesser. Prove that G is the centre of
gravity of the area of the quadrilateral. [Guldin.]

Ex.3. A trapezium has the two sides 4B=a and CD=0 parallel. Prove that
the centre of gravity G of the quadrilateral area lies in the straight line joining the
middle points M and N of 4B and GD. Prove also that G divides MN so that
MG : GN=a+2b : 2a+D. [Archimedes and Guldin.]

Notice that the ratio MG : GN does not depend on the height of the trapezium
but only on the lengths of the parallel sides, [Poinsot. ]

Ex. 4. Show that the centre of gravity of the quadrilateral area ABCD
coincides with that of four particles placed at the corners whose weights are
respectively B+v+8, y+8+a, 8+a+f, at+f+y where a, B, v, & are the
reciprocals of E4, EB, EC, ED and E is the interseetion of the diagonals.

[Caius Coll. 1877.]

Ex. 5. Any corner C of a pentagonal area ABCDE is joined to the corners 4,
E, and the joining lines intersect EB, 4D in F, G. Prove that the ordinate z of
the centre of gravity of the pentagonal area is given by

= frg-a-e _b-fd-g
3Z—b+c+d——1_:T; H“(E—m

where a, b, ¢, d, ¢, f, g are the ordinates of 4, B, C, D, E, F, G, referred to any
plane of zy.

389. Tetrahedron. 7o find the centre of gravity of a tetra-
hedron A BCD.

Let us divide the tetrahedron into elementary slices by drawing
planes parallel to one face. Let abc be one of these planes.
Bisect BC' in £ and join DZE, then, exactly as in the case of the
triangle, DE will bisect all straight lines such as b¢ which are
parallel to BC. Join AE and ae, then these are parallel to each
other. Take AF=3AE, then F is the centre of gravity of the
base ABC. Join DF and let it cut ae in f, then by similar
triangles af': AF =Da : Dd =ae : AE. Hence af = 3ae, that is

17—2
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is the centre of gravity of the triangle abc. It therefore follows
that the centre of gravity of every elementary slice lies in DF.
Hence the centre of gravity of the whole tetrahedron lies in DF.
Thus the centre of gravity of a tetrahkedron lies in the straight line
which joins any angular point to the centre of gravity of the opposite
ace.

4 Let K be the centre of gravity of the face BCD; join 4AK.
The centre of gravity also lies in
AK. Now both DF and AK lie

in the plane DAF, they therefore
intersect and the intersection & is
the required centre of gravity.

Exactly as in the corresponding
theorem for a triangle, we have FK
parallel to AD and =34D. Hence 4
from the similar triangles AGD,
KGF, wesee that FG = {GD. Thus
DG =3DF.

To find the centre of grawvity of
a tetrahedron we join any corner
(as D) to the centre of gravity (as F')
of the opposite face. The centre of gravity G lies in DF so that
DG = 4DF.

As in the case of a triangle, we may fix the position of the
centre of gravity of a tetrahedron by means of some equivalent
points. The centre of gravity of @ tetrahedron is the same as that
of jour equal particles placed one at each angular point. The
proof is exactly similar to that for a triangle.

390. Pyramid and Cone. 70 find the centre of gravity of
the volume of a pyramid on o plane rectilinear base.

Proceeding as in the case of the tetrahedron, we divide the
pyramid into elementary slices by drawing planes parallel to the
base. These sections are all similar to the base. The centre of
gravity of each slice, and therefore that of the whole pyramid, lies
in the straight line joining the vertex of the pyramid to the centre
of gravity of the base.

Next, we may divide the base into triangles. By joining the
angular points of these triangles to the vertex, we divide the whole
pyramid into tetrahedra having a common vertex. The centre

ol s oD B | AL AR L DAL W WAL SV LD FAl e N

of each tetrahedron, and therefore that of the pyramid, lies in a
plane parallel to the base such that its distance from the vertex is
# of the distance of the base.

Joining these two results together, we have the following rule
to find the centre of gravity of a pyramid. Join the vertex V to
the centre of gravity F of the base and measure along VF from
the vertex a length VG equal to three quarters of VF. Then G 1s
the centre of gravity of the pyramid.

When the base of the pyramid is curvilinear we regard the
base as the limit of a polygon with an infinite number of elemen-
tary sides. We have therefore the following rule. To find the
centre of gravity of the volume of @ cone on @ circular or on an
elliptic base; join the vertex V to the centre of gravity F of the
base, and measure along VF from the vertex a length V& equal to
three quarters of VI, then G is the centre of gravity of the cone.

891. Ex.1. A cone whose semivertical angle is tan™11/,/2 is enclosed in the
cireumseribing sphere ; show that it will rest in any position.  [Math, T., 1851.]

Ex. 2. A pyramid, of which the base is a square, and the other faces equal
isosceles triangles, is placed in the cirenmscribing spherical surface; prove that it
will rest in any position if the cosine of the vertical angle of each of the triangular
faces be 2. [Math. Tripos, 1859.]

Ex. 3. A frustum of a tetrahedron is bounded by parallel faces ABC, 4'B'C’.
Prove that its centre of gravity G lies in the siraight line joining the centres of
EG _lin4dd o
EE 4 (1+n+n?)
n is the ratio of any side of the triangle 4’B'C" to the corresponding side of the
triangle ABC. [Poinsot.]

Ex. 4. A frustum of a tetrahedron ABCD is bounded by faces 4BC, A'B'C'
not necessarily parallel. Find its centre of gravity.

gravity E, E’ of the faces 4BC, A’B'C’ and is such that

Let DA, DB, DC be regarded as a system of oblique axes, let the distances of
4, B, C, A’, B, ¢’ from D be a, b, ¢, a’, V', ¢. Then
~_a@he. ',‘ﬁ;’.’i’ 7=3 ab®c — a'b'%’ = aabc—a'l'e®
“Fae-aver VVaeaver  racave
To prove these results, we regard the tetrahedra as the difference of two
tetrahedra whose volumes are as abe : a'b'c’.

Ex. 5. The top of a right cone, semivertical angle a, cut off by a plane making
an angle 8 with the axis, is placed on a perfectly rough inclined plane with the
major axis of the base along a line of greatest slope of the plane; in this position
the cone is on the point of toppling over : prove that the tangent of the inclination

g in 2g £ sin 2,
of the plane to the horizon has one of the values 4£un__ﬁ. [Math. T.,1876.]
cos 2a — cos 28

392. Faces and edges of a tetrahedron., Ex.1. Prove that the centre of
gravity of the edges coincides with that of four weights placed at the corners equal
respectively to the sum of the weights of the three edges which meet at that
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corner. Prove also that the same theorem is true if we read faces for edges, Arts.
79 and 86.

Ex. 2. The centre of gravity of the four faces of a tetrahedron is the centre of
the sphere inseribed in a tetrahedron whose corners are the centres of gravity of
the faces of the original tetrahedron.

Ex. 3. If H be the centre of gravity of the faces of a tetrahedron, G the centre
of gravity of the volume, I the centre of the inscribed sphere, then H, G, I are in
one straight line and HG is equal to one third of GI.

Ex. 4. The straight lines which join the middle points of opposite edges of a
tetrahedron are called the median lines. Show that the medians pass through the
centre of gravity G of the volume and are bisected by it.

Place particles of equal weight at the corners 4, B, C, D. The centres of
gravity of the particles at 4, B and C, D are respectively at the middle points 3, N
of the edges 4B, CD. Hence the centre of gravity of all four is at the middle
point G of DIN.

Ex. 5. A polyhedron circumseribes a sphere; show that the centres of gravity
of the volume and of the surface, viz. G and H, and the centre O lie in the same
straight line and that 0G=§0H. : [Liouville’s J., 1843.]

893. The isosceles tetrahedron. An isosceles tetrahedron is one whose
opposite edges are equal. It follows from this definition that the sides of any two
faces are equal each to each.

Ex.1. Show that the following five points are coincident, viz. (1) the centre of
gravity of the volume, (2) the centre of gravity of the six edges, (3) the centre of
gravity of the four faces, (4) the centre of the cirenmseribing sphere, (5) the centre
of the inscribed sphere. Let this point be called G.

Ex. 2. Show that the medians pass through G, are biseeted by it and are
perpendicular to their corresponding edges. Show also that the three medians are
at right angles and form a system of three rectangular axes. Bee Casey’s Spherical
Trigonometry, 1889, Art. 127.

Let M, N, P, @, R, S be the middle points of the edges 4B, CD, BD, AC, AD,
BC., Then PR, @S are parallel to 4B and each iz half 4B ; similarly PS, QR
are parallel and equal to half CD. Since the opposite edges 4B, CD are
equal, it follows that PQRS is a rhombus, and therefore that the diagonals or
medians P(), RS are at right angles, The median MN being perpendicular
to the plane containing P(), RS is perpendicular to PR, @S and therefore to the
edge AB. i

394. Double tetrahedra. To find the centre of gravity of the solid bounded by
six triangular faces, i.e. contained by two tetrahedra having a common face.

Let the common base be ABC and D, D’ the vertices. Join DIV, and let it cut
the base in E. We replace the tetrahedron ABCD by four particles, each one-fourth
its mass situated at the points 4, B, C, D.

Treating the other tetrahedron in the same way, )
we have at each of the points 4, B, C a particle
whose mass is equal to one-fourth of the solid,
and at D, I’ two particles whose united mass 4 B
makes up the remaining fourth of the selid, and
whose separate masses are in the ratio of the
tetrahedra, i.e. in the ratio DE : EIV. Following :
exactly the steps of the reasoning in the case of a D

quadrilateral, it is easy fo see that we can replace these two masses by two other

5

1

_
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masses situated at D and D, and each one-fourth that of the whole solid, together
with a third particle situated at E of the same mass but taken negatively. The
centre of gravity of the whole solid is the same as that of five equal particles placed
at 4, B, €, D, I’ together with a sivth particle equal and opposite to any of the five
placed at the intersection of DD' with the common face ABC.

395, Ex. The centre of gravity of a pyramid on a plane quadrilateral base
is the same as that of five equal particles placed at the five apices, and a sixth
equal but negative particle placed at the intersection of the diagonals of the base.
[To prove this draw a plane through the vertex and a diagonal of the base; the
solid then becomes two tetrahedra joined together at a common face.]

396. Circular arc. To find the centre of gravity of an arc

of @ circle. ‘
Let ACB be the arc, O its centre. Let the radius OC bisect

the arc, let OC=ga, and the angle 4

AOB=2x Let PQ be any element

of the are, and let the angle POC = 6. Q

Then in the fundamental formula of
Art. 380 m=adf, s=acos 8. If = be
the distance of the ceutre of gravity o
of the arc from O,
__ 2ma _fadf?ﬁgg,_ﬁ__as_iﬂ
temw - judd , " B
since the limits of 6 are 6 =—a and %
0 =+a. As this result is frequently
used, it will be convenient to put it into a form which will be
convenient for reference.
Distance of c. G. } _.S_i'_l__(_hilfﬂglﬁ} =l£1251 ek
of are from centre )~ half angle =
This result was given by Wallis.

897. Ex. A series of 2n straight lines are inseribed in a circular arc, each
straight line subtending an angle 26 at the centre. Prove that the distance of their
centre of gravity from the centre is » cos @ sin 2nf/2n sin 6. Thence deduce the
centre of gravity of a cireular arc of any angle. [Guldin’s Problem.]

398. Centre of gravity of any arc. The coordinates of
the centre of gravity of the arc of any uniform plane curve are
given by the formula

Smx  [xds __Jyds
T Sm T fds H= .
where we write for the elementary arc ds its value given in the
differential calculus. Thus we have P
2 Ed

o ()i s 5

de,
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according as the equation to the curve is given in the Cartesian
form y = f(x) or the polar form == F (). If the curve be in three
dimensions we have an expression for Z similar to those written

above. The corresponding expressions for ds are given in works
on the differential calculus.

899. The process of finding the centre of gravity of an are is merely that of
substituting for ds from the given equation to the curve and then integrating. It
seems unnecessary to give at length examples of what is merely integration, we
shall therefore state only the results in a few cases likely to be useful.

Ex. 1. The coordinates of the centre of gravity of an arc of the catenary
y:%(e;—f-e"c] from =0 to ==z are E:x—c(y—s_c-), g:%(y+cs—x).

These admit of a geometrical interpretation. Let PQ be any are of the
catenary. Let the tangents at P and Q meet in T and the normals at P and Q
meet in N. If Z, § be the coordinates of the centre of gravity of the arc P@, then
T=abscissa of T, and j=half the ordinate of N.

Ex. 2. Find the centre of gravity of the are OP of a eycloid between the vertex
O where ¢=0 and the point P, the equations to the curve being 2=2a¢ +a sin 2¢,
y=a-—acos2¢, and the arc OP being s=4asin ¢.
2a (1 - cos ¢)* (24 cos ¢)
3 sin ¢

Result ¥=2a¢ - , and y=1y.

Ex. 8. If G be the centre of gravity of any arc AP of the lemniscate
r®=a® cos 26, prove that OG bisects the angle AOP. One case of this is given in
Walton’s Problems on Theoretical Mechanics.

Ex. 4. The centre of gravity of any arc PQ of the curve +%sin 30 =a® lies in ~

the straight line joining the origin to the intersection of the tangents at P and (.

Ex. 5. If the density at any point of the arc vary as "3, prove that the centre
of gravity of any arec P of the curve 1 sinnf=a" lies in the straight line joining
the origin to the intersection of the tangents at P and Q.

Ex. 6. The locus of the centre of gravity of an arc of given length of the
lemniscate 7%=a2cos 26 is a curve which is the inverse of a concentrie ellipse.

[R. A. Robert’s theorem.]

400. Sectors of circles. To find the cenire of gravity of a
sector of a circle.

Let ACB be the arc of the sector, O its centre. As in Art. 396
let the radius OC bisect the arc, OC'=a and the angle A0B = 2x.
We divide the sector into elemen-
tary triangles of equal area. Let
OPQ be any one of these triangles;
following the rule of Art. 380 we
collect its mass into its centre of
gravity, ie. into a point p where
Op=30P. Repeating this process
for every triangle, we have a series of particles of equal mass
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arranged at equal distances along an arc ab of a circle. These are

represented in the figure by the row of dots. In the limit when

the triangles are infinitely small this becomes a homogeneous arc

of a circle. The distance of the centre of gravity of the sector
from O is therefore given by the result in Art. 396, viz.

— sin o a=3 chord 4B

=% are AR -

This result was given by Wallis.

radius OC.

401. Ex. To jfind the coordinates of the centre of gravity of the area of a
quadrant of a circle 40B.

This is a particular case of the last article, viz. when a=4r. If %, § be the

4 _ 4a
coordinates of G referred to 04, OB as axes, we have T=0G cos a=3—: y Y=g

402. Ex. The distance of the centre of gravity of the area of a segment
a sin®a

of a circle measured from the centre is § ————————, where a is the semiangle
a-sinacosa

of the segment. [Guldin.]

403. Projection of areas. If any plane area is orthogo-
nally projected on any other plane, the centre of gravity of the
projection is the projection of the centre of gravity of the primitive
area.

Let the plane on which the projection is made be the plane of
«y, and let a be the inclination of the two planes. Let dS be any
element of the area of the primitive, dII the area of its projection.
Then by a known theorem in conics dII = dS cos a.  We also notice
that the «# and y coordinates of dS and dII are the same because
the projection is orthogonal. The coordinates of the centre of
gravity of either area are known from z= _221::_2:, 7= %%,
where the m for one area is dII and for the other is dS. Since
these are in a constant ratio, the values of Z and 7 are the same
for each area.

In order to use effectively the method of projections we join to
it the two following well known theorems which are proved in
books on conics: (1) the projections of parallel straight lines are
parallel, (2) the ratio of the lengths of two parallel straight lines
is unaltered by projection. We then use the following rule.

Suppose we had any geometrical relation between the lengths
of lines in the primitive figure, and that we require the corre-
sponding relation in the projected figure. We first express the given
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relation in the form of ratios of lengths of parallel straight lines,
To do this it may be necessary to draw parallels to some of the
lines in the primitive if there are no parallels to them mentioned
in the given relation. Having put the geometrical relation into

the form of ratios, the same relation is true for the projected
figure.

404. Elliptic areas. Since an elliptic area is well known to
be the orthogonal projection of a circle, we can deduce the centres
of gravity of the various parts of an ellipse from those of the
corresponding parts of a circle. The circle used for this purpose
is sometimes called in conics the auxiliary circle.

405. To find the centre of gravity of an elliptic area.
The coordinates of the centre of gravity of a quadrant A0B of
a circle, referred to 04, OB as axes, may be written in the form
z_7_4
DA = OB = gy ceeeeereeeees R
since 04, OB are both radii. But Z and OA are parallel straight

lines, and so also are 7 and OB. Hence these relations hold in the
projected figure also.

Iy then OA, OB are the major and minor semiazes of an
ellipse, the coordinates of the centre of grawvity of the area of the
quadrant are given by (1).

If we make the plane on which we project intersect the
quadrant of the circle in any straight line not one of the bounding
radii the circular quadrant projects into an elliptic quadrant
bounded by two conjugate diameters.

If then 04, OB are any two semiconjugates of an ellipse, the

coordinates of the centre of gravity of the contained area are given
by equations (1).

The position of the centre of gravity of a semi-ellipse was first
found by Guldin.

406. Ex.1. A chord PQ of an ellipse, centre C, passes always through a fixed
point O. Prove that the locus of the centre of gravity of the triangle CPQ is a
similar ellipse. [Coll. Exam.}

. Ex. 2. The centre of gravity G of any elliptic sector bounded by the semi-

diameters OP, OF' lies in the diameter 04’ bisecting the chord PP’, and is such
0G sin @ $oay : %

that U—A,=-§ o where sin @ is the ratio of half the chord PP’ to the semiconjugate

of Od'.

i S
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Ex. 8. The area 4 of any elliptic sector POP' is A=4%ab (¢' - ¢), and the
coordinates of the centre of gravity referred to the principal diameters, are
P e ing ¥ 3
Pt g ¢; e ‘p ] R
where ¢, ¢’ are the eccentric angles of P and F".

cos ¢ —cos ¢’
-0
Ex. 4. Show that the eentre of gravity G’ of the elliptic segment bounded by
any chord PP’ is given by OG'=% é%%?p , where 0’ is the conjugate of PP’
and sin ¢ is the ratio of PP’ to the parallel diameter.
Ex. 5. The centre of gravity G of the area included between an ellipse and the
two tangents drawn from any point T in the diameter 04" produced is given by
0G _ tan’¢sing
04" % tang-¢ '
where sin ¢ is the ratio of half the chord PP of contact to the semiconjugate of OT.
Show also that the coordinates of G referred to the tangents T'P, T'F’ as axes are
ol
TP TP %sin?e tan ¢ — ¢
In the parabola, we have by rejecting the higher powers of ¢, Z=31TP, =1 TF".

Ex. 6. The coordinates of the centre of gravity of the quadrilateral space
bounded by ares of four concentric and coaxial ellipses are
i3 a®b, (sin ¢y’ — sin ¢)) + a%;b, (sin ¢y — sin @) + &e.
ayby (' = @) +azha (o — o) + &e.

and a similar expression for y.

407. Analytical Aspect of Projections. The geometrical method which has
just been used in projecting the ellipse into the circle, or conversely, is really equi-
valent to a change of coordinates. We write z=2, y=g¥’, where g is a quantity
at our disposal, which we so choose that the equation to the ellipse reduces to the
simpler form of a circle. We can obviously extend this principle and apply it to
any curve. Let us write x=f', y=gy’; we thus have two constants instead of one
to choose as we please.

Geometrically this is equivalent to two successive projections. By writing
y=gy' we project the primitive on a plane passing through the axis of x, and
then by writing & =7z’ we project the projection on another plane passing through
the axis of . We may therefore in this generalized projection assume the two
theorems of projection already mentioned, and transform all formule relating to
ratios of parallel lengths from one figure to the other.

Analytically, let the equations to the several boundaries of any area 4 be
changed into those of 4’ by writing @=fa', y=gy". Let (T, 7), (z, §') be the co-
ordinates of the centres of gravity of 4 and 4. Then we have

A=[fdxdy=fg[[dx"dy’ = fgd’.
In the same way F=fZ and y=gj. In these integrals the limits extend over
eorresponding areas,

Ex. Show that we may further generalize the method of projections by
writing z=a+ b’ +cy, y=e+fu'+gy’. If 4, A’ be the areas of corresponding
spaces, prove that 4 =4"(bg - ¢f), F=a+bT +cy, y=¢ +fT +gy.

Notice that this is equivalent to a transformation to a new origin with oblique
axes, followed by the projections.
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408. The method of projection does not apply so econveniently to find the
centres of gravity of hyperbolic areas because we have to use imaginary projections.
By projecting the rectangular hyperbola instead of the circle we may find the centre
of gravity of any hyperbolic area.

We may however infer from any general proposition proved for the ellipse the
corresponding theorem for the hyperbola by using the law of continuity. For
example, (see Ex. 2, Art. 406) the centre of gravity of a sector of an ellipse from
w=x to x=q is given by T=} ak/sin"2k, where k has been written for (1 - a:-"fa")'l" for
the sake of brevity. This must be true also for the imaginary branches of the
ellipse which originate in values of #>a. Put k= k’,\/ ~1 and use the formula in

analytical trigonometry, 8./( - 1)=log (cos 6+ Nj —1sin #), where §=sin"1k; we find
for the centre of gravity of a hyperbolic sector

3
x 2 ! z\? =
L= :——-—I—_--_-——— , where k'= {(E) = 1} .
@ Blog(k + /K1) a

409. Centre of gravity of any area. After having obtained
the fundamental formule of Art. 380 the discovery of the centres
of gravity of any area is reduced to two processes. (1) We have
to make a judicious choice of the element m, and (2) we have to
effect the necessary integrations. The latter process is fully dis-
cussed in treatises on the integral calculus, in fact it is a part of
that science rather than of statics. It will thus be unnecessary to
do more here than make a few remarks on the choice of m with
special reference to centres of gravity.

If the centre of gravity of the area bounded by two ordinates Aa, Bb be required,
we put the equation of the eurve into
the form y=f(x). We choose as our
element the strip PQM. Here PM =y 1
and m=ydx. The coordinates of the
centre of gravity of m are x and 4y.

Hence, Art. 380, the formule to be
used are

_Zme_fyde.x o fydz.dy
T EZm T Jyde’ T Jyde 0l
If the centre of gravity of the
sectorial area A0B is wanted, we put the equation into the form r=j(8). We
choose as our element the triangular strip POQ. Here OP=v, and m=14§r?d6. The
Cartesian coordinates of the centre of gravity of m are 3rcosf and Zrsind. The
formule to be used are
s [472d8 . 47 cos __ [40%d8 . §rsind
S FO T Y=""Tfirde -

Sometimes the equation to the eurve is given with an auxiliary variable ¢, thus
a=¢(t), y=y(t). It isin this form for example that the equation to the cycloid is
generally given. See Ex, 2, Art. 399. In this case when the polar area is required
we quote from the differential caleulus the formula »*dd = zdy — ydz.

Substituting half of this for m in the standard expressions for  and ¥, we have
a convenient formula to find the centre of gravity.

Kl

L ﬂ[l (17

ART. 411.] AREAS BY INTEGRATION.

410. If the figure whose centre of gravity is required is a tria
lateral whose sides are curvilinear, the proper choice for the elemen
on the form of the curves.

If we join the angular points to the origin we have three or fou
areas and centres of gravity may be separately found and thence,
centre of gravity of the figure. Sometimes the bounding curves ¢
species so that when the process has been gone through for one s
for the other sectors may be inferred. In such cases the method
geous. For example, we have already seen how the area and centr

quadrilateral bounded by four elliptic arcs could be immediately d
area and centre of gravity of an elliptic sector. See Ex. 6, Arf. 40t

Putting this in an analytical form, we have for a curvilinear triz
are '."Zf] {ﬁ), T =fg (Bt)s i =f3 (9”}9

o
Smr=1% J '81"‘ cos 0dé + %j;'r' 3cosf'df +3 j Y'r”a cos 0" d@’
[ 3

a
zﬂ,:%jﬁﬁda +3 ;1’-‘&.8’ + %J 11249",
a i,

where a, 8, v are the inclinations of the radii vectores of the ang
axis of z. In forming these integrals we travel round the triangt
the sides in order. : ‘

It might appear at first gight that we are adding together al
instead of adding some together and subtracting the others. B
after a little consideration that in those sectors.wl}lch‘should be st
others the df is made negative by taking the limits in the same
round the triangle. ) 228 .

Instead of joining the angular points o the origin we might d
on the axis of z. We then have

& r r
Z?}ax:jbmjdx+fcx’y’dx’+ I z'y"dx",
a b ¢

where a, b, ¢ are the absciss® of the angular points. As befi

limite we travel yound the sides in order.

411. Sometimes we may use double 'in-tegrfnff.ou. Sua]_;;:ls::m
equations to both the opposite sides of @ curvﬂm]farotﬂz b
using an auxiliary quantity . That 1s, leEt the e
boundary when u=da, and let the same equation rj}[)] L
when u=>b. Let this one equation be ¢ (2, ¥, u)d—- i.eg ha
this, for let 7, (@, ¥)=0, [ (w, y)=0 be the boundar ,)=0

o=(u—a)fi (@ y)+ (-0 {a:,g .
represents one or the other according as u.za or T;th.; S
is not always a convenient mode‘of expressing ¢. B
represent the other two boundaries when v=e¢ an .

When this has been accomplished we have E:;\zeen o
integral calculus. By giving w and v all v.a\l}:.;s e
v=Ff, we obtain a double series of curves divi mi'mbian s |
be t.l,le area of one of these elements and J the

». then m=Jdudv. Hence
regard to u, v, the (jJdudv . g:j Jdud‘l;-y‘
=" dudv ’ B

organ’s Diff- Cale. !

ut

# This is adapted from De M
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To find the Jacobian it may be necessary to solve the equations ¢=0, =0, so as
to express @, y in terms of w, v. We then have J= iy gy

e T Unless we have
been able in the first instance to express ¢ and ¥ so conveniently that this Jacobian
takes a simple form when expressed in terms of u, v, this method may lead to com-
plicated analysis. The advantage of the method is that the limits of integration

t=ato b, v=c¢ to f are constants, so that the integrations may be performed in any
order or simultaneously.

412. Ex.1. An area is cut off from a parabola by a diameter ON and its
ordinate PN: prove that =3z, §=4y.

Ex. 2. Two tangents TP, TP’ are drawn to a parabola: show that the co-
ordinates of the centre of gravity of the avea between the eurve and the tangents
are =4 TP, y=3TP referred to TP, TP as axes. Art. 406, Ex, 5. [Walton.]

Regard the area as the difference between a triangle and a parabolic segment.

Ex. 8. The equations of a cycloid are x=a (1-cos®), y=a (§+sin 6). Show

that the centre of gravity of half the area is given by Z=1}a, §=g ( T - %E) ¥
m
[Wallis. ]

Ex. 4. Find the centre of gravity of the half of either loop of the lemniscate
r?=a? cos 26 bounded by the axis. The result is

pame, g EMEAA-G,
Ex. 5. Four parabolas whose equations are y2=a’z, y2=0%, 2=y,
22=f% intersect and form a quadrilateral space. Find the centre of gravity,
We take as the equations to the opposite sides y*=wuSz and z2=v%, Solving,
we find x=uv?, y=w*v and J=3u*> This gives by substitution
s M1=a) (£5-e)
W - (-

Ex. 6. The centre of gravity of the space bounded by two ellipses and two
hyperbolas all confocal lies in the straight line

_Y_(a- @) (0 - a)) (@ + gtz + 0 — a0y - ")
& by by) (D= by") (B2 + Uybg+ 0y by 4+ 0,0, + 0, "2) ?

where the unaccented letters denote the semiaxes of the ellipse and the accented
letters those of the hyperbola,

v g 2t g
=% ' B i-7
where u>h and v<h. These give ha*=uv, -hy*=(u-h)(v-1), as shown in
Salmon’s Conics. The result then follows easily enough.

Ex. 7. If the density at any point of a circular dise whose radius is a vary
directly as the distance from the centre, and a circle deseribed on a radius as
diameter be cut out, prove that the centre of inertia of the remainder will be at a

2
We take as the equation to the opposite sides% +

2 6a . 3 .
distance Br=10 from the centre. [Math. Tripos, 1875.]
Ex. 8. A circular dise of radius r, whose density is proportional to the distance
from the centre, has a hole cut in it bounded by a circle of diameter @ which passes
through the centre. Show that the distance from the centre of the dise of the

4
centre of gravity of the remaining portion is . 45

B  [Coll Ex, 1888]
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Ex. 9. The curve for which the ordinate and abscissa of the eentre of g.ra.vii.y of
the area included between the ordinates x=a and x=a are in the same ratio as the

i is g e 1 By03 B3 = ¥y,
i i T 18 glven b}" the equation w‘y‘ big® = afyd,
bouudmg ordinate y and abscissa v 18 g [ g o

413. Pappus’ Theorems. Before treating ?f the centres of
gravity of surfaces or volumes it seems proper to discuss a miet};;d'
by which the centres of gravity of the arcs and areas a 11'(;:1 yf
found may be used to find the surface or volume of a soli ;
revolution. The two following theorems were first glvejn ;y
Pappus at the end of the preface of his seventh book of Mathe-
matical Collections. e

Let any plane area revolve through any angle about an axis m
its own plane, then

(1) The area of the surface generated by its perimeter is eq’uaé
to the product of the perimeter into the length of the path describe
by the centre of gravity of the perimeter.

(2) The volume of the solid generated by the area :ils equal }to
the product of the area wnto the length of the path described by the
centre of gravity of the ared. .

In both these theorems the axis is supposed not to intersect
the perimeter or area.

414, Let AB be an arc of the curve, and let it lie in the plan‘e
25 Let it revolve about the axis of 2 through any eler}len:ﬁl v
angle df. Any element PQ=ds of the perlmeterd is : ES
brought into the position P'Q, and the area tracfe 0;1 acefl
PQ is ds.PP'=ds.«df. The whole area or s;; ace ‘fr ¥
out by the finite arc AB is dffzds. .But this is d6.@s, 1 F
the arc AB and @ the distance of its centre of gra\ut{l ron}:L
the axis of z If the arc now revolve agan abo‘ut Oz‘ t rougd
a second elementary angle d@, an eql}al §urface is again tratfﬂ
out. Hence, when the angle of rotation 1s g, the area 1s ts‘l;&oi,
But 76 is the length of the path t.‘ra.ce'd out by the Ceél r
gravity of the arc. The first proposition is therefore proved.

Next, let any closed curve in the plane of xz rex.folvet ats. Ozei;;e?
about the axis of z through an ang!e df. By this ]Z'O]E; :;m b_z}
elementary area d4 at B will describe a voluTned :;, }1;}31 : alti{ude
regarded as an elementary cylinder. The base 131 : e
xdf, the volume 1s therefore dA .zdf. The volume
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by the whole area of the closed curve is dffadd4. But this is
df.zA, if A be the area

of the curve and z the
distance of its centre of
gravity from the axis of
revolution. Integrating
again for any finite value

of 8, we find that the
volume  generated s
A.z0. This as before <
proves the theorem.

In both these proofs
we have assumed that
the whole of the curve ¥
lies on the same side of the axis of rotation. For suppose
P, and P, were two points on the curve on opposite sides of the
axis of z, then their abcisse 2 and @, would have opposite signs.
Thus the elementary surfaces or volumes (having the factor zdf)
would also have opposite signs. The integral gives the sum of
these elementary surfaces or volumes taken with their proper
signs. It follows that, when the axis cuts the curve, Pappus’
two rules give the difference of the surfaces or volumes traced out by
the two parts of the curve on opposite sides of the axis of revolution.

/C

415. Ex.1. Find the surface and volume of a tore or anchor-ring,

This solid may be regarded as generated by a complete revolution of & circle
about an axis in its own plane. Let a be the distance of the centre from the axis,
b the radius of the generating cirele. Then a=0b if all the elements are to be
regarded as positive. The arc of the generating circle is 2xb, the length of the path
described by its centre of gravity is 2ra. The surface is therefore 4r%ab. The area
of the cirele is wb? the length of the path described by its centre of gravity is 2ra.
The volume is therefore 2mw2al®.

Ex, 2. Find the volume of a solid sector of a sphere with a ecircular rim and
also the area of its curved surface.

This solid may be regarded as generated by a complete revolution of a sector of
a circle about one of the extreme radii. Let 2a be the angle of the sector, O its
centre, The arc of the sector is 2aa. The length of the path deseribed by its
centre of gravity G is 2. OG sina, where OG =(asina)fa. The spherical surface is
therefore 4wa®sin®a. The area of the sector is a%s. The length of the path of its
centre of gravity G' is 2w . O0G sina, where 0G'=3 0G. The volume is therefore
tmadsin®a. It appears that both the surface and the volume vary as the versine
of the sector.

Ex. 3. A solid is generated by the revolution of a triangle 4 BC about the side
AB: prove that the surface is m (@ +D)p and the volume is 1wcp?, where p is the
perpendicular from ¢ on 4B,
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416. It should be noticed that for any elementary angle dé
the axis of rotation need only be an instantaneous axis. Suppose
the plane area to move so as always to be normal to the curve
described by the centre of gravity of the area. Then as the centre
of gravity describes the arc ds, the area 4 may be regarded as
turning round an axis through the centre of curvature of the path.
Hence the elementary volume is Ads, and the volume described is
the product of the area into the length of the path described by
the centre of gravity of the area.

In the same way, if the area move so as always to be normal to
the path described by the centre of gravity of the perimeter, the
surface of the solid is the product of the arc into the length of the
path of the centre of gravity of the perimeter.

417. When the azis of rotation does not lie in the plane of the curve, we can
use a modification of Pappus’ rule to find the volume generated by the motion of
any area.

Let us suppose that the axis of rotation is parallel to the plane of the curve.
Referring to the figure of Art. 414, let CL be the axis, and let RL be a perpendicular
to it from any point R within the closed curve. The elementary area d4 at R will
now describe a portion of a thin ring whose centre is at L. The length of this
portion is #. RL. The area of the normal section of this ring is d4 cos ¢, where ¢
is the angle the normal RL to the ring makes with the area dd4. The volume
traced out is therefore RL.cos ¢.0d4. But this is the same as z6dd4. Thisis
the same result as we obtained before when the axis of revolution was Oz.

If the element were to revolve round Oz it would trace out a ring of less radius
than it actually does in its revolution round CL, and these rings would be differ-
ently situated in space. But the normal section of the larger ring is so much less
than that of the smaller ring that the two volumes are equal.

We infer that Pappus’ rule will apply to find the volume if we treat the projection
of the axis on the plane of the eurve as if it were the actual axis of rotation. The
angle of rotation is to be the same for both axes.

If the area does not lie wholly on one side of the projection, it must be remem-
bered that the volumes generated by the two parts on opposite sides of the projection
will have opposite signs.

Ex. 1. If the axis of revolution is inclined to the plane of the area at an angle
a, show that Pappus’ rule will give the volume generated if we treat the projection
of the axiz on the plane as if it were the axis of revolution and regard the angle of
rotation as 6 cos a instead of 6.

Ex. 2. A quadrant of a circle makes a complete revolution about an axis
passing through its centre and making a right angle with one of its extreme radii
and an angle a with the other. Show that the volume generated is § wa®cosa.

Ex. 8. Anarc 4,4, of a plane curve revolves about an axis perpendicular fo its
plane through an angle . Show that the area traced out is %8 (r,®—r;%), where
71, Tp are the distances of 4, 4, from the axis.

It is supposed that the radius vecfor r is not a maximum or minimum at any

R. 8 L 18
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point between 4, and 4,. If it is either, the areas traced out by ares on opposite
sides of that point will have opposite signs.

Ex. 4. A solid is generated by the revolution of an area about the axis of 2
which lies in its own plane. The density D at any point P of the solid is a given
function of z and p, where pis the distance of P from the axis. Prove that the mass
may be found by Pappus’ rule if we regard D as the surface density at any point P
of the generating area where the coordinates of P are z and p.

418. Areas on the surface of a right cone. To find the
centre of gravity of the whole surface of a right cone excluding the
base. (Guldin’s Theorem.

Let O be the vertex, C the centre of the base, then OC is
perpendicular to the plane of the -
base. The required centre of gra-
vity lies in OC.

Divide the surface of the cone
into elementary triangles by draw-
ing straight lines from the verfex
O to points a, b, ¢ &c. In the base.
The centre of gravity of each tri-
angle lies in a plane parallel to the
base and dividing the sides Oa, Ob
&ec. in the ratio 2 : 1. The centre
of gravity of the whole surface is
therefore at the intersection of this plane with OC.

The centre of gravity of the surface of a right cone ts two-thirds
of the way from the vertex to the centre of the base.

0

Ex. Show that the same rule applies to find the centre of gravity of the
whole curved surface of & right cone on an elliptic base or more generally on any
base which is symmetrical about two diameters at right angles.

419. To find the area and centre of gravity of  portion of the
surface of a right cone on a circular base.

Referring to the figure of Art. 418, let PQ = dS be an element
of the surface of the cone, P'Q/ =dII its projection on the base.
The angle between PQ and P’Q’ is the same as the angle beioween
the triangle Oab and the plane of the base, and this angle is the
complement of the semi-angle of the cone. We therefore }.Jmte
dII = dS .sin a, if a be the semi-angle of the cone. Since this 1s
true for every element of area, it follows that to find the.surfacz‘e of
any portion of a right cone we simply divide tbe area of its projec-
tion on a plane perpendicular to the axis by sin a.

s
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If we take the axis of the cone for the axis of z, it is clear that
dS and dII have the same coordinates of # and y. Hence, proceed-
ing exactly as in Art. 403, we see that the projection of the centre
of gravity of any portion of the surface of the cone on a plane
perpendicular to the axis is the centre of gravity of the projection.

We have yet to find the 2z coordinate of the centre of gravity.
Taking any plane perpendicular to the axis as the plane of zy, we
- _Zmz _[JdSz [2dII

=Sm " 4§ jam’
thus the distance of the centre of gravity of any portion S of the
surface from any plane perpendicular to the axis is equal to the
volume of the cylindrical solid between S and its projection II on
that plane divided by the area II.

These three results depend on the fact that the area of any element dS of the
surface bears a constant ratio to its projection dII on the plane of xy. This again
requires that every tangent plane to the surface should make a constant angle with
the plane of xy. Other surfaces besides right cones and planes possess this pro-
perty, Any developable surface which is the envelope of a system of planes making
a given angle with the plane of zy will obviously satisfy the conditions.

Ex, 1. A cone of any form is intersected by a plane 4B, and any straight line
is drawn from the vertex to meet the section in H. Prove that the conieal volume
between the plane of the section and the vertex is equal to the product of } OH into
the projection of the area 4B on a plane perpendicular to OH.

Ex. 2. A right cone, whose semi-angle is a, is intersected by a plane 4B eutting
the axis in H and making an angle 8 with the axis, Show that, (1) the surface §
of the cone between the elliptic section 4B and the vertex O is equal to the product
of the area of the section 4B into sin Bcoseca;

(2) the centre of gravity of the surface S lies in a straight line drawn parallel
to the axis of the cone from the centre C of the section 4B ;

(8) the distance of the centre of gravity of the surface § from ¢ =1 0H.

Since both the surface S and the section 4B project into the same elliptic area
A'B’, the two first results follow from what has heen proved above.

To prove the third result we divide the surface into elementary triangles by
drawing straight lines from the ver-
tex O to the base AB. It follows, as
in Art, 418, that the centre of gravity
of the surface lies in a plane drawn
parallel to the base through a trisec-
tion of OH.

Ex. 8. A right eylinder stands
on a plane base 4'B’ of any form,
and is intersected by any other plane
4B. Show that (1) the surface of
the eylinder between the plane AB
and the base is equal to the produet
of the perimeter of the base into the
ordinate (or altitude) of the plane at the centre of gravity of the perimeter, (2) the

18—2

have
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volume of the cylinder between the plane AB and the base is equal to the product

of the area of the base into the ordinate of the plane at the centre of gravity of the
area.

By considering part of the perimeter of the base to be rectilinear and part
curved, this gives the surface and volume of the portion of the eylinder cut off by
two planes parallel to the axis and two transverse to the axis

Ex. 4. A right eylinder stands on the base 4%+ By*=1, and is intersected hy
the plane z=h+px+qy. Prove that the coordinates of the centre of gravity of the
volume are given by 44hz=p, 4Bhf=gq, 2Z=Fh+pT +q7.

420. Spherical Surfaces. There are two projections of the
spherical surface which have been found useful. We can project
any portion of the surface on the circumscribing eylinder and on a
central plane. We shall consider these in order.

Let the origin be at the centre of the sphere, and let the
rectangular axes #, y, z cut the surface in 4, B, €. Let the
polar coordinates of any point P be as usual OP =a, the angle
ZOP =0 and the angle NOA =¢. Let PL=p be a perpendicular
on the axis of 2z, then OL =2z.

Let a cylinder circumscribe the sphere and touch it along the
circle of which AB is a quadrant. Any point P on the sphere is
projected on the cylinder by
producing LP to meet the
cylinder in P’.  According
to this definition any point
P and its projection P’ are
so related that their 2’s and
¢’s are the same.

The area of any element
PQR on the sphere is
PQ.QR, and this is equal
to asin fd¢ . adl. The area
of the projection on the
cylinder, viz. P'Q'R’ is p
PQ.QR', and this is
ade¢ . dz’, where 2/ = CL=a— g cos 6. Substituting for 2/, we see
that these two areas are equal. Hence any elementary area on
@ sphere and sts projection on the cylinder are equal*.

* = : . -
fist Qanovered by Archimgdan. Flo wrole con onpE s i Tocasutament vas
gated both their surfaces and volumes, whether entire or eut by planes perpendicular

to their common axis. He was so pleased with these discoveries that he directed a

i?ﬁ'linder enclosing a sphere to be engraved on his tombstone in commemoration of
em,
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It follows from this result that the area of any finite portion
of the spherical surface is equal to the area of its projection on any
circumseribing cylinder. This rule enables us to find many areas
on the sphere which are useful to us. Thus the area cut off from
the sphere by any two parallel planes whose distance apart is A is
equal to the area of a band on the cylinder whose breadth is A.
The area on the sphere is therefore 27rah. We notice that this
result is independent of the position of the planes, except that they
must be parallel. Thus the area of a segment of a sphere whose
versed sine is & is 27ah.

421. This important theorem is used also in the construction of maps. The
places on a terrestrial globe are projected in the manner just described on a circum-
scribing cylinder. The cylinder is then unrolled on a plane. In this way the whole
earth may be represented on a map of a rectangular form. The advantage of this
construction is that any equal areas on the globe are represented by equal areas on the
map. This is true for large or small areas in whatever part of the globe they may
be sitnated. The disadvantage of the construction is that any small figure on the
map s not similar to the corresponding figure on the globe. If the figure is situated
near the curve of contact of the cylinder, the similarity is sufficiently close for
practical purposes, but if the figure is situated nearer the pole of this curve of
contact, the dissimilarity is more striking. Thus a small eircle very near the pole
is represented by an elongated oval. In some other systems of making maps, as
for example Mercator’s, any small figure on the map is made similar to the cor-
responding figure on the globe, but in that case equal areas on the map do not
correspond to equal areas on the globe.

Ex. A map is made on the following principle, Any point O on the surface of

“a globe of radius unity, and a corresponding point 0’ on a map being taken, the

points P’, Q' corresponding to the two points P, Q on the globe are found by taking
the lengths O'P'=gq tan 30P, 0'Q'=a tan 0@, the angle P'0'Q’ being made equal
to POQ. Prove that any infinitely small corresponding portions on the sphere and
map are similar. Show also that the scale of the map in the neighbourhood of any.
point P’ varies as a®+ O'P'3,

If the tangents are replaced by sines in the relations given above, prove that
the areas of corresponding portions have a constant ratio.

These are called the stereographic projection and the chordal construction.

422. The altitude of the centre of gravity of any portion of the
sphere above the plane of contact 1s equal to the altitude of the centre
of gravity of its projection on the circumscribing cylinder. To
prove this it is sufficient to quote the formula z = Zmz/Zm, and to
remark that for the surface and its projection the m’s and 2’s are
equal, each to each.

From this we infer that the centre of gravity of the band on
the sphere between any two parallel planes is the same as that for
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the corresponding band on the cylinder, and is therefore half way
between the parallel planes, and lies on the perpendicular radius.

In the same way the centre of gravity of a hollow thin hemi-
sphere of uniform thickness bisects the middle radius.

423. Ex. 1. A segment of a sphere of height & rests on a plane base: show
that the centre of gravity of the surface including the plane base is at a distance
equal to ah(4a— h) from the base, where a is the radius of the sphere,

Ex. 2, The distance of the centre of gravity of the surface of a lune from the

axisis % Sl% » Where 2a is the angle of the lune.

Ex. 3, A bowl of uniform thin material in the form of a segment of a sphere is
closed by & circular lid of the same material and thickness, which is hinged across
a diameter. If it be placed on a smooth horizontal plane with one half of the lid
turned back over the other half, show that the plane of the lid will make with the
horizontal plane an angle ¢ given by 8x tan p=4tan 3a; a being the angle any
radius of the lid subtends at the centre of the sphere. [Math. Tripos, 1881.]

424. To find the centre of gravity of any spherical triangle.

Let us begin by projecting any portion of the surface of the sphere on a central
plane. Let this be the plane of zy. Let dS be any element of area, dII its projec-
tion, let @ be the angle the normal at dS
makes with the axis of z. Then

dIT=dS coeg @#=dS5. z/a.
Hence, integrating, we have all=Sz.

It follows that the distance of the centre
of gravity of any portion S of the surface of
a sphere from a central plane= g-a. where
I is the prajection of 8 on that plane®.

This result follows from the equality
cos #=zja. Other surfaces besides spheres
possess this property. These surfaces are
generated by the motion of a sphere of constant radius, whose centre moves in any
manner in the plane of zy. As an example an anchor ring or tore may be mentioned.

Let us now apply this Lemma to the spherical triangle. Let 4, B, C be the
angles, a, b, ¢ the sides, let O be the centre of the sphere, p its radius. Let CN be
a perpendicular from ¢ on the plane 40B, let AN, BN be the two elliptic arcs
which are the projections of the sides A€, BC of the spherical triangle.

By the lemmas, z : p=area ANE :area 4BC. Also

(axea ANB)=(area AOB) - (area 40C) cos 4 — (area BOC) cos B
=4p* (¢ ~beos 4 — acos B).
If E be the spherical excess of the triangle, ie. if Z=4 + B+ C -, we know by
Spherical Trigonometry that the area ABC=(?E, Hence

i

H

i

i

H
1T

¢
S

3_%c—bcosﬁ—acosB
P E

* We have here followed the method proposed by Prof. Giulio, chiefly because
the lemma on which it depends is of general application and may be useful in other
cases. His memoir was published in the fourth volume of Liouville’s Journal de
Mathématiques. An English version is also given in Walton’s Mechanical Problems.
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This formula gives the distance of the centre of gravity from the plane AOB
containing any side 4B of the triangle. The distances from the planes BOC, COA4
containing the other sides are expressed by similar formulae.
Ex.1. If p, g, r be the perpendicular ares from the sr'rgular.points 4, B, C on
the opposite sides, and G the centre of gravity of the spherical friangle, prove that
cos A0G _ o8 BOG _cosCOG _ 1
asinp  bsing  csinr 2B’
This is equivalent to the result given in Moigno’s Statique. : !
Ex. 2. A surface is generated by the revolution of the catenary about ifs axis.
Let this be the axis of z and let the plane generated by the directrix be that n.f Y.
Any portion S of its surface is projected orthogonally on the plane zy, a.nd. V is the
volume of the cylindrical solid formed by the perpendiculars from the perimeter of
S. Prove that the 7 and 7 of S and ¥ are equal each to each, but the Z of the first
is double that of the second. [Giulio, also Walton.]

425. Any surfaces and solids of revolution. A known
plane curve revolves round an axis in its own plane which we sha,.ll
take as the axis of 2z, and the angle of revolution is 2a. It is
required to find the centres of gravity of the surface and volume
thus generated.

It is clear that every point describes an arc of a circle whose
centre is in the axis of z. Thus the whole solid is symmetrical
about a plane passing through z and bisecting all these arcs. Let
this be the plane of zz. The
centres of gravity lie in this
plane. Let PP’ be half the
arc described by P, the other
half being behind the plane #z 57\ S—b
and not drawn in the figure. —J e i .

Let PQ=ds be any arc of 0
the generating curve, then the
area of the elementary band
described by ds is m = 2zads by Pappus’ theorem. Its cefltre]' of
gravity lies in MP at a distance from M equal to (zsina)/a.
Hence the coordinates of the centre of gravity of the surface are

_ Zme _ [a*ds sina ézfm_zdf
“=3m " Jads Ta ’ [zds *
In the same way the coordinates of the centre of gravity of the

volume are

z

__Zme [a*do sina N
T Sm Jwde a '~ fads’

where do is any element of the area of the given curve. We may
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write for do either dzdz or rddr according as we choose to use
Cartesian or polar coordinates, replacing the single integral sign
by that for double integration.

It is evident that these integrals are those used in the higher
Mathematics for the moments and products of inertia of the ares
and areas. When therefore we have once learnt the rules to find
these moments of inertia, we seldom have to perform any integra-
tion; we simply quote the results as being well known. These
rules are usually studied in connection with rigid dynamics, as a
knowledge of them is essential for that science, but they are now
given in some of the treatises on the integral calculus, for example
in that by Prof. Williamson.

Ex. 1. A portion of an anchor ring is generated by the complete revolution of
& quadrant of a circle (radius a) about an axis parallel to one of the extreme radii
and distant b from it. Prove that the distances of the centres of gravity of the
curved surface and volume from the plane described by the other extreme radius are
a (2bxa) and & (8b+3a)
Th+2a 2 (3wb+ da)’
The axis of revolution is supposed not to cut the quadrant.

Ex, 2. A semi-ellipse revolves through one right angle about the bounding
diameter. Show that the distance from the axis of the centre of gravity of the
volume generated is 3abf4,/2r, where 2r is the length of the diameter.

Ex. 3. A triangular area makes a revolution through two right angles about an

axis in its own plane. Prove that the distance of the centre of gravity of the volume
2,824 2
from the axis is giﬁ—% , Where a, 8, v are the distances of the middle points of

the sides from the axis.

Ex. 4, Acircular area of radius a revolves about a line in its plane at a distance
¢ from the centre, where ¢ is greater than a. If 2a be the angle through which it
revolves, find the volume generated and prove that the centre of gravity of the solid
is at a distance from the line equal to (4¢%+ a?) sin ofdca. [Coll. Ex., 1887.]

426. To find the centre of grawity of a solid sector of « sphere
with a circular rim.

Referring to the figure of Art. 400, let OC be the middle
radius of the solid sector, V the centre of the rim, & the centre of
gravity of the sector, V its volume, V, the volume of the whole
sphere, @ the radius, then

ON +0C CN X

=5 V=7, B [Wallis.]
To prove this we follow the same method as that adopted

to find the centre of gravity of a sector of a circle. Let PQ be

an elementary area of the surface, then OP() is a tetrahedron whose

0G =3

45
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centre of gravity is at p where Op =30P. Hence, if G be the centre
of gravity of the surface, 0@ =30G". But 0G' =4 (ON +0C) by
Art. 422. Hence the result follows. The volume ¥V has been
already found in Art. 415. ) :

The centre of gravity of a solid hemisphere follows 1mmed1ate‘ly
from this result. Putting ON =0, we see that the centre of gimmty
of @ solid hemisphere lies on the middle radius and is at a distance
3 of that radius from the centre.

" The centre of gravity of a solid octant also follows at once.
There are four octants on one side of any central plane and the
centre of gravity of each of these is at the same distance from that

“plane. Hence the centre of gravity of all four must be also at the

same distance, and this has just been proved to be $a. Hence, Jor
any octant, the distance of the centre of grawity from any one of the
three plane faces ts § of the radius.

427. Tx.1. The centre of gravity and volume of a solid segment of a sphere
bounded by a plane distant z from the centre O are given by

3o

0G=4 Ia+z’

=g(a-z)"‘ (2a+2).

Ex. 2. Prove that in a sphere, whose density varies inversely as the dist.m%ce
from a point in the surface, the distance of the centre of gravity fron:} that point
bears to the diameter the ratio 2 : 5. [Math. Tripos, 1867.]

Ex. 3. Prove that the centre of gravity of a solid sphere, whose densit:y
varies inversely as the fifth power of the distance from an external point, is
at the centre of the section of the sphere by the polar plane of the external
point. [Math. Tripos, 1872.]

428. Centres of gravity of volumes connected with the
ellipsoid. In order to deduce the centre of gra,vit:y of any portion
of an ellipsoid from that of the corresponding portion of a sphe_re,
we shall use an extension of that method of projections by which
we passed from the areas of circles to those of 'ellipses. o

One point (zyz) is said to be projected into another (2 gfzf)
when we write #=aa’, y =by, z=c2z. The points are then ss‘.ld
to correspond. Volumes V, V” correspond when their ”o_c:undamles
are traced out by corresponding points. If (Zgz), (%Z') be the
centres of gravity of V, V' we have

V = [[fda dy dz = abc [fda’ dy' d’ = abe V"
In the same way Z=a@’, ¥ =by’, 2=1cz". :

It appears from these equations that any corresponding volumes
have « constant ratio, and the centre of gravity of one corresponds
to the centre of grawity of the other.



282 CENTRE OF GRAVITY, [cHAP. IX.

We may also show* that (1) parallel straight lines correspond
to parallels, and (2) the ratio of the lengths of parallel straight
lines is unaltered by projection. Thus the rule already explained
in Art. 403 for areas is true also for solids.

We may apply these principles to an ellipsoidal solid. The
equation to an ellipsoid of semi-axes a, b, ¢ is changed into that of
a concentric sphere by writing #=a’, y =by, z=c¢2’. It follows
that all projective theorems may be transferred from the sphere to
the ellipsoid.

429, Ex. 1, Find the centre of gravity of a solid sector of an ellipsoid with an
elliptie rim.

Let O and N be the centres of the ellipsoid and of the rim. Then ON is the
conjugate diameter of the plane of the rim. Let it cut the ellipsoid in ¢. The
corresponding theorem for a spherical sector is given in Art. 426, Since the
values of OG and V there given depend on the ratios of parallel lengths, we
may transfer them fo the ellipsoid. The centre of gravity G of the ellipsoidal
sector therefore lies in ON, and we have
=2 ON+0OC Ve CN

2 ? 2.00C

Ex. 2. The coordinates of a solid octant of an ellipsoid bounded by three

conjugate planes are T=3%a, y=4b, zZ=3c.

0G Vo

Ex.3. The centre of gravity and volume of any solid segment of an ellipsoid
_aletz)? _(e—-2)*(2c+2)

Oslo szt P H

where 2¢ is the conjugate diameter of the plane of the segment, z its ordinate

measured along ¢, and V, the volume of the whole ellipsoid.

are given by

4380. Let us consiruct two concentric and coaxial ellipsoids forming between
them a thin solid shell. Let (a, b, ¢), (@+da, &c.) be the semi-axes of these
ellipsoids, p and p+dp the perpendiculars on two parallel tangent planes. Then
t=dp is the thickness of the shell at any point. Let de be an element of the

surface of one ellipsoid, dII its projection on the plane of zy, then dl‘l:da%.
[

Ex. 1. Show that the ordinate z of the centre of gravity of any portion of the
S = i
shell is given by 7V =¢? f§ dlIl, where ¥ is the volume of that portion of the shell.

da_iiéu_dc_dp

Ex. 2, If the shell is bounded by similar ellipsoids, so that ===
cey

prove that z : e=Ilde : V.

* Let the straight line AB project into 4'B’ by writing x=az’ leaving ¥, 2z
unaltered. Geometrically we construct 4’B’ by producing the abscissae (viz. L4,
MB) of 4 and B in the given ratio @ : 1. This gives L4'=a.Ld and MB'=a.MB.
Repeating this process for a straight line CD parallel to AB, it is easy to see, by
similar triangles, that C’D’ is also parallel to 4’B’, and that the ratio ¢'D’ : 4’B’
=the ratio CD: AB. Having written x=a2' we repeat the process by writing
y=0by’ and finally z=cz'. The theorems are obviously true after the third projection
as well as after the first.

£

ART. 431.] ANY SURFACE AND SOLID. 283

If two parallel planes cut off a portion from this thin shell, prove that its
centre of gravity lies in the common conjugate diameter and is equidistant from
the planes. Art. 428.

Ex. 3. Iftheshell is bounded by confoeal ellipsoids, so that ada=bdb =cde =pdp,

z _Ide 2\ k2 e\ k;?
prove that E——I—;-%l«(l—;,)ag—(l—b—,)ﬁ},

where I1%,% and ITk,? are the moments of inertia of II about the axes of = and y
respectively, Art. 425.

Ex. 4, If the density of & shell bounded by concentric, similar, and similarly
situated ellipsoids vary inversely as the cube of the distance from a point within
the eavity, that point is the centre of gravity.

If the shell be thin, and the density vary inversely as the cube of the distance
from an external point, the centre of gravity is in the polar plane of the point,
At what point of the polar plane is the centre of gravity situated? [Math.T.,1880.]

Let the shell be thin, and let O be the point within the cavity, With O for
vertex describe an elementary cone cutting off from the shell two elementary
volumes. Let v and v’ be these volumes, and r, v’ their distances from 0. By the
properties of similar ellipsoids, we may show that or*=2'[r%. Let D, D' be the
densities of these elements, Since D=pufr?, D'=u/r'%, we find vDr=v'D7, ie.
the centre of gravity of two elements is at 0. It easily follows that the centre of
gravity of the whole thin shell is at 0. Joining many thin shells together, it also
follows that the centre of gravity of a thick shell is at O,

Next, let O be an external point, and let the elementary cone whose vertex is at
0O intersect the polar plane of O in an element whose distance from O is p. Since p
is the harmonic mean of r and ', We easily find vDr+v' D" =(vD +v'D’) p, i.e. the
centre of gravity of the two elementary volumes v and v’ lies in the polar plane of
0. It follows that the centre of gravity of the shell lies in the polar plane of O.

Lastly, let any number of particles m,, m,, &ec., attract the origin according fo
the Newtonian law, and let the resultant attraction be a force X acting along the
axis of z. If the coordinates of the particles be (x,y,2,) &e., we find by resolution

ma my mz
2—@—=X, 2—73—0, E;-g:ﬁ.

The two latter equations show that, if the masses m,, m, &ec. are divided by
numbers proportional to the cubes of their distances from the origin, the centre of
gravity of the masses so altered lies in the line of action of the force X. The first
equation shows the distance of the centre of gravity from the origin.

In this way many propositions on attractions may be translated into propositions
on centre of gravity, and vice versa,

Tt will be shown in the chapter on attractions that the resultant attraction of a
thin homogeneous shell bounded by similar ellipsoids af an external point O is
normal to the confocal ellipsoid passing through O. The centre of gravity of the
heterogeneous shell is the intersection of this normal with the polar plane of O.

431. Centres of gravity of the volume and surface of
any solid. The fundamental formulae are in all cases those
already found in Art. 380, viz.

L L L
T 3Im’ o =5 o :

4

m '
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the.di{"ferences we have to indicate arise only from the varying
choice which we may make for the element m.

Le{; us first find the centre of grawity of a wvolume. For
Cartesian coordinates we take m = dedydz, and replace the X by
the sign of triple integration. We have then

__ [[fdzdydz.« __ [[fdzdydz.y [[fdzdyd
-~ e ydz. el ydz. 2

[dzdydz 9= dedyds = Mdwdydz
These formulae evidently hold for oblique axes also.

For polar coordinates we take m =rdf.dr.rsin8d$, and
@ = rsin @ cos ¢, y=rsin fsin ¢, z=rcos f, and replace 3, by the
sign of triple integration. These relations are proved in treatises
on the integral calculus, We find
3 ___'{j:[rS sin? 9 cos¢drdfdy  _ :m',.s sin*gsin ¢pdrdfde . _[[[r*sinfcosddrddds
[[[Psinodrdedy ' Y= JfjPsimodradde > = |[Jr'smodrdodgp
For cylindrical coordinates we have m=pdé¢.dp.dz, and
z=pcosd, y=psin¢. Hence
__J[Jp* cos pdpdpdz  _ ? sin Z e
xJﬁ'ﬁdeqbdpdz £ :ﬂjpﬂ deﬁfdipd : Z=IJIJIJT;§;;§:'
Or again, if @, y, z be given functions of three auxiliary
variables u, v, w, we can use the Jacobian form corresponding
to that of Art. 411. We have then m =Jdudvdw.

432. To find the centre of grawity of the surface of a solid we
find the value of i suitable to the coordinates we wish to use.

If the equation to the surface is given in the Cartesian form
z=f(=, y), we project the element of surface on the plane of xy.
The area of the projection is dady. If (2B8y) be the direction
angles of the normal to the element, the area of the element must
be secy dwdy. This therefore is our value of m. We find

E:ffs:-ecryd’mdy._.g«; __ffsecqrdmdy.y&
[fsecydady * ~ [fsecydady i
Taking the equation to the normal, we find

wer= {1 () + ()}

In a similar way, if the equation to the surface is given in
cylindrical coordinates z = f(p, ¢), we find

el (5T )}

ART. 434.] ANY SURFACE AND SOLID. 285

If the surface is given in polar coordinates » =7 (6, ¢), we have
2 ¥
m = rd0ded {(;%)s + sin®@ (i%) + 17 Sinsﬂ} :

433. In some cases it is more advantageous to divide the
solid into larger elements. We should especially try to choose as
our element some thin lamina or shell whose volume and centre of
gravity have been already found. Suppose, for example, we wish
to find @ for some solid. We take as the element a thin slice of
the solid bounded by two planes perpendicular to . If the
boundary be a portion of an ellipse, triangle, or some other figure
whose area A4 is known, we can use the formula

__[Adzax

*=Tddz
In this method we have only a single instead of @ triple sign of
integration. If the centre of gravity of A is known as well as its
area, we can find 7 and Z by using the same element.

To take another example, suppose the solid heterogeneous.
Then instead of the thin slice just mentioned we might take
as the element a thin stratum of homogeneous substance. If
the mass and centre of gravity of this stratum be known, a
single integration will suffice to find the centre of gravity of
the whole solid. This method will be found useful whenever the
boundary of the whole solid is a stratum of uniform density, for in
that case the limits of the integral will be usually constants.

434. BEx. 1. Find the centre of gravity of an octant of the solid

LA A% EXT
HEIORTE
From the symmetry of the case it will be sufficient to find z. It will also
evidently simplify matters if we clear the equation of the gquantities a, b, ¢; we
therefore put z=agz’, y=by,, z=cz', Art. 428,
1f we take as our element a slice formed by
planes parallel to zy, we shall require the area 4 C

of the section PM(Q. This area is [
o
1 Q 2
where the limits of integration are 0 to (L—z")".
If we write 7 =(1 — z'%) £, this reduces to
B

27 12 s 2
A==z (- g aE=(1-2" B,

1
A=[yda'=[(1-2"- am)mda,
A

where the limits of the integral have been made 0 to 1, s0 that B can be expressed
in gamma functions if required.
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2
We have now, - = 497 _Ja-zmrdr. 2 ['=0to
¢ [ddz 2 tole'=1
(1= 2myids’
If we put z'»=¢ and write m for 1/n, this reduces to
§= (I—E)‘fms““'ldf: T (2m+1)T(2m) T (3m+1)
: ¢~ JI-gmEnIidE T T T(dm+1) T Em+D)T(m)’
using the equation I' (z +1) =T (x), this becomes
Z _,T'(2m) T (3m)

z _ g Pm) _a
¢ =ET ()T (dm)* VhETe M=

Ex, 2. Find the centre of i i
. gravity of a hemisphere, the density at i
varying as the nth power of the distance from the eentre’. 4 PR

Here we notice that any stratum of uniform density is a thin hemispherical
shell, whose volume and centre of gravity are both known. We therefore tgke thi
stratum as the element. We have the further advantage that the limit -
constants, because the external boundary of the solid is homogeneous "

helLet the axis of 2 bEf along the middle radius, let (r, r+dr) be the radii of any
shell, and lat‘ the? density D=pr®. Then m=2wxr?dr, w, also the ordinate of it
centre of gravity is 4r, see Art. 422. Hence ’

e J2mrtdrprdr n+ 8 gt et

T Pmfdrmm T i+ d qr P pnts”

t']T}:ll‘lez limits of the ivntegra.l have been taken from r=5% to r=a, so that we have found

e centre of gravity of a shell whose internal and external radii are b and a. For
a hemisphere we put 5=0. If n+3 is positive, we then have 7= it In other

) . 2n+4d’
cases we find 2=0. If eithern4-3 orn i i
+4 is zero th i i

forms, but we still find z=0. PR

Ex. 8. Find the centre of gravi
gravity of the oe ipsoi i
e ey ¥ tant of an ellipsoid when the density
To effect this we shall have to find th

A e values of = i
integrals of the form [[Jatymerdadydz R
f?r ?t.ll element:ﬂ within the solid. To simplify matters, we write (z/a)?=¢, &e. The
.11:11 8 ?f ]t;he integral are now fixed by the plane f+5+{=1. But the:se a,;‘e the
integrals known as Dirichlet’s integrals, and are to b 1

grals, e found in treati
Integral Caleulus. The result is usually quoted in the form g

J’H =1yl Fldedndi= me
. i . I(l+m+n+1)’
: a?ﬁ : iu\;ll; 8 exte]rllswns to ellipsoids and other surfaces are also given. Here
=1.2.3...p when p is integral, and i i i i posiil
Einihoit oy Al , and in all cases in which p is positive
The result now follows from substitution ; we find

Z_Ti(m+2).Ti(l+m+n+5)

i ¢ Ti(m+1).T3(l+m+n+6)"
en I, m, n are positive integers there is no di i

18 ifficulty in deducin
gamma functions from the theorems just quoted. y e

In this way we can find Zmz and =

) v m and thence Z whenever the density D is a

function which can be expanded in a finite series of powers of =, y, = e
2 I e
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If the density at any point of an octant of an ellipsoid is D= uryz, ghow that
§=160f35.

Ex. 4. Tf the density at any point of an octant of an ellipsoid vary as the
VPN e e WL '
square of the distance irom e centre, show =B @il e’

Ex. 5. To find the centre of gravity of a triangular area whose density at any
point is D= px'y™.

To determine 7 and § we have to find Zm, Zme and Tmy. All these are integrals
of the form [[zy™dzdy. If ¥y, Ys, Ys BYE the ordinates of the corners of the triangle
and A the area, it may be shown that

Ify“dwdy=m% { P+ e+ st sk ey

where the right hand side, after division by A, is the arithmetic mean of the homo-
geneous products of ¥y, ¥as ¥s- Thus when the density is D=uy™ the ordinate ¥
may be found by a simple substitution.

It we take y + kz=0 as a new axis of z, (1) may be written in the form

2A
[jty+ka)rdedy =gy {Gat k)™ (g + )" (Yot i) + oo
Equating the coefficient of k on each side, we find
2A
[yt dudy = oy 1) {nzyyy" 2+ (n— 1)y 2yaz; + &e. b

In general, if H, be the arithmetic mean of the homogeneous products of
Y1 Y2, Ys» We have

ar i d s
P ____ gy = ST L St
K dypy dedy=A (mldyl-z-xz dy,'!_'xsdys) H,

One corner of a triangle is at the origin ; if the density vary as the cube of the

. _ 2yf-yd L
distance from the axis of «, show that y=§§1 . g’d. Also write down the value of Z.
1T He

The same method may be used to find the centre of gravity of a quadrilateral, a
tetrahedron or & double tetrahedron, when the density is D=pxly™z". See a paper
by the author in the Quarterly Journal of Mathematics, 1886,

435. Lagrange’s two Theorems. Def. 1If the mass of a
particle be multiplied by the square of its distance from a given
point O, the product is called the moment of inertia of the particle
about, or with regard to, the point 0. The moment of inertia of &
system of particles is the sum of the moments of inertia of the

several particles.

436. Lagrange's first Theorem. The moment of inertia of a
system of particles about any point O is equal to their moment of
inertia about their centre of gravity together with what would be
the moment of inertia about O of the whole mass if it were collected
at its centre of gravity.

Let the particles m,, m, &e. be situated at the points 4,, 4. &c.
Let (zapz), (@yaza), &c. be the coordinates of A, A, &e.
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referred to O as origin. Let @, 7, z be the coordinates of the centre
of gravity G. Also let =2+, y =9+, &. Now
Z(m.04%)=3m (@+ &P+ G +y)+E+2))

=3m. 0@ + 2BEma’ + 2yEmy’ + 22Zmz + 2 (mGA?).

Since the origin of the accented coordinates is the centre of
gravity, we have Zma’ =0, Zmy =0, Zmz'=0. Hence putting
M =3m, we have Z(m.04%)=M.0G + 3 (m.GAY......(A).
This equation expresses Lagrange’s theorem in an analytical form.

We notice that the moment of inertia of the body about any
point O is least when that point is at the centre of gravity.

An important extension of this theorem is required in rigid
dynamics. It is shown that, if £ (=, ¥, z) be any quadratic function
of the coordinates of a particle, then

2mf (w, y, 2) = M f (&, ¥, 2) + Zmf(«, y, 2).

437. Lagrange's second Theorem. If m, m’ be the masses of
any two particles, AA’ the distance between them, then the
theorem may be analytically stated thus

2 (! AAN = M3 ( GAY i (B).
The sum of the continued products of the masses taken two
together and the square of the distance between them is equal to
the product of the whole mass by the moment of inertia about the
centre of gravity.

This may be easily deduced from Lagrange’s first theorem.
We have by (A)

Sm.042=M.0G2+ ZmaGA,g,
where 3 implies summation for all values of a. Putting the
arbitrary point O successively at 4,, 4, &c. we have
Sm.dAl=M.A,G + Zm,GA2,
Smed, A2 =M, A,G*+ Zm.GA2
&c. = &c.

Multiplying -these respectively by m,, m, &c. and adding the

products together, we have
Smempdpdat =M ZmpgdsG® + Smg . Sm,GA2

The =, on the left hand side implies summation for all values of
both a and 8. Each term will therefore appear twice over, once
in the form mam, . Az A2 and a second time with a and @ inter-
changed. If we wish to take each term once only, we must take

—
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half the right hand side. But the terms on the right hand side
are the same. Hence

Singmg . Aod gt = MZm, . GA2

438, IEx. Let the symbol [4B(C] represent the area of the triangle formed
by joining the three points 4, B, C¢. Let [ABCD] represent the volume of the
tetrahedron formed by joining the four points in space 4, B, €, D. We may extend
the analytical expression for the area and volume to any number of points by the
same notation. We then have the following extensions of Lagrange’s two theorems

Sm 04 2=DM.0G*+Zm,GA 2
Zmmg[0A AP =MZm [0GA J+Zm mp[GA AT
Zmmgm, [04 4 JE‘AT]‘Z =MZm mg[0GA AP+ Zmm g [GA, Agd T]E
e, = de.
Zmgmgd A g*=MZm G4
Zmm gty [4,4 ﬂA?F =MZm,m 5 [Gd, 4 .8]2
Emﬂ-mﬁm),ma [d,4 g }'A s17=MZm_m gt [(G4,4 ﬁA T]-
&e.=d&e.

The first of each of these sets of equations is of course a repetition of Lagrange’s
equations. The remaining equations are due to Franklin,
[dmerican Jowrnal of Mathematics, Vol. x., 1888.]

439. Application to pure geometry. The property that
every body has but one centre of gravity* may be used to assist
us in discovering new geometrical theorems. The general method
may be described in a few words. We place weights of the proper
magnitudes at certain points in the figure. By combining these
in several different orders we find different constructions for the
centre of gravity. All these must give the same point. The
following are a few examples.

Ex. 1. The two straight lines which join the middle points of the opposite
sides of a quadrilateral and the straight line which joins the middle points of the
two diagonals, intersect in one point and are bisected at that point. [Coll. Exam.]

Ex. 2. The centre of gravity of four particles of equal weight in the same plane
is the centre of the conic which bisects the lines joining each pair of points.

[Only one chord of a conic is bisected at a given point, unless that point is the
centre. Since, by the last example, three chords are bisected at the same point, that
point is the centre.] [Caius Coll.]

Ex. 3. Through each edge of a tetrahedron a plane is drawn bisecting the angle
between the planes that meet in that edge and intersecting the opposite edge: prove
that the three lines joining the points so determined on opposite edges meet in a
point. [St John’s Coll., 1879.]

* In Milne's Companion to the weekly problem papers 1888, a number of ex-
amples will be found of the application of the *‘centroid” and of ‘“force” to
geometry.
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Place weights at the corners proportional to the areas of the opposite faces.
The centre of gravity of these four weights lies in each of the three straight lines.

440, The theorems on the centre of gravity are also useful in helping us to
remember the relations of certain points, much used in our geometrical figures, to
the other points and lines in the construction. For instance, when the results of
Ex. 1 have been noticed, the distance of the centre of the inseribed eonie from any
straight line can be written down at onece by taking moments about that line.

Ex. 1. The areal equation to the conic inseribed in the triangle of reference
i8 af1z + ofmy + n/nz=0; show that the centre of the conie is the centre of gravity
of three particles placed at the middle points of the sides, whose weights are
proportional o I, m, n. It is also the centre of gravity of three particles whose
weights are proportional to m+n, n+1, I+m, placed either at the points of contact
or at the corners of the triangle.

Let the conie touch the sides in D, E, F, then D and E divide BC and AC in the
ratios m:n and 1:n.  Let & 5, ¢ be the weights placed at 4, B, C whose centre of
gravity is the centre. Then £, 5 are respectively equivalent to £(l+n)/n and
7 (m+n)fn placed at E and D together with some weight at €, Art. 79. But since
the straight line joining € to the centre O bisects DF, we see by taking moments
about €O that the weights D and E are equal. Hence { and 5 are proportional to
m+n and n+1.

If the conic is a parabola I+m+n=0, because the weights must reduce to a
couple. Hence the far extremity of the principal diameter, and therefore the far
focus, is the centre of gravity of weights I, m, n placed at the corners 4, B, C.
Since the product of the perpendiculars from fhe foci on all tangents are equal, the
near focus is the centre of gravity of three weights a®/l, b%*/m, c?/n placed at the
corners.

Ex. 2. The areal equation to the conic circumseribed about a friangle is
lyz+mzz+nry=0, Show that its centre is the centre of gravity of six particles,
three placed at the corners whose weights are proportional to 2, m? n% and three
at the middle points of the sides whose weights are —2mn, -~ 2nl, —2im.

Ex. 3. Three particles of equal weight are placed at the corners of a triangle,
and a fourth particle of negative weight is placed at the centre of the circumseribing
circle. Show that the cenfre of gravity of all four is the centre of the nine-points
circle or the orthoeenire, according as the weight of the fourth particle is numeri-
cally equal to or double that of any one of the particles at the corners.

Ex.4. The equation to a conic being Ap®+ Bg*+ Cr¥+2Dgr +2Erp + 2Fpg=0
in tangential coordinates, show that the centre of the conic is the centre of gravity
of three weights proportionalto 4 +~ E+ F, B+ F+D, C+ D + E placed at the corners.
For other theorems see a paper by the author in the Quarterly Jowrnal, Vol. vIIL.
1866,

441. Theorems concerning the resolution and composition of forces may be used,
as well as those relating to the centre of gravity, to prove geometrical properties.
Ex. 1. A straight line is drawn from the corner D of a tetrahedron making equal

angles with the edges DA, DB, DC. Show that this straight line intersects the
plane ABC in a point E such that AE/4AD, BE/BD, CE/CD are proportional to the

: S " 1 1 1 3cosd
gines of the angles BEC, CEA, 4ED. Show also that D + D + D= ED '

where 8 is the angle DE makes with any edge at D.
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Ex. 2. ABCD is a quadrilateral, whose opposite sides meet in X and 7. Sho
t}.la,t the bisectors of the angles X, Y, the bisectors of the angles B, D .and 1;1::;r
bisectors of the angles 4, ¢ intersect on a straight line, certain restri‘ctiona being
made as to which pairs of bisectors are taken. See figure in Art. 132,

[Apply four equal forces to act along the sides of the quadrilateral, and find their
resultant by combining them in different orders.] [Math. Tripos, 1882.]

.Ex‘ 3 P.rove, by mechanical considerations, that the locus of the cenfres of all
ell{pses inseribed in the same quadrilateral is the straight line joining the middle
points of any two diagonals. [Coll. Exam.]

Let 4, B, C, D be the corners taken in order, Apply forces along 4B, AD, CB
Cl? proportional to these lengths. The tangents measured from each corner t,o thf:
ac‘lgacent points of contact represent forces whose resnltant passes through the centre.
Since these eight forces make up the four forees AB, AD, CB, CD, the resultant
passes through the centre. Again the resultant of 4B, AD and also that of CB, OD
bisect the diagonal BD. Similarly the resultant force bisects the other &iagon;.l‘

Ex.4. If X, Yare the intersections of the opposite sides of a quadrilateral ABCD
prove that the ratio of the perpendiculars drawn from X and ¥ on the diagonal AC,‘
is equal to the ratio of the perpendiculars on the diagonal BD. Show also that

each of these ratios is equal to the ratio of AB.CDsin ¥ to AD. BCsin X. See

figure of Art. 132.
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CHAPTER X.
ON STRINGS.

442, 'The Catenary. The strings considered in this chapter
are supposed to be perfectly flexible. By this we mean that the
resultant action across any section of the string consists of a single
force whose line of action is along a tangent to the length of the
string. Any normal section is considered to be so small that the
string may be regarded as a curved line, so that we may speak of
its tangent, or its osculating plane.

The resultant action across any section of the string is called
its tension, and in what follows will be represented by the letter 7.
This force may theoretically be positive or negative, but it is
obvious that an actual string can only pull. The positive sign is
given to the tension when it exerts a pull on any object instead
of a push.

The weight of an element of length ds is represented by wds.
In a uniform string w is the weight of a unit of length. If the
string is not uniform, w is the weight of a unit of length of an
imaginary string, such that any element of it (whose length is ds)
is similar and equal to the particular element ds of the actual
string.

443. A heavy wniform string is suspended from two given
points A, B, and s in equilibriwm in o vertical plane. It ?_IS
required to find the equation to the curve in which it hangs. This
curve is called the common Catenary *.

* The following short account of the history of the problem known under the
name of the * Chainette ” is abridged from Montucla, Vol. ii., p. 468. The problem
of finding the form of a heavy chain suspended from two fixed points was propqsed
by James Bernoulli as a question to the other geometers of that day. Four
mathematicians, viz, James Bernoulli and his brother, Leibnitz and Huyghens, hfa.d'
the honour of solving it. They published their solufions in the dotes de Leipsick

-
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Let €' be the lowest point of the catenary, ie. the point at
which the tangent is horizontal. Take some horizontal straight
line Oz as the axis of #, whose distance from C' we may afterwards
choose at pleasure. Draw CO perpendicular to it, and let O be
the origin. Let 4 be the angle the tangent at any point P
makes with Oz. Let T and 7T be the tensions at C' and P, and
let CP=s. In the figure the axis of #, which is afterwards taken
to represent the directrix, has been placed nearer the curve than
it really is in order to save space.

The length CP of the string is in equilibrium under three
forces, viz. the tensions 7} and 7" acting at ' and P in the direc-

tions of the arrows, and its weight ws acting at the centre of
gravity G of the arc CP.

4
Vi
0 r '8 " 2
Resolving horizontally, we have TeosYy=1T,......... (1).
Resolving vertically, we have Tsinyr=ws......... (2).

Dividing one of these equations by the other,

dy ws \
c—l._r_tan Y= L e siintsmssiniiers (3).

(Act. Brud. 1691) buf without the analysis, apparently wishing to leave some laurels
to be gathered by those who followed, David Gregory published a solution some
years after in the Phil. Trans. 1697.

It is the custom of geometers to rise from one difficulty to another, and even to
make new ones in order to have the pleasure of surmounting them. Bernoulli was
no sooner in possession of the solution of his problem of the chainette considered
in its simplest case, than he proceeded to more difficult ones. He supposed next
that the string was heterogeneous and enquired what should be the law of density
that the curve should be of any given form, and what would be the curve if the
string were extensible. He soon after published his solution, but reserved his
analysis. Finally he proposed the problem, what would be the form of the string
if it were acted on by a central force. The solutions of all these problems were
afterwards given by John Bernoulli in his Opera Ommnia. See also Ball’s Short
History of Mathematics, 1888.

Montucla remarks that the problem of the chainette had excited the curiosity of
Galileo, who had decided that the curve is a parabola. But this accusation is stated
by Venturoli to be without foundation. Galileo had merely noticed the similarity
between the two eurves. See Venturoli, Elements of Mechanics, translated by Cresswell,
p. 69, where the problem of the chainette is discussed.
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If the string is uniform w is constant, and it is then con-
venient to write T,=wc. To find the curve we must integrate
the differential equation (3). We have

ds\? dz\? ¢t
(@)=1+(‘)“1+9°
sds X
s o A =1+ ).
o dy= s y+ A =1 N+ )

We must take the upper sign, for it is clear from (3) that, when
# and s increase, ¥ must also increase. When s=0, y+ 4 =c.
Hence, if the axis of « is chosen to be at a distance ¢ below Fhe
lowest point C of the string, we shall have A = 0. The equation

now takes the form
P=8F Crrrrierirunsncresnornionins (4).

; ds
Substituting this value of y in (3), we find _V'Ei_'l' &= da,

where the radical is to have the positive sign. Integrating,
clog{s+ /(s +c*)}=2+B.

But 2 and s vanish together, hence B =clogc.

N(E+ ) +s= cec.

Inverting this and rationalizing the denominator in the usual

From this equation we find

2
manner, we have (S +c)—s=ce °

Adding and subtracting we deduce by (4)

cf® E e/ %
y=§(e°+e "), s=§(e“—e 0) ...... (5).

The first of these is the Cartesian equation to the common
catenary. The straight lines which have here been taken as the
axes of @ and y are called respectively the directriz and the awis
of the catenary. The point C'is called the vertex.

Adding the squares of (1) and (2), we have by help of (4)

T2 0 (5 &) = 0y’
S =i e Joviainssbal DYs

The equations (1) and (2) give us two important properties of
the curve, viz. (1) the horizontal tension at every point of the curve
is the same and equal to we; (2) the vertical tension at any pownt
P is equal to ws, where s is the arc measured from the lowest point.
To these we join a third result embodied in (6), viz. (3) the
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resultant tension at any point s equal to wy, where y is the ordinate
measwred from the directriz.

444. Referring to the figure, let PN be the ordinate of P,
then I'=w.PN. Draw NL perpendicular to the tangent at P,
then the angle PNL=+. Hence

PL =PN.sinyr =sby (2),
NL=PN.cosy =c by (1).

These two geometrical properties of the curve may also be

deduced from its Cartesian equation (5). By differentiating (3)
1 dy 1 ¢
éas%%:a A (7).

We easily deduce from the right-angled triangle PNH, that
the length of the normal, viz. PH, between the curve and the
directrix is equal to the radius of curvature, viz. p, at P.

It will be noticed that these equations contain only one
undetermined constant, viz. ¢; and when this is given the form of
the curve is absolutely determined. Its position in space depends
on the positions of the straight lines called its directrix and axis.
This constant ¢ is called the parameter of the catenary. Two arcs
of catenaries which have their parameters equal are said to be
arcs of equal catenaries.

we find

Sinece p cos*yr =g, it is clear that ¢ is large or small according
as the curve is flat or much curved near its vertex. Thus if the
string is suspended from two points A4, B in the same horizontal
line, then ¢ is very large or very small compared with the distance
between 4 and B according as the string is tight or loose.

The relations between the quantities y, s, ¢, p, ¥ and T in the common catenary
may be easily remembered by referring to the rectilineal fisure PLNH. We have
PN=y, PL=3s, NL=¢, PH=p, T=w.PN and the angles LNP, NPH are each
equal to . Thus the important relations (1), (2), (3), (4), and (7) follow from the
ordinary properties of a right-angled triangle.

445, Since the three forces, viz., the tensions at 4 and B and the weight are in
equilibrium, it follows that their lines of action must meet in a point. Hence the
centre of gravity G of the are must lie vertically over the intersection of the tangents
at the extremities of the arc. This is a statical proof of one part of the more general
theorem given in Art. 399, Ex. 1, where it is also proved that the vertical ordinate
of the centre of gravity is half that of the intersection of the normals at the extremi-
ties of the arc.

446. Ex. 1. Show that it is impossible to pull a heavy string by forces at its
extremities so as to make it quite straight unless the string is vertical.
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If it be straight let y be the inclination to the horizon, W its weight. Then,
resolving perpendicularly to its length, W cos ¥=0, which gives y equal to a right
angle. This proof does not require the string to be uniform.

Ex. 2. If astring be suspended from any two points 4 and B not in the same
vertical, and be nearly straight, show that ¢ is very large.

Let y, y' be the inclinations at 4 and B, and [ the length of the siring. Then

=s—¢'=c(tany—tany’). Since y and ¢ are nearly equal, ¢ is large compared
with I

Ex. 3. A heavy uniform string 4B of length I is suspended from a fixed point

4, while the other extremity B is pulled horizontally by a given force F=wa. Show

. : l +a?
that the horizontal and vertical distances between 4 and B are a log—i#-a—)-

and /(1% + a®) — a respectively.

_— Ex. 4. The extremities 4 and B of a heavy string of length 2I are attached
to two small rings which can slide on a fixed horizontal wire, Each of these rings
is acted on by a horizontal forece F=wl. Show that the distance apart of the rings
is 21 log (1+4/2).

Ex. 5. If the inclination  of the tangent at any point P of the catenary is
taken as the independent variable, prove that

F. ¥ L B
z=c¢log tan (14‘5)’ y_cosx,v’ s=c¢tany, » o=
If z, § be the coordinates of the centre of gravity of the arc measured from the
¢

; Fl ¥ g i
vertex up to the point P, prove also that T=2—¢ tan a0 JFeh il v +axcot ).

447. If the position in space of the points 4 and B of suspension and the
length of the string or chain are given, we may obtain sufficient equations to find
the parameter ¢ of the catenary, and the positions in space of its directrix and axis.

Let the given point 4 be faken as an origin of coordinates, and let the axes be
horizontal and vertical. Let (R, k) be the coordinates of B referred to 4, and let !
be the length of the string 4B. These three quantities are therefore given. Let
(z,y), (z+h, y+k) be the coordinates of 4, B referred to the directrix and axis
of the catenary. Then x, y, ¢ are the three quantities to be found. By Art, 443

x+k

e £ = ¢ T _zth
y=5(E+e o) Y=o +e ) hnnniinafA)

Also by Art. 443, since [ is the algebraic difference of the ares C4, CB,

¢ = _wih @ =
e 1 -, IR -

If C lie between 4 and B, = will be negative.
These three equations are sufficient to determine «, y and ¢. They cannot
however be solved in finite terms. We may eliminate
z, y in the following manner.
® &
Writing w=e¢°, v=¢", we find from (A) and (B)

k_—:% (u = %) e=l) I

1=%(u+$}) (v-l}j
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‘We notice that v contains only ¢ and the known quantity i. Hence, subtracting
the squares of these equations in order to eliminate u, we find
h h
/(BT =c(e®—e ®) i (D)
This agrees with the equation given by Poisson in his T'raité de Mécanique.

The value of ¢ has to be found from this equation. It gives two real finite
values of ¢, one positive and the other negative but numerically equal. A negative
value for ¢ would make y negative and would therefore correspond to a catenary
with its coneavity downwards. It is therefore clear that the positive value of ¢ is fo
be taken,

To analyse the equation (D), we let c=1/v, and arrange the terms of the equation

eyt e U
so that @ and m are both positive. We have a*=01*—£?, and 2m="rh. Since the
length I of the string must be longer than the straight line joining the points of
suspension, it is clear that a must be greater than 2m. By differentiation,

in the form e — e Ay = O

dz _ my , —iny

o =me T+e ) —a.

Thus dz/dy is negative when =0, so that, as v increases from zero, z is at first
zero, then becomes negative and finally becomes positive for large values of -.
There is therefore some one value of v, say y=i, at which 2=0. If there could
be another, say =i, then dz/dy must vanish twice, onee hetween y=0 and
y=1, and again between y=1i and y=i'. We shall now show that this is impossible.
By differentiating twice we have

dz =

e e, My _ MYy,

e m? (e [ i

thus d°z/d-? is positive when v is greater than zero. Hence dz/dy continually in-
creases with y from its initial value 2m —a when y=0. It therefore cannot vanish
twice when « is positive. It appears from this reasoning that the equation gives
only one positive value of c.

The solitary positive value of ¢ having been found from (D), we can form a
simple equation to find u by adding one of the equations (C) to the other. In this
way we find one real value of z. The value of y is then found from the first of the
equations (A). Thus it appears that, when a uniform string is suspended from two
Jized points of support, there is only one position of equilibrium.

The equation (D) can be solved by approximation when hfc is so small that we
can expand the exponentials and retain only the first powers of hfc which do not
disappear of themselves. This occurs when ¢ is large, i.e. when the string is nearly
tight. In such cases, however, it will be found more convenient to resume the
problem from the beginning rather than to quote the equations (D) or (E).

448. Ex.1. A uniform string of length I is suspended from two points 4 and
B in the same horizontal line, whose distance apart is h. If % and I are nearly
equal, find the parameter of the catenary.

Referring to the figure of Art. 443, we see that s=}, =%h. Hence using one
" A

of the equations (5) of that article, we have l=c(®-¢ %),

Whatever the given values of k and I may be, the value of ¢ must be found from
this equation. When 7 and I are nearly equal, we know by Art. 446, Ex. 2, that hfc
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is small. Hence, expanding the exponentials and retaining only the lowest powers
3
of hjc which do not disappear, we have  ¢*= -24—(?_-_-'?) ;

Since the string considered in this problem is nearly horizontal, the tension of
every element is nearly the same. If the string be slightly extensible, so that the
extension of any element is some function of the tension, the stretched string will
still be homogeneous. The form will therefore be a catenary, and its parameter
will be given by the same formula, provided I represents its stretched length.

In order to use this formula, the length I of the string and the distance &
between 4 and B must be measured. But measurements cannot be made withous
error. To use any formula correctly it is necessary to estimate the effects of such
errors. Taking the logarithmic differential we have 2—? = éi—h - d:_fl_d;&ﬁh s

Here 5% and 51 are the errors of % and I due to measurement. We see that the
error in ¢ might be a large proportion of ¢ if either h or [—h were small. In our
case [—h is small. Hence to find ¢ we must so make our measurements that the
error of 1—h is small compared with the small quantity I— &, while the length h
need be measured only so truly that its error is within the same fraction of the
larger quantity h. Thus greater care must be taken in measuring I - I than h.

Suppose, for example, that =30 feet and =31 feet, with possible errors of
measurement either way of only one thousandth part of the thing measured.
The value of ¢ given by the formula is 335 feet, but its possible error is as much
as one thirtieth part of itself,

— Ex. 2. A uniform measuring chain of length I is ightly stretched over a river,
the middle point just touching the surface of the water, while each of the ex-

tremities has an elevation & above the surface. Show that the difference between
X

7 ’ 8k
the length of the measuring chain and the breadth of the river is nearl 37"

Ex. 3. A heavy string of length 21 is suspended from two fixed points 4, B in
the same horizontal line at a distance apart equal to 2a. A ring of weight W can
slide freely on the string, and is in
equilibrium at the lowest point. Find A E B
the parameter of the catenary and the \ !
position of the weight.

Let D be the position of the heavy
ring, then BD and 4D are equal por-
tions of a catenary. Produce BD to
its vertex €, and let Oz, OC be the
directrix and axis of the catenary DB.

Let « be the abscissa of D. Then
since ! is the difference of the arcs

ta zta =
e =2 -EE

xr
CB, CD, we have I:E(e ¢ - )-%( 2 R e e R D

Also, since the weight of the ring is supported by the two vertical tensions of the

£

string, W"=2wf;-(e5uc_?).......‘......‘,,...,,“............{2).

The equations (1) and (2) determine x and ¢. Thence the ordinates of D and B
may be found, and therefore the depth of D below .4B.
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If the weight of the ring is much greater than the weight of the string, each
string is nearly tight. Thus afc is small, but xfc is not necessarily small, for the
vertex € may be at a considerable distance from D. If we expand the terms con-
taining the exponent a/c and eliminate those containing zfc, we find

¢ = Wa/2w\/(1* - a®) nearly.

The contrary holds if the weight of the ring is much smaller than the weight of
the string. If W were zero the two catenaries BD and DA wounld be continuous,
and the vertex would be at D. Hence when T is very small, the vertex will bhe
near D and therefore #fa will be small. But afc is not necessarily small. Ex-
panding the terms with small exponentials, we find from (2) that x=W/2w. Then

o ]
S 7,

: G W
1 y = (&% — & et
(1) gives Imo (=8 "t

i

{1 +e -1

It the weight W were absent this equation would reduce to the one already dis-

cussed above. If y be the change produced in the value of ¢ there found by adding

the weight W, we find, by writing ¢+ for ¢ in the first term on the right hand side,
reg

that (.’. - a?k) v+ 2% (k —¢)=0, where k is the ordinate of B before the addition of W.

If the weight W had been attached to any point D of the string not its middle
point, 4D, BD would still form catenaries, whose positions could be found in a
similar manner, We may notice that, however different the two strings may appear
to be, the catenaries have equal parameters. For consider the equilibrium of the
weight 7; we see by resolving horizontally that the we of each catenary must be
the same.

If the string be passed through a fine smooth ring fived in space through which
it could slide freely, the two strings on each side must have their tensions equal.
Hence the two catenaries have the same directriz. The parameters are not neces-
sarily equal, for the difference between the horizontal tensions of the two catenaries
is equal to the horizontal pressure on the ring, which need not be zero.

Ex. 4. A heavy string of length I is suspended from two points 4, 4’ in the
same horizontal line, and passes through a smooth ring D fized in space. If DN
be a perpendicular from D on 44" and NA=h, NAd’'=1', DN=F%, prove that the
parameters ¢, ¢’ may be obtained from

42=1? 005}12{13 cosech (;-5—& + 2%)} T (cosech 2}_2)2 ’
and a similar equation with the accented and unaccented letters interchanged.

Ex. 5. A portion 40 of a uniform heavy chain rests extended in the form of a
straight line on a rough horizontal plane, while the other portion CB hangs in the
form of a catenary from a given point B above the plane. The whole chain is on
the point of motion towards the vertical through B. If I be the length of the whole
chain and & be the altitude of B above the plane, show that the parameter ¢ of the
catenary is equal to g (U wht) = a4 (p? 4 1) 1%+ 2uhl}.

—Ex. 6. A heavy string hangs over two small smooth fixed pegs. The two ends
of the string are free, and the central portion hangs in a catenary. Show that the
free ends are on the directrix of the catenary. If the two pegs are on the same level
and distant 2a apart, show that equilibrium is impossible unless the lengfh of
the string is equal to or greater than 2ae. . [Coll. Exam.]

BEx. 7. A heavy uniform chain is suspended from two fixed points 4 and B in
the same horizontal line, and the tangent at 4 makes an angle 45° with the horizon.
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Prove that the depth of the lowest point of the chain below AB is to the length of
the chain as /(2) -1 : 2,

Ex. 8. A uniform heavy chain is fastened at ifs extremities to two rings of
equal weight, which slide on smooth rods intersecfing in a vertical plane, and
inclined at the same angle a to the vertical: find the condition that the tension at
the lowest point may be equal to half the weight of the chain; and, in that case,
show that the vertical distance of the rings from the point of intersection of the rods
is lLcot a log (/2 +1), where 21 is the length of the chain, [Math, Tripos, 1856.]

Ex. 9. A heavy string of uniform density and thickness is suspended from two
given points in the same horizontal plane. A weight, an nth that of the siring, is
attached to its lowest point; show that, if 6, ¢ be the inclinations to the vertical of
the tangents at the highest and lowest points of the string, tan ¢=(1+n) tan 6.

[Math. Tripos, 1858.]

Ex. 10. If &, 8 be the angles which a string of length I makes with the vertical

at the points of support, show that the height of one point above the other is
leosd (a+B) cos & (a—B). [Pet. Coll., 1855.]

Ex. 11, A heavy endless string passes over two small smooth fixed pegs in the
same horizontal line, and a small smooth ring without weight binds together the
upper and lower portions of the string : prove that the ratio of the cosines of the
angles which the portione of the string at either peg make with the horizon, is equal
to that of the tangents of the angles which the portions of the string at the ring
make with the vertical. [Math. Tripos, 1872.]

Ex. 12. A4 and B are two smooth pegs in the same horizontal line, and Cis a
third smooth peg vertically below the middle point of 4B ; an endless string hangs
upon them forming three catenaries 4B, BC, and Cd : if the lowest point of the
catenary 4B coincides with C, prove that the pegs 4B divide the whole string into
two parts in the ratio of 2w+w' to 2w —w’, where w and w' are the vertical com-
ponents of the pressures on 4 and € respectively. [Math. Tripos, 1870.]

Ex. 13. An endless uniform chain is hung over two small smooth pegs in the
same horizontal line, Show that, when it is in a position of equilibrium, the ratio of
the distance between the vertices of the two catenaries to half the length of the
chain is the tangent of half the angle of inclination of the portions near the pegs.

[Math, Tripos, 1855.]

Ex. 14. A heavy uniform string of length 41 passes through two small smooth
rings resting on a fixed horizontal bar, Prove that, if one of the rings be kept
stationary, the other being held at any other point of the bar, the locus of the
position of equilibrium of that end of the string which is the further from the

stationary ring may be represented by the equation x=2./(ly) 1c>g§F : [Coll. Ex.]

Ex. 15. A heavy uniform string is suspended from two points 4 and B in the
same horizontal line, and to any point P of the string a heavy particle is attached.
Prove that the two portions of the string are parts of equal Catenaries.

Prove also that the portion of the tangent at 4 intercepted between the verticals
through P and the centre of gravity of the string is divided by the tangent at B in
a ratio independent of the position of P.

If 8, ¢ be the angles the tangents at P make with the horizon, « and 8 those

tan 6 +tan ¢ .

made by the tangents at 4 and B, show that g is constant for all posi-

tions of P. [St John’s Coll.]
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Ex. 16, A heavy uniform string hangs over two smooth pegs in the same
horizontal line. If the length of each portion which hangs freely be equal to
the length between the pegs, prove that the whole length of the string is to the
digtance between the pegs as ./(3) to loga/(3). Compare also the pressures on
each peg with the weight of the string.

Ex. 17. A uniform endless siring of length 7 is placed symmetrically over a
smooth cube which is fized with one diagonal vertical. Prove that the string will
slip over the cube unless the side of the cube is greater than 31,/21log (14 4/2).

[Emm, Coll., 1891.]

Ex. 18, An endless inextensible string hangs in two festoons over two small
pegs in the same horizontal line. Prove that, if @ be the inclination to the vertieal
of one branch of the string at its highest point, the inclination of the other branch
at the same point must be either # or ¢, where ¢ has only one value and is a function

of 6 only. If cot 10=c%°%, then ¢p=0. [Coll. Ex.]

Ex. 19. Four smooth pegs are placed in a vertical plane so as to form a square,
the diagonals being one vertical and one horizontal. Round the pegs an endless
chain is passed so as to pass over the three upper and under the lower one. If the
directions of the strings make with the vertical angles equal to a at the upper
peg, @ and v at each of the middle and § at the lower peg, prove the following
relations : sin g log cot 4a tan 48 =sin  log cot 4 tan 44,

sin 8 sin §+ sin a sin v =2 sin « gin 8. [Caius Coll.]

Ex. 20. A bar of length 2a has its ends fastened to those of a heavy string of
length 21, by which it is hung symmetrically over a peg. The weight of the bar is n
times, and the horizontal tension %m times the weight of the string. Show that

mi4nt= {{n +1) cosech ;nit —neoth —t [Coll. Ex., 1889.]

a@
ml

Ex. 21, One end of a heavy chain is attached to the extremity of a fixed rod,
the other end is fastened to a small smooth ring which slides on the rod: prove that
in the position of equilibrium log {cot 46 cot (3r — )} = cot  (secyy — cosee 8),
¢ being the inclination of the rod to the horizon, and ¢ that of the chain at its
highest point. [Coll. Ex.]

Ex. 22. A string of length 7o is fastened to two points at a distance apart equal
to 2a, and is repelled by a force perpendicular to the line joining the points and
varying inversely as the square of the distance from it, Show that the form of the
string is a semi-circle, [Coll. Ex., 1882.]

Ex. 23. A chain, of length 21 and weight 277, hangs with one end A attached to
a fixed point in a smooth horizontal wire, and the other end B attached to a smooth
ring which slides along the wire. Initially 4 and B are together. Bhow that the
work done in drawing the ring along the wire till the chain at 4 is inclined at an
angle of 45° to the vertical is 771 (1 - /2+log 1 +.J2). [Coll. Ex., 1883.]

Ex. 24, Determine if the catenary is the only curve such that, if AB be any are
whose centre of gravity is @, and 47, BT tangents at 4 and B, then GT is always
parallel to a fixed line in space.

Ex. 25. A uniform heavy chain of length 2n is suspended from two points
in the same horizontal line; if one of these points be moveable, find the egquation
of the locus of the vertex of the eatenary formed by the string; and show that
the area cut off from thiz locus by a horizontal line through the fixed point is
}a® (w2 - 4). [Math. Tripos, 1867.]
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449. Stability of eguilibrium. Some problems on the equilibrinm of heavy
strings may be conveniently solved by using the principle that the depth of the
centre of gravity below some fixed straight line is & maximum or minimum, Art.
218. If the curve of the string be varied from its form as a catenary, the use of this
prineiple will require the caleulus of variations. But if we restrict the arbitrary
displacements to be such that the string retains its form as a catenary, though the
parameter ¢ may be varied, the problem may be solved by the ordinary processes of
the differential caleunlus.

This method presents some advantages when we desire to know whether the
equilibrinm is stable or not. We know, by Art. 218, that the equilibrium will be
stable or unstable according as the depth of the centre of gravity below some fized
horizontal plane is a true mazrimum or minimun,

Ex. 1. A string of length 21 hangs over two smooth pegs which are in the same
horizontal plane and at a distance 2« aparf. The two ends of the string are free, and
its central portion hangs in a catenary. Show that equilibrium is impossible unless
l be at least equal to ae; and that, if I = ae, the catenary in the position of stable

equilibrium for symmetrical displacements will be defined by that root of cu_::E
which is greater than a. [Math. Tripos, 1878.]

Let 25 be the length of the string hetween the pegs. Taking the horizontal
line joining the pegs for the axis of x, we easily find (Art. 399) that the depth y of
the centre of gravity of the catenary and the two parts hanging over the pegs is
given by 20y =sy —ca+(1-s)%

Substituting for y and s their values in terms of ¢, we find

ﬂzj—f = (c = -E) e T_“)c'_ {exal

where p stands for ec. It is easy to see that the second factor on the right hand side
is negative for all positive values of ¢. Fquating dj/dc to zero, we find that the
possible positions of equilibrium are given by l=¢p. To find the least value of [
given by this equation we put dl/de=0; this gives c=a, so that I must be equal to
or greater than ae.

For any value of ! greater than ae there are fwo possible values of ¢, one greater
and the other less than a. To determine which of these two catenaries is stable, we
examine the sign of the second differential coefficient, Art. 220, We easily find,
)~ (e +a)

when l=cp, &

325 le~a
21 Eég= (c—a)f e

In order that the equilibrium may be stable, this expression must be negative.
This requires that ¢ should be greater than a.

Ex. 2. A heavy string of given length has one extremity attached to a fixed
point 4, and hangs over a small smooth peg B on the same level with 4, the other
extremity of the string being free. Show that, if the length of the string exceed
a certain value, there are two positions of equilibrium, and that the one in which the
catenary has the greater parameter is atable.

450. Heterogeneous chain. A heavy heterogencous chain
18 suspended from two given points A and B. Find the equation to
the catenary.
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This problem may be solved in a manner similar to that used
in Art. 443 for a homogeneous chain. Since the equations (1)
and (2) of that article are obtained by simple resolutions, they
will be true with some slight modifications when the string is not
uniform. In our case the weight of the string measured from the
lowest point is fwds between the limits s =0, s=s, Art. 442. We
have therefore by the same resolutions

T oos fp=Ty.0ue(1), T'sinr = fwds......(2).
Dividing one of these by the other as before, we find
- i - TU__
Jwds =T, tan, = e e (3),
substituting for p and tan +, their Cartesian values
_p Py de_ dy\ ~* dy :
w= 0%—2 £— 0{1‘]‘(&‘%)} &Z‘é ............ (']:l)

Conversely, when the law of density is known, say w=f(s),
the equation (3) gives a relation between s and dy/dz which we
may write in the form dy/de=f,(s). We easily deduce from this

a=[{1+(fi ()} ds, y=I{1+(AEP ) ds,
whence # and y can be expressed in terms of an auxiliary variable
which has a geometrical meaning.

Ex. 1. Prove that the tension at any point P of the heterogeneous catenary is
equal to the weight of a uniform chain whose length is the projection of the radius
of curvature on the vertical and whose density is the same as that of the catenary
at P.

Ex. 2, A straight line BR is drawn through any fixed point B in the axis of y
parallel to the normal at P to the curve, cutting the axis of x in . Prove that
(1) the tension at P is (T,/c) times the length BR and (2) the weight of the are OP,
measnred from the lowest point O, is (T\/c) times the length OR, where OB=¢ and
T, is the horizontal tension ; Art. 85.

451. Cycloidal chain. A heterogeneous chain hangs in the form of a eyeloid
under the action of gravity : find the law of density.

In a cycloid we have p=4acosy and s=4asiny, where a is the radius of the
rolling cirele. Substituting, we find w:a‘secs = —163-—-1—0—_ .
4a (16a2 - 32)\3
It appears from this result that all the lower part of the chain is of nearly
uuiform density; thus the density at a point whose distance from the vertex
measured along the arc is equal to the radins of the rolling circle is about ten
ninths of the density at the vertex. The density increases rapidly higher up the
chain and is infinite at the cusp, If then the chain when suspended from two
points in the same horizontal line is not very curved, the chain may be regarded as
nearly uniform.
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The chief interest connected with this chain is that, when slightly disturbed from

its position of equilibrinm, it makes small oscillations whose periods and amplitudes

can be investigated.

Ex. Drawing the usual figure for a cyeloid, let O be the lowest point of the
curve, B the middle point of the line joining the cusps. Let the normal at any
point P of the curve intersect the line joining the cusps in M, and let BR be drawn
through B parallel to MP to intersect the horizontal through O in R. Prove that
the centre of gravity of the are OP is the intersection of BR with the vertical
through M. We find T=_2ay, §=2ay cot y, if B is the origin.

452. Parabolic chain. A heavy chain A0B is suspended from another
chain DCE by vertical strings, which are
so numerous that every element of A0D is Z
attached to the corresponding element of

< P
DCE. 1If the weights of DCE and of the ] 24
vertical strings are inconsiderable com- | |
pared with that of 40B, find the form of ‘ ‘ ‘ |

i i B -
the chain DCE that the chain 40FB may 3 7 7 7

be horizental in the position of equi-
librium.

The tensions at 0, M of the chain 405 being equal and horizontal, the weight of
the length O is supported by the tensions at ¢ and P of the chain DCE. Thus DCE
may be regarded as a heterogeneous heavy chain, such that the weight of any length
P(C ismz. Resolving horizontally and vertically for this portion of the chain, we have

Teosy=T,, Tsiny=mz.
Dividing one of these by the other,
me =Ty tan y=Tody[de, . Ima*=1T,(y-c).

The form of the chain DCE is therefore a parabola.

One point of interest connected with this result is that the chain 40B might be
replaced by a uniform heavy bar to represent the roadway of a bridge. The tensions
of the chaing due to the weight of the bridge would not then tend to break or bend
the roadway. It is only necessary that the roadway should be strong enough to bear
without bending the additional weights due to carriages. But this would not be
true if the light chain DCE were not in the form of a parabola.

The results are more complicated if the weight of the chain DCE is taken into
account, and if the chains of support, instead of being vertical, are arranged in
some other way.

This problem was first discussed by Nicolas Fuss, Nova Acta Petropolitane,
Tom. 12, 1794, It was proposed to erect a bridge across the Neva suspended by
vertical chains from four chains stretched across the river. He decided that the
chains of his day could not support the necessary tension without breaking,

Ex. 1. Prove that in the parabolic catenary the tension at any point P is
(T4/2a) times the length of the normal between P and the axis of the parabola,
where 2a is the semi-latus rectum. Prove also that the line density w at P is T},
divided by the length of the normal.

Ex. 2. Prove that the weight of the chain OF measured from the lowest point
O of the curve is (7/2a) times the distance of P from the axis of the parabola; and
deduce T'y=2an.
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Ex. 3. The centre of gravity G of an are bounded by any chord lies in the
diameter bisecting the chord, and PG=4PN where the diameter cuts the parabola
in P and the chord in N.

Ex. 4. Referring to the figure, we notice that, since the tensions at C and P
support the weight of the roadway OM, the tangents at ¢ and P must intersect in a
point vertically over the centre of gravity of OM. Thence deduce that the curve CP
is a parabola.

Ex. 5. If the weight of any element ds of the string DCPE is represented by
w (ds +ndzx), show th_a.t the catenary is given by z= f ?-t‘lw"'cliﬂzm , where z is the
tangent of the inclination of the tangent to the horizon, and ¢ is a constant. [Fuss.]

Ex. 6. Prove that the form of the curve of the chain of a suspension bridge
when the weight of the rods is taken into account, but the weight of the rest of the
bridge neglected, is the orthogonal projection of a-catenary, the rods being supposed
vertical and equidistant. [Math. Tripos, 1880.]

453. The Catenary of equal strength. A heavy chain, suspended from two
fixed points, is such that the area of its section is proportional to the tension.
Find the form of the chain.

If wds be the weight of an element ds, the conditions of the guestion require
that I'=cw, where ¢ is some constant. The equations (1) and (2) of Art. 450 now

become Teosy=1T,, Tsin 5&:; [Tds.

Substituting in the second equation the value of T' given by the first, we have
ctan y=[secyds. Differentiating, we find ¢ sec® y=sec yds/dyy and ... pcosyr=c.

This result also easily follows from the intrinsic equation of equilibrium (2) given
in Art. 454. We have Tds/p=wdscosy. But when the string is equally strong
throughout T'=cw, hence peosy=ec. The projection of the radius of curvature on
the vertical is therefore constant and equal to c. '

To deduce the Cartesian equation we substitute for p and cos y,

dy\2) 71 d& 1 dy =
§1+ (I“;) } {%:E, tan'ld%=z +4.

If the origin be taken at the lowest point, the constant 4 is zero, We then find
&
y =:clog sec s

Traeing this curve, we see that the ordinate y increases from zero as a increases
from zero positively or negatively, and that there are two vertical asymptotes given
by x= +3re. When » lies between §we and e, the ordinate is imaginary; when

x lies between #we and &we, the curve is the same as that between x= % ire. For

greater values of o, the ordinate is again imaginary and so on. The curve therefore

congists of an infinite number of branches all equal and similar to that between

x=4wc. This is therefore the only part of the curve which it is necessary to
consider, Since the ordinates of the bridge must be finite, the values of x are
restricted to lie between =we. The span therefore cannot be so great as wc.

Let O be the lowest point of the curve, C the centre of curvature at any point P,
and PH a perpendicular on the vertical through ¢. Then CH=¢. The sides of
the triangle PCH are perpendicular and proportional to the forces which act on the
are OP, viz. the tension at P, the weight of OP and the horizontal tension I'; at 0.
It follows that (1) the tension at P is (T,fc) times the length of the radius of

RS SF 20
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curvature and (2) the weight of the arc OF is (Tyfc) times the projection of the radius
of curvature on the horizontal.

This curve was called the catenary of equal strength by Davies Gilbert, who
invented it on the occasion of the erection of the suspension bridge across the
Menai Straits. See Phil. Trans. 1826, part iii., page 202, In the first volume of
Liouville’s Journal, 1836, there is a note by G. Coriolis on the * chainette” of equal
resistance. Coriolis does not appear to have been aware that this form of chain had
already been discussed several years before,

Ex. 1. Prove (1) x=cy, (2) s=clogtan } (r+2y).
Ex. 2, Prove that the depth of the centre of gravity of any arc below the
intersection of the normals at ifs extremities is constant and equal to ¢. Prove also

that its absecissa is equal to that of the intersection of the tangents at the same
points.

Ex. 3. The distance between the points of support of a catenary of uniform
strength is a, and the length of the chain is I. Show that the parameter ¢ must be

) : . . s
found from tanh e =tan -~ . Show also that this equation gives a positive value

de
of ¢ greater than afw.

Ex. 4. Show that the horizontal projection of the span is in every case less
than 7 times the greatest length of uniform chain of the same material that can be
hung by one end. Assume the strength of any part of the chain to be proportional
to the mass per unit of length, [Kelvin, Math. Tripos, 1874,]

If I be the length of uniform chain spoken of, the tension at the point of
support is its weight, i.e. wL. Again, the tension at any point of the heterogeneous
chain ig ¢w, hence ¢ must be less than 1. Hence the span must be less than = L.

454. String under any Forces. 1o form the general in-
trinsic equations of equilibrium of « string under the action of any
Jorces. Let A be any fixed point of reference on the string,
AP=s, AQ=s+4ds. Let T be the tension at P; then, since 7" is
a function of s, T+ dT is the tension at Q*.

Let the impressed forces on the element P() be resolved along
the tangent, radius of curvature, and binormal at P. Thus Fds is
the force on ds resolved along the tangent in the direction in
which s 1s measured; G'ds is the force on ds resolved along the
radius of curvature p in the direction in which p is measured,
ie. inwards; Hds is the force on ds resolved perpendicular to the
plane of the curve at P, and estimated positive in either direction
of the binormal. These three directions are called the principal
directions or principal axes of the curve at P.

Let dyr be the angle between the tangents at P and Q. Hence
also the angle PCQ =d+r. The element ds is in equilibrium under

* It should be noticed that, if s were measured from B towards 4, so that BQ=s,
then 7" would be the tension at @, T'+dT' that at P,

-......---"""_'““—---..__,,,.,_.‘g s
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the forces T, T+ dT acting along the tangents at P, @ and the
forces Fds, Gds, Hds. Resolving 0
along the tangent at P,

(I'+dT)cosdyr —T + Fds =0,
which reduces to
dT + Fds=0.........(1).

Resolving along the radius of
curvature at P, we have

(T + dT)sin dupr + Gds =0,

We have now to resolve perpendicular to the osculating plane
at P of the curve. Since two consecutive tangents to a curve
lie in the osculating plane, the tensions have no component
perpendicular to this plane. We have therefore

27| S L 3).

The three equations (1), (2), (3) are the general intrinsic
equations of equilibrium,

The density of the string is supposed to be included in the
expressions Fds, Gids, Hds for the forces on the element. The
equations of equilibrium therefore apply, whether the string is
uniform, or whether its density varies from point to point.

From these equations we infer that the tensions 7" and 7'+ dT,
acting at the extremities of any element, are equivalent to two

other forces, viz. dI' and T%—g-, acting respectively along the

tangent to, and the radius of curvature of, the curve at either
extremity of the element. In problems on strings it is often
convenient to replace the tensions by these two forces. The
advantage of this change is that the direction cosines of the
tangent and of the radius of curvature are known by the differ-
ential calculus, When therefore we form the equations of statics,
we can easily resolve these two forces and the given impressed
forces in any directions we may find convenient.

Ex. Show that the form of the string is such that at every point the resultant
of the applied forces lies in the osculating plane, and makes with the principal
normal to the string an angle tan“lc%-z.

20—2
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455. To form the general Cartesian equations of equilibrium of
a string*. :

Lei‘?r ds be the length of any element PQ of the string. .I‘Jet
the forces on this element when resolved parallel to the positive
directions of the axes be Xds, Yds, Zds. The element 1s 1ln
equilibrium under the action of the tensions at P and Q and these
three impressed forces. :

Let UI.)S resolve all these parallel to the axis of #. The resolved
tension at Pis T %g, and pulls the
clement PQ towards the left han(?..
At (), s has become s + ds, the hori-
gontal tension at @ is therefore

() 0™

and this pulls the element PQ ‘to—
wards the right hand side. Taking
both these and the force Xds, we have

di(T(—i-E)ds+de=0.

s\ ds
Treating the other components in the same way, We find
4 (r%)+x=0
C% (T %’%) +Y=0;-
& (o) -

equilibrium of a string in

£ lar equations of :
480, FBx 1. Show that the 36 : erpendicular to the radius

one plane under forces Pds, Qds, acting along and p
vector, are

d - T %
-‘I—{Tcos¢)— gssin%f;-]—P:D, = (T'sin ¢) + ;sm¢cos¢+Q_0,
ds T

where cos p=dr/ds and sin p=rdffds. Thence deduce the equations of equilibrinm

of a string in space of three dimensions, referred to cylindrical coordinates,

# The equations of equilibrium of a string under the action o; atn;;}:. ll'gnzi{c}eso i!lilt]a)i:?
dimensions were given in a Cartesian form by Nicolas Fuss, Nova Acia idgriug e
11'.*‘3:&[3'16e He gives two solutions, one by moments, and ﬁnlozhe:h l;yazgllshe e e
i i i fter resolving parallel v0 :
tension, In this second solution, & : fathe BXE
i i nivalent to those obtained by resolving b
;ﬁggkﬁg:ggy ecﬁ: 2{;2: :g to apply his equations to the chainette and other similar

problems.

=
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Ex. 2. A string is in equilibrium in the form of a helix, and the tension is
constant throughout the string. Show that the force on any element tends directly
from the axis of the helix.

Ex. 3. The extremities of a string of given length are attached to two given
points, and each element ds of the string is acted on by a repulsive force tending
directly from the axis of z and equal to 2urds. If (rf2) be the cylindrical coordinates

of any point, prove that T=4-pur,
8 B dr\?® o, A oo
i (dz) —0(1‘3") —F -

Show how the five arbitrary constants are determined. Explain how a helix
is, in certain cases, the solution.

Ex. 4. A heavy chain is suspended from two points, and hangs partly immersed
in a fluid. Show that the curvatures of the portions just inside and just outside
the surface of the fluid are as D — D' to D, where D and D’ are the densities of the
chain and fluid. [St John’s Coll.]

The weights of the elements just above and just below the surface of the fluid are
proportional to Dds and (D — D’) ds. If T be the tension, the resolved parts of these
weights along the normal must be Tds/p and Tds/p’. Hence DJ(D - D')=p'[p.

Ex. 5. A heavy string is suspended from two fixed points 4 and B, and the
density is such that the form of the string is an equiangular spiral. Show that the
density at any point P is inversely proportional to » cos® y, where r is the distance of
P from the pole, and ¢ is the angle which the tangent at P makes with the horizon.

[Trin. Coll., 1881.]

Ex. 6. A heavy string, which is not uniform, is suspended from two fixed points.

Prove that the catenary formed of a given uniform string which touches at any

point the curve in which the string hangs and has the same tension at that point
will be of invariable dimensions.

457. Constrained Strings. A string rests on a curve of
any form in one plane, and is acted on by forces at its extremities.
Tt is required to find the conditions of equilibrium and the tension
at any point.

There are four cases of this proposition which are of con-
siderable importance ; we shall consider these in order.

Let us first suppose that the weight of the string is so slight
that it may be neglected compared with the forces applied at the
two extremities of the string. Let us also suppose that the curve
is perfectly smooth. The forces on an element ds are merely the
tensions at its ends and the reaction or pressure of the curve.
Let Rds be this pressure, then R is the pressure per unit of length
of the string. For the sake of brevity this is usually expressed by
saying that R is the pressure af the element. It is usual to
estimate the pressure of the curve on the string as positive when
it acts in the direction opposite to that in which the radius of
curvature is measured. '
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Resolving along the tangent and normal to the string, we have

by Art, 454, AT=0, T‘%-Rds=o.

We infer from these equations that, when a light string rests
on @ smooth curve, the tension is constant, and the pressure al any
point varies as the curvature.

458. This theorem has a wider range than would perhaps appear at first sight.
Sinee the curve may be of any form, the vesult includes the case of a string in
equilibrium under any forces which are at every point normal to the curve.
Supposing the normal forces given, the form of the curve can be found from the
result just proved, viz. that at every point the eurvature is proportional to the
normal force.

As an example we may consider Bernoulli’s problem ; to jind the form of a
rectangular sail, two opposite sides of which are fixed o as to be parallel to each
other and perpendicular to the direction of the wind. The weight of the sail is
neglected compared with the pressure produced by the wind. Let us enquire what
is the curve formed by a plane section of the sail drawn perpendicular to the fixed
sides.

Two answers may be given to this question according as the wind after acting on
the sail immediately finds an issue, or remains to press on the gail like a gas in
equilibrium. On the former hypothesis we assume as the law of resistance, that
the pressure of the wind on any element of the sail acts along the normal to the
element and is proportional to the square of the resolved velocity of the wind. We
have therefore R =1w cos? i, where y is the angle the normal to the section of the sail
makes with the direction of the wind, and w is a constant. This gives ¢/p=cos* .
By Art. 444 we infer that the curve is @ catenary, whose axis is in the direction of
the wind, and whose directrix is vertical.

If the air presses on the sail like a gas in equilibrium, the pressure on each side
of the sail is equal in all directions by the laws of hydrostatics, but the pressure is
greater on one side than on the other. We have therefore R equal to this constant
difference, hence also p is constant, and the required curve is a circle.

Ex.1. A “square sail” of a ship is fastened to the mast by two yard-arms, and
is such that when filled with wind every section by a horizontal plane is a straight
line parallel to the yards. Show that, assuming the ordinary law of resistance, it
will have the greatest effect in propelling the ship when 3 sin (o — 2¢) —sin a=0,
where a is the angle between the direction from which the wind comes and the ship’s
keel, and ¢ is the angle between the yard and the ship’s keel. [Caius Coll.]

Tx. 2. A light string has one end fixed at the vertex of a smooth eycloid; prove
that as the string, while taut, is wound on the curve, the line of action of the
resultant pressure on the cycloid envelopes another cyeloid of double parameter.

[Coll. Ex., 1890.]

[The resultant pressure of the curve on an arc of the string balances the tensions
at the extremities of the are. It therefore passes through the intersection of the
tangents at those extremities and bisects the angle between them.]

459. Heavy smooth string. Let us next suppose that the
weight of the string cannot be neglected. Let wds be the weight
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of the element ds. Let 4 be the angle the tangent PK at P
makes with the horizontal

The element P@ is in equilibrium under the action of wds
along the ordinate PN, Rds along

the normal PG, and the tensions at 7 ¢
P and Q. Resolving along the tan- 4
gent and normal at P, we have a4 B Q
dT —wdssinyr=0)...... (1),
s o
7 g wdscosyr— Rds=0|...... @) o 7% ¥ g
Since sin yr = dy/ds, the first equation gives by integration
T=wy+ Couviiannsin v (3).

Hence, if T, T, be the tensions at two points whose ordinates
are Y, Yo, To— T =w(y— )

This important result may be stated thus, If a heavy string
rest on @ smooth curve, the difference of the tensions at any two

p{?ifnts s equal to the weight of a string whose length is the vertical
distance between the points.

460. It may be remarked that this result has been obtained
solely by resolving along the tangent to the string, and is alto-
gether independent of the truth of the second equation. If then
the whole length of the string does not lie on the curve, but if

B

}[1

N A

part of it be free and stretch across to and over some other curves
the theorem is still true. Thus if the string 4 BCD stretch round
the smooth curves L, M, N, as indicated in the figure, the tension
at any point B or (' exceeds that at 4 by the weight of a string
whose length is the vertical distance of B or (' above A.

Since the tensions at 4 and D are zero, it follows that the
free extremities of a heavy chain are in the same horizontal line.



312 : INEXTENSIBLE STRINGS. [cHAP. X.

In the same way the tension is a maximum at the highest point.
Also no point of the string, such as C or (", can be beneath the
horizontal line joining the free extremities.

To determine the pressure at any point P (see fig. of Art. 459)
we write the equation (2) in the form

Rp="T—wp cos,
where the pressure R of the curve on the string, when positive,
acts outwards, i.e. in the direction opposite to that in which the
radius of curvature p is measured, Art. 457. If T, be the tension
at any fixed point 4, and 2 the altitude of any point P above 4,
we have by (3) T'=T+wz It therefore follows that
Rp="T,+w(z—pcosy)

If we measure a length PS =p along the normal at P out-
wards, the point S may be called the anti-centre. It is clear that
2 — pcosyr is the altitude of § above 4. Hence, if a heavy string
rest on a smooth curve, the value of Rp at any point P exceeds the
tension at A by the weight of a string whose length 1s the altitude
of the anti-centre of P above A.

If the extremity 4 be free, as in the figure of this article, then
Rp at any point B is equal to w multiplied by the altitude of the
anti-centre of B above A. If part of the string is free, as at C
and (”, the pressure R is zero. Hence the anti-centres of curva-
ture all lie in the straight line joining the free extremities 4 and
D. This is the common directriz of ull the catenaries.

In these equations Rds is the pressure outwards of the curve
on the string. It is clear thaf, if R were negative and the string
on the convex side, the string would leave the curve and equilibrium
could not exist. At any such point as B, the anti-centre is above
B and R is clearly positive. But at such a point as £ the anti-
centre is below E, and if it were also below the straight line AD,
the pressure at £ would be negative. If the string rest on the
concave side of the curve, these conditions are reversed. In
general, it is necessary for equilibrium that Rp should be positive
or negative according as the string is on the convex or concave
side of the curve.

Summing up the results arrived at in this article, we see that
a horizontal straight line can be drawn such that the tension at
each point P of the string 1s wY, where y is the altitude of P above
the straight line. This straight line may be called the statical
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directriz of the string. No part of the string can be below the
statical directrix, and the free ends, if there are any, must lie on it.
If R be the outward pressure of the curve on the string, Rp is equal
to wy', where y is the altitude of the anti-centre of P above the
dlrfectrix. It is therefore necessary that at every point of the
string the anti-centre should be above or below the directrix
according as the string is on the convex or concave side of the curve.

Ex.1. Show that the locus of the anti-centre of a cirele is another cirele.

Ex. 2. hShow that the coordinates of the anti-centre at any point P of an ellipse
referred to its axes are given by axz=2a%cos$—c2cos? ¢ Dby =2D%sin ¢+ ¢? sin® ¢,
where ¢2=a? - b2, and ¢ is the eccentric angle of P.

Ex. 3. If S be the anti-centre at any point P of a curve, show that the normal
to the locus of § makes with PS an angle @ given by tan 6 =idp/ds.

461 Tt should be noticed that at the points where the string leaves the con-
straining curve, both the curvature of the string and the pressure R may change
abruptly. Thus in the figure of Art. 460 at a point a little below I the m.dins?)f
curvature of the string is infinite and R is zero. At a point a little above I the
curvature of the string is the same as that of the body N, and the pressure I is equal
to Tfp. At such a point as E the abrupt change if any in the value of the product
Rp (in accordance with the rule of Art. 460) is equal to the weight of a string whose
length is the vertical distance between the anti-centres on each side of the point.

When the external forces which act on the string are such that their magnitudes
per Pnit of length arve finite, an abrupt change of tension cannot oceur. If the
tensions on each side of any point could differ by a finite quantity, an infinitesimal
length of string containing the point would be in equilibrium under the influence
of two unequal forces acting in opposite directions. In the same way there can be no
abrupt cl}ange in the direction of the tangent except at a point where the tension is
zero, for if the tangents on each side of any point made a finite angle with each
other, the element of string at that point would be in equilibrium under the action
of two finite tensions not opposed to each other.

-:162. Ex. 1. A heavy string (length 2i) passes completely round a smooth
horizontal cylinder (radius a) with the two ends hanging freely down on each side.
The parts of the string on the upper semi-circumference are close together, so that
the whole string may be regarded as lying in a vertical plane perpendiculajr to the
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axis of the cylinder. Find the position of rest and the least length of string con-
sistent with equilibrium.

First, let us suppose that the string is in contact with the circle along the lower
semi-circumference as well as the upper. Then a length [ — §re hangs vertically on
each side. Let D be the lowest point of the circle, the anti-centre of D is at a depth
2 below the centre O of the circle. Henee, unless I - 2wa > 2q, the string cannot
rest in eontact with the circle.

Secondly, let us suppose that a portion of the string hangs freely in the form of a
catenary. Let P’ be one of the points of contact of the catenary with the ecircle.
Let P be any point on the catenary, drawn in the figure merely to show the triangle
PLN, Art. 444, Let the angle P’OD =1, so that ¢ is the inclination of the tangent
at P’ to the horizon. Let &, y be the coordinates of P’, s=CP’. By examining the
triangle PLN, we see that y=csec y, s=ctany. Since x=a sin ¢, we have by (5)

of Art. 443 seey+iany=e © ... {Enr

As alveady explained, the free extremities 4, B of the string are on a level with the
divectrix, Art. 460. Hence BF=y +acos {; also the are FE=ma, EP'=(}r-y)a,
and P'C=s. The sum of these four quantities is {,

L oe(seeyrtany) +acosy—ap+dna=l.. ... (2)
< 1+sin
Putting »=1%log i _m—i’ , we find from (1) and (2)
_asiny r_ I+siny (sinyg . . )_ A
T a_\/r.sin':;x( TH e U

The second of these equations gives the length of the string corresponding to
any given position of equilibrium.

To find the least value of ! consistent with equilibrinm, we eguate to zero the
differential coefficient of I. As this leads to some rather long reductions, the results
only are here stated. Noticing that dv/dy =secy, we find

1dl  (1-v)(veos’y—siny)
ady (l-siny)

By expanding v in powers of sin ¢, we may show that (v cos?  — sin ) is negative
and does not vanish for any value of siny between zero and unity. Equating to
zero the factor (1--v), we find that sin w=(¢*~1)/(e*+1). As difdy changes sign
from — to +as sin y increases, we see that [ is a minimum,. Effecting the numerical
calculations, we have ¢ =86, and I — {wa= (e - ) a, which reduces to (1'85) a.

For any given value of I, greater than this minimum, there are two positions of
equilibrium. In one a portion of the string hangs freely in the form of a catenary;
in the other the string fits closely to the cylinder or hangs free according as the
given value of I~ %sra is greater or less than 2a.

Ex. 2. A uniform chain, having its ends fastened together, is hung round the
cireumference of a vertical cirele. If a be the radius of the circle, 2ay the arc
which the string touches, and [ the whole length, prove

(1—~2ay) {log ( ~cosy) —log (1 +sin )} =2a siny sec . [May Exam.]

Ex. 3. A uniform inextensible string of given length hangs freely from two
fixed points. It is then enclosed in a fine fixed tube which touches no part of the
string, and is cut through at a point where the tangent makes an angle vy with the
horizon. Prove that at a point where the tangent makes an angle y with the
horizon the ratio of the pressure on the tube to the weight of the string per unit of
length becomes cos® y sec y. .[Math. Tripos, 1886.]

v

————
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463. Rough curve, light string. 7o consider the case in
which the weight of the string is inconsiderable, but the curve is
rough. Referring to the figure of Art. 459, we shall suppose the
extremities 4 and B to be acted on by unequal forces #, F. Our
object is to find the conditions of limiting equilibrium; let us then
suppose the string is on the point of motion in the direction AB.
The friction on every element P is equal to wRds, where u is
the coefficient of friction. This force acts in the direction opposite
to motion, viz. from B to A.

Introducing this force into the equations obtained in Art. 459
by resolving the forces along the tangent and normal, and omitting
the terms containing the weight of the element, we have

8T — pRds =0......(1), T?—Rds:O......(?)‘
Eliminating R, we find, %’?—,:,u e udr;
P
colog T'=pap+ A, oo T'= Bery,

where 4 and B are undetermined constants. If 1., T, be the
tensions at two points at which the tangents make angles yr,, v,
with the axis of #, this equation gives

Ty=Tye+@=¥0 ..o el

It will be found useful to put the result in the form of a rule.
If a Ught string rest on a rough curve in a state bordering on
motion, the ratio of the tensions at any two points is equal to e to
the power of w times the angle between the tangents or between the
normals at those points.
Thf} :a.ign to be given fo w in this equation depends on the direction in which
the .fm-?tlon acts. In wusing the rule, however, no diffieulty arises from this
ambiguity; for (1) it is evident that that tension is the greater of the two which

is opposed to the friction, and (2) it must be the ratio of the greater tension to the

lesser (not the lesser to the greater) which is equal to the exponential with the
positive index.

Tt? fietern?ing the angle between the tangents; let a straight line, starting from
a position coineident with one tangent, roll on the string until it coincides with the

other tangent; the angle turned round by this moving tangent is the angle
required.

The pressure ab any point is given by (2), and we see that Rp
at any point s equal to the tension at that point.

4(:.?4. If t-hi? forces ¥, F” which act at the extremities 4, B
are given, and if the length I of the string is also given, we may
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find the limiting positions of equilibrium in the following manner.
Put the equation to the curve in the form r=f(s). Let s
be the required arc-coordinate of A, then s+11is that of B. The
V’s of A and B are therefore f(s) and f(s+1). Hence, by taking
the logarithms of equation (3),

log F,—log Fi=p{f(s+1)—f(s)}
From this equation s must be found. The other limiting position
may be found by writing — u for p.

465. Tt should be noticed that the equation (3) of Art. 463 is
independent of the size of the curve. Suppose a heavy string to
pass through a small rough ring or over a small peg, and to be
in a state bordering on motion; the weight of the portion of string
on the pulley may sometimes be neglected compared with the
tensions of the string on either side. If the strings on either side
make a finite angle with each other, the pressures and therefore
the frictions will not be gmall, and cannot be neglected. We
infer that, when a heavy tight string passes through a small rough
ring, the ratio of the tensions on each side is given by the same rule
as that for a light string.

a466. Tx. 1. A rope is wound twice round a rough post, and the extremities
are acted on by forces F, F', Tind the ratio of F : F' when the rope is on the
point of slipping. [Here the angle between the tangents is 4, hence the ratio of

the greater force to the other is Pl

Tx. 2. A circle has its plane vertical, and is pressed against a vertical wall by a
string fixed to a point in the wall above the circle. The string sustains a weight P,
the coefficient of friction between the string and cirele is p, and the wall is perfectly
rough. When the cirele is on the point of sliding, prove that, if 77 be the weight of
the cirele and @ the angle between the string and the wall, P (1+co=0) M= 2p.

[Coll. Exam.]

Fx. 8. A light string is placed over a rough vertical circle, and a uniform heavy
rod, whose length is equal to the diameter of the circle, has one end attached to each
end of the string, and rests in a horizontal position. Find within what points on
the rod a given mass may be placed, without disturbing the equilibrium of the
system : and show that the given mass may be placed anywhere on the rod, pro-
vided the ratio of its weight to that of the rod does not exceed & (¢*" — 1), where u is
the coefficient of friction between the string and the ecircle. [Coll. Exam., 1880.]

Fx. 4. A string, whose weight is neglected, passes over a rough fixed horizontal
cylinder and is attached to a weight W P is the weight which will just raise W7, and
P’ the weight which will just sustain WW; show that, if R, R are the corresponding
resultant pressures of the string on the cylinder, P: P’ :: R*: R [Math. T., 1880.]

Ex. 5. A band without weight passes tightly round the circumference of two
unequal rough wheels. One wheel is fixed while the other is made to furn slowly
round its centre. Show that the band will slip first on the smaller wheel.

P e—

L
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E}f' 6. 03:1 the top of a rough fixed sphere (radius ¢) is placed a heavy particle,’
to which are tied two equally heavy particles by light strings each of length c#; sho\\’r
that, when the latter particles are as near together as possible, the planes of the

strings make with one another an angle ¢, where 2 gin (6 —\) cos 2 dini o

and \ is the angle of friction between the particles and the sphere, and between the
strings and the sphere. [Coll. Exam., 1887.}

‘ Tx. 7. A uniform heavy string of length 21 passes through two given small fixed
rings 4, B in the same horizontal line. Supposing the string to be on the point of
slipping inwards at both 4 and B, find the position of equilibrium.

If 2s be the portion of the string between the pegs, y the ordinate of the catenary
at either peg, the tensions at the two sides of either ring are proportional to y and
1—s. Referring to the triangle PLN in the figure of Art. 443, we see that the
angle through which the string hags been turned is the supplement of the least angle

whose sine is ¢/y. Hence we have by (3) log ; 'ﬁ; = (n- —sin! %) p. Also if 2a be

the known distance between the rings, we have x=a. Substituting for y and s their
values in terms of  or a given in Art. 443, we have an equation fo find ¢. Hence
y and s may be found.

Ex.8. 4,B, Carethree rough points in a vertical plane; P, @, R are the greatest
\vei.ghts which can be severally supported by a weight W when connected with it by
strings passing over 4, B, C, over 4, B, and over B, C respectively. Show that the

i S sl QR
coefti =log —— i
efficient of friction at B is w_log S [Math. Tripos, 1851.]

Let a, 8, be the angles through which the string is bent at 4BC, their sum is
By Art. 463 log P/, log Q/W, log R[IV are respectively equal to po+ B+’ ‘
patp (B+7), o (a+p)+p"y. The result follows by substitution. It is supposzgi
that B lies between the verticals through 4 and C.

3 Ex. 9 A string, whose lengthis [,is hung over two rough pegs at a distance aapart
in a horizontal line. If onefree end of the string is as much as possible lower than the
other, the inelination to the vertical of the tangent to the string at either peg is given

L ]
by the equation rha 6 . log cot 5 =008 8 +cosh u (w - 0). [St John’s Coll., 1881.]

Ex. 1(_). An endless uniform heavy chain is passed round two rough pegs in the
same horizontal line, being partly supported by a smooth peg situated midway in
the line between the other pegs, so that the chain hangs in three festoons. If a, 8
are the-. angles which the tangents at one of the rough pegs make with the vertical
and p is the coefficient of friction, prove that the limiting values of a and g are given

= —a 3
by the equation e sl =222 1o nofie
sin 8log cot 38"

467. Rough curve, heavy string. We shall now consider

the general case in which both the weight of the string and the

roughness of the curve are taken account of.
'Referrmg to the figure of Art. 459, and introducing both the
weight and the roughness into the equations (1) and (2), we have

[Math. Tripos, 1879.]

dT —wds sinr —pBRds=0...cccoverninnnns ()
s—-wd30051}f—-Rd =0 2
= Rt oo e i cb o
: ( )'
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In applying these equations to other forms of the string we
must remember that the friction is p times the pressure taken
positively. Thus as the string is heavy it might lie on the
concave side of the curve. We must then change the sign of B
in the second equation, but not in the first.

We shall presently have occasion to write p=ds/dyr. If the
figure is not so drawn that s and ¥ increase together, we shall
have p =—ds/dyr. To solve these equations, we eliminate R,

jf;—pT=wp (SinYr~— @ COSY) cuvvvnnirinnne (3)

This is one of the standard forms in the theory of differential

equations. According to rule we multiply by ¢~*¥ and integrate ;
Te ¥ = fwp (sinyr — peos ) e dyr+ C......... (4).

We cannot effect this integration until the form of the curve
is given. By using the rules of the differential caleulus we first
express p as a function of 4. Then substituting and integrating,
we find e G N R e e (3)

The value of 7 having been found by this equation, R follows
from either (1) or (2). It should be noticed that we have not
asswmed that the string is necessarily uniform.

The pressure at any point is given by the equation

Rp=T —wp cos y

It may be noticed that this is the same as the corresponding
equation for a heavy string on a smooth curve, Art. 460.

If the string is not on the point of motion, we replace the term
— pRds in (1) by — Fds, where F is the friction per unit of length.

Ex, If the string is uniform and of finite length, and if the extremities ave
acted on by forces P,, P,, prove that the whole friction called info play is
[Fds=P,~ P, —wz, where z=y, -1, so that z is the vertical distance between the
extremities of the string.

468. Itappearsfrom the last article that the determination of the circumstances
of the equilibrium of a heavy string on a rough curve depends on the integral
I:_[wpe_wr (sin ¢ — weos ) d.
This integral can be found in several cases.
If the curve is a circle and the string homogeneous, we have p=a. We easily find

wa - . —

1=#_2_+ i {(u* — 1) cosyp — 2usin ) e MY,
If the curve is an equiangular spiral and the string homogeneous, we have
1.=M9 coba  gice peina=r and ¢ =6+a, the integral may be obtained from the

—acobia

last by writing u— cota for u, and ae cosec a for a.
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If the enrve is a eycloid with its base inclined to the horizon at any angle,
we have p=4acos (Y —a), where a is the radius of the generating circle. More
generally, if the curve is such that wp can be expanded in a series of positive integral
powers of gin ¢ and cos ¥, we can express wp (5in ¢ — p cos ¥) in a series of sines and
cosines of multiple angles. In this case the integral can be found by a method
similar to that used for the circle.

If the curve is a catenary we have pcos®y=c and I=weseeye ¥, More
generally, if the curve is such that p=ucos™y, where n is a positive or negative
integer, we may find I by a formula of reduction, We easily see that

I+ 12 I, - (n-1) (n+2) I,,_,
=wa (cos )" te ™ {n+2 - (n+2) sin ¢ cos ¥—(n+1-u?)ecosiyl,

469. Ex.l. A heavy string occupies a quadrant of the upper half of a rough
vertical circle in a state bordering on motion. Prove that the radius through the

lower extremity makes an angle « with the vertical given by tan (e — 2¢)=¢~ T where

pu=tane.

Ex. 2. A heavy string, resting on a rough vertical eirele with one extremity at
the highest point, is on the point of motion. If the length of the string is equal to
a quadrant, prove that Jw tan e=log tan 2e. [Coll. Ex., 1881.]

Ex. 3. A single moveable pulley, of weight W, is just supported by a power P,
which is applied at one end of a cord which goes under the pulley and is then fastened
to a fixed point; show that, if ¢ be the angle subtended at the centre by the part of
the string in contact with the pulley, ¢ is given by the equation

P(1-2¢ cos g+ 2= . [Coll. Ex., 1882.]

Ex. 4. If aheavy string be laid on a rough catenary, with its vertex upwards
and its axis vertical, so that one extremity is at the vertex, the string will just rest
if its length be equal to the parameter of the catenary, provided the coefficient of
frietion be (2log 2)/w. [Coll. Ex., 1885.]

Ex. 5. A heavy string 4B is placed on the concave side of a rough eycloidal
curve whose base is inclined at an angle a to the horizon, with one extremity 4 at
the lowest point and the other B at the vertex. Prove that the string will be in a

4 . t & — 2t y
state bordering on motion if e aland —prvalle

tmmbs_f)t_&né- 5 where tane is the

coefficient of frietion.

Ex. 6, A heavy string rests on a rough cycloid with its base horizontal and
plane vertical. The normals at the extremities of the string make with the vertical
angles each equal to @, which is also the angle of friction between string and
eycloid. If, when the cycloid is tilted about one end till the base makes an angle «
with the horizontal, the string is on the point of motion, show that

3-2gec?a= e_gﬂ o) i
[1t is assumed that no part of the string hangs freely.] [Coll. Ex., 1883.]

Ex. 7. A heavy uniform flexible string rests on & smooth complete cycloid, the
axis of which is vertical and vertex upwards, the whole length of the string exactly
coinciding with the whole arc of the cycloid ; prove that the pressure at any point
of the cycloid varies inversely as the eurvature. [Math. Tripos, 1865.]

Ex. 8. A heavy string 4B is laid on a rough convex curve in a vertical plane,
and the friction at every point acts in the same direction along the eurve, Show
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that it will rest if the inclination of the chord AB to the horizon be less than
tan—! u, where p is the coefficient of friction. [June Ex., 1878.]

a70. The following proposition will be found to inelude a number of problems
which lead to known integrals.

Tet the form be known in which a heterogeneous unconstrained string, supporfed
at each end, rests in equilibrium in one plane under the action of any forces. Let
this known curve be y=f(x). Let us now suppose this string to be placed in the
same position bn a rough cwrve fized in space whose equation is also y=f(z). If
the extremities of the string be acted on by forces such that the string is on the
point of slipping, then

(T+Gpe *¥=c, B sl L sl

where C is constant throughout the length of the string. Here, as in Art. 454,
Gds is the resolved normal foree inwards on the element ds. The standard case
is the game as that taken in Art. 467. The string is just slipping in that direction
along the curve in which the y of any point of the string increases. Also the
pressure B of the curve on the string, when positive, acts outwards. If either
of these assumptions is reversed, the sign of p must be changed. In order that
the string may not leave the curve, the sign of ¢ should be such that R acts from
the curve towards that side on which the string lies.

To prove these results, we refer to equations (1) and (2) Art. 454, Introducing
the pressure R into these equations, we have

AT + Fds — pRds =0, T—fﬂ Qs Bde= 0o (2).

Eliminating R, as in Art. 467 Te ™= — [(F-pG)pe ¥ dp+C........(3)-
When the string is hanging freely, R=0; by eliminating I' befween the equa-
d
dy
constrained to lie on a curve which possesses this property, we can substitute this
value of Fp in the equation (3). We then find Te *¥= - e'NGp-l- C. The first
result to be proved follows immediately, the second is obtained by substituting this
value of T in the second of equations (2).

tions (2) we find that Fp=——(Gp) is true along the curve. When the string is

471. Ex. 1. A uniform heavy string 4B is placed on the upper side of a rough
curve whose form ig a catenary with its directrix horizontal. If the lower extremity
is at the vertex, find the least force F' which, acting at the upper extremity, will
just move the string.

At the upper end of the string we have T=F, G= — g cos y, at the lower T'=0,
G=—g, ¢y=0. Hence by Art. 470 (F'-gpcos) eV = _ge, . F=gly- cc*”’}.
The upper sign of g gives the larger value of F, i.e. the force which will just move
the string upwards, the lower sign gives the force which will just sustain the string.
Instead of quoting equation (1), the reader should deduce this result from the
equations of equilibrium.

Ex. 2. A uniform string AB rests on the circumference of a rough circle under
the action of a central force tending to a point O situated at the opposite extremity
of the diameter through 4. If the force of attraction vary as the inverse cube of
the distance, prove that the force I acting at 4 necessary to prevent the string

= ; 2k
from slipping is F=1Fk (sec® 8¢ 248 _ 1y, where B is the angle 40B, = the force at

A, and a is the diameter.
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472 Endless and other strings. When a heavy inextensible string rests in
equilibrium in contact with a smooth curve withoutf singularities in a vertical plane
the pressure and tension can be found as in Art. 459, with one undeterminec{
constant. This constant is usually found by equating to zero the tension at the
free extremity. If, however, the string is either endless or has both its extremities
attached to the curve and is tightened at pleasure, there is nothing to determine the
constant.

Let us suppose the string to be in contact along the under side of the curve. Let
the string be gradually loosed until its length exceeds the length of the are in contact
by an infinitely small quantity. The string is then just on the point of leaving the
curve at some unknown point @, and is then said to just fit the curve. If the
length of the string were still further increased a finite portion of the string would
be off the curve and hang in the form of a catenary. In the same way if thegportion
of the string under consideration rest with its weight supported on the upper and
concave side of the curve, we may conceive the string to be gradually tightened
until it separates from the curve at some point . If still further tightened or
shortened a finite part of the string would hang in the form of a catenary, while
the remainder would still rest on the curve.

To determine the position of the point ¢} we notice that the pressure of the curve
on the string measured towards that side on which the string lies must be positive
at every point of the curve and zero at . The pressure thus measured is therefore
a minimum at Q.

Referring to Art. 460, the outward pressure R is given by

I€p=1'0+w(-g,r—pcos e P
Differentiating, and remembering that both B and dR/ds are zero at ¢}, we find
dy dp . . . dy
0=-—- e it o
oy cosnflds-}-psm‘,bds,

except when p is infinite at the point thus determined. Since dyfds=siny and
dp
2tnn-,{/=£ TR o

This equation determines the points at which Rp is a maximum, a minimum,

or stationary. When both R and dR/ds are zero, we have

d*R  d*R 2 2
,oF = Ef:-:sos‘,fa (To - Z%:) +sin a;/]—'; flf

The sign of this expression determines whether R is & maximum or a minimum.
When the length of the string is finite, some of these maxima or minima may be
excluded as being beyond the given limits. But we must then also take into
consideration the extremities of the string, for it is manifest that the pressure at
either end may be less than that at any point between the limits of the string. The
required point Q is that one of all these points at wlich the pressure measured towards
the string is least. The undetermined constant T, is then found by making the
pressure zero at this point.

If the string leave the curve at the lowest point we have dp/ds =0, i.e. the radios
nf. curvature p must be either a maximum, a minimum, or stationary at that point.
.Smce Rp must be a minimum or a maximum according as the string is outside or
inside, it is also necessary that d2Rp/ds? should be positive in the first case and
negative in the second.

We may express these conditions in a geometrical form. Consider a portion of
the string on the under and convex side of a curve, and let it be gradually loosened

R. 8. T. 21

p=ds|diy, this gives at once
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until it leaves the curve. Let @ be the point whose anti-centre is lowest, and let
the constant T, be determined by making the statical directrix pass through that
anti-centre, Art. 460, If R represent the outward pressure on the string, Rp is then
positive at every point of the string and equal to zero at @. The string therefore
leaves the curve at Q.

Next, let the string rest on the upper and concave side of a curve, If gradually
tightened it will leave the curve at the point @ whose anti-centre is highest. TFor,
choosing the constant Ty so that the statical directrix passes through the anti-
centre, and assuming that the whole string is still above the directrix (Art. 460),
the value of Rp is negative at every point of the string and equal to zero at Q.

4738. Ex. 1. A heavy string just fits round a vertical circle: show that the
tension at the highest point is three times that at the lowest.

Let T, T, be the tensions at the lowest and highest points, and let a be the
radius. Then T, - T,=2wa. Sinece p is constant the only solution of (2) is v=0,
and this makes the outward pressure R a minimum. The pressure is therefore gzero
at the lowest point, The weight, viz, wds, of the lowest element is therefore
supported by the tensions at each end, i.e. wds="T,dsfu. These equations give
Ty=wa, and .. T,=3wa.

We may obtain the result more simply by using the geometrical rule given in
the last article. The locus of the anti-centre is obviously another circle of radius
2a and concentric with the given circle, Taking the tangent at its lowest point for
the statical directrix, the altitudes of the highest and lowest points of the given
circle are as 3 : 1, Art, 460, The tensions at these points are therefore also in the
same ratio. We see also that if the string be slightly loosened, it will begin to
leave the eurve at the lowest point,

Ex.2. A heavy string (length 21) rests on the inner or concave side of a segment
of a smooth sphere (radius a, angle 28} and hangs down symmetrically over the
smooth rim which is in a horizontal plane. Find the conditions of equilibrium,

Since every point of the string must be above the statical directrix, it will be
seen on drawing a figure that l>a(B+1-cosf). Since the string rests on the
concave side, the outward pressure B must be negative and therefore every point of
the anti-centric curve must be below the statical directrix, hence l<a(8+cosp).
These two conditions require that 8 should be less than jm. If the second inequality
be reversed the string will leave the spherical segment at the highest point.

Ex. 8. A heavy string is attached to two points of the are of a catenary with
its axis vertical, and rests against its under surface. If the string is gradually
loosed, show that it will leave the curve at every point at the same instant.

Ex. 4. A heavy string has one end fastened to the lowest point of the are of g
cyeloid with the axis vertical and the vertex at the lowest point. The string
envelopes the arc outside up to the cusp, and passing over a small smooth pulley
has the other end hanging freely. Prove that the least length of the string hanging
down which is consistent with equilibrium is equal to six times the radius of the
generating cirele.  Find also in this case the resultant pressure on the cycloid,

[Queens’ Coll.]

Ex. 5. A heavy string just fits the under surface of g cycloidal are, the extremi-
ties of the string being attached to the cusps. Show that the pressure is zero at the
point @ given by the negative root of the equation 3 sin (2¢ +a)= - sin a, where @
is the inclination of the normal at @ to the axis of the eycloid, and a is the inclina-
tion of the axis to the vertical. Find also the tension at the vertex,

[

|
1
1
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Ex. 6. A heavy string surrounds an oval eurve, and is so much longer ti)a:n tlT:
imxa;tel; that a finite portion hangs in the form of a catenary. hIf thle :3t }:Lr;gt 1,1_9
gre:.dua.lly shortened until the arc of the catenary is evafnes‘czlent': 8 o;v ((2}) t}_,:t o
tive points coincident, an
d the catenary have four consecu > Ayt
Z::;ees:ennt arc is sitnated at a point of the curve determined by 2 tan ¢ = dp/ds

Ex. 7. A string is bound tightly round a smooth ellipse, and is aﬁedd?r;al;g;:
centra.l r;pulsive force in the focus varying directly ashthe ‘:qtt;are tchIf . e]; h ;siiahtl};
i rariati tension, and prove that, if the strin g
Find the law of variation of the . | s
it wi - ts at a distance from the fo q
1, it will leave the curve at the poin an
;jisi?rz(eslthe semi-major axis, provided the eccentricity be greater thaﬁn 3};8715
the eceentricity be less than 34, where will it leave the curve?  [Coll. Ex., ;

474. Central forces. A string.of gwven length s attachji:,;
two fiwed points, and is under the action of a central E_;"cw"ce. O:.CQ
the relation between the form of the curve _cmd the ahw o{" f ir;
Let the arc be measured from any fixed point 4 on the string
the direction AB, and let s = AP.
Let O be the centre of force, and
let Fds be the force on the ele-
ment ds estimated positive when
acting in the positive direction of
the radius vector, i.e. when the
force is repulsive. _

The e]fment PQ is in equilibrium under the action of 1fhe
tensions 7" and 7'+ dI' and the central force Fds. Resolving
along the tangent at P, we have

dT + Fdscos p =0,
where ¢ is the radial angle, i.e. the angle OPA. Since cos ¢ =dr/ds,

LT T R 1).
this reduces to T S =0 v (1)

We might obtain a second equation by _resolvmg t‘,.hej fsamz
forces along the normal at P, but the‘result is more ea:sﬂy 3;1_211
by taking the moment of the forces Wh‘l(’:h fmct on the ﬁr}lllt.e p&o I: !
of string AP. This portion is in equilibrium _under b eOa,c o
the tensions 7, T' and the central force tending fmim on t'awe
element. Taking moments about O, these latter disappear;

Il B RRAE o ron o oniia 2),
have therefore il e ennans i ( ()1 ;
where p is the perpendicular from O on the tangent at £, an
is the moment about O of the tension 7).

; i the arc
Let the tangents at any two points 4, B of thn?, curve meetd 12 Cr.ld 'ﬁ}l.l:liesulmnt
4B is in equilibrium under the action of the tensions at 4 an a
21—2
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It of the central forces on all the elements. This resuitant force must therefore act
along the straight line joining the centre of force O to the intersection C of the
tangents at A and B. Also if 0Y, OZ are the perpendiculars from O on the
I
OY G2
As the point P moves from 4 to B, the foot of the perpendicular on the tangent
at P traces out the pedal curve. This curve, when skefched, exhibifs to the eye
the magnitude of the tension at all points of the catenary,

tangents at 4 and B, we see by compounding the tensions that R=4

475. Two cases have now to be considered.

First. Suppose the form of the string to be given, and let the
force be required. By known theorems in the differential calculus
we can express the equation to the curve in the form p =+ (7).
The equations (1) and (2) then give
o a7

¥ (r)’ ¥ ()

The constant A remains indeterminate, for it is evident that
the equilibrium would not be affected if the magnitude of the
central force were increased in any given ratio. The tension at
any point of the string and the pressures on the fixed points of
suspension would be increased in the same ratio.

0

Secondly. Suppose that the force is given, and that the form
of the curve is required. KEliminating 7' between (1) and (2), we

find SEBIFr (4).

This differential equation has now to be solved. Put u=1/r
and [Fdr=jf(u); we find by a theorem in the differential calculus

( d 5
A2t ( d;) } I I ).
Separating the variables, we have
+ Adu
I L (6).

When this integration has been effected the polar equation to
the curve has been found.

There are three undetermined constants, viz. A, B, €, in this
equation. To discover their values we have given the polar
coordinates (u,6,), (u,6,) of the points of suspension. After inte-
grating (6) we substitute in turn for (uf) these two terminal
values, and thus obtain two equations connecting the three con-
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stants. We have also given the length of the string. To use
this datum we must find the length of the arc. We easily find

(ds) = (dry + (rdB)y = i {(duy + (udB).

Substituting from (5), we have
(B — fu) du
Trg: e v vy UL (G
Taking this between the given limits of u, and equating the
result to the given length of the string, we have a third equation
to find the three constants.

The equation (6) agrees with that given by John Bernoulli, Opera Omnia, Tomus
Quartus, p. 238. He applies the equation to the case in which the force varies
inversely as the nth power of the distance, and briefly discusses the eurves when
n=0 and n=2.

476. Ex. 1. A string is in equilibrium under the action of a central force.
If F be the force at any point per unit of length, prove that the tension at that
point=Fy, where y is the semi-chord of curvature through the centre of force.

Show also that FEAP_:F;’ where 4 is a constant.

Ex. 2. 4 uniform string is in equilibrium in the form of an are of a circle under
the influence of a centre of force situated at any point O. Find the law of force.
Let C be the centre, 0C=¢, CP=a. Then 2ap=1*+a*-c?

d 1 T
= —zf.d?—f;_-‘i{lfl m.
If the centre of force is situated at any point of the are not occupied by the
string the law of force is the inverse cube of the distance.
Since Tp=a4, 4 is positive, hence I is
positive, i.e., the force must be repulsive. If the
centre of force is outside the circle, p is negative /
for that part of the are neavest () which is cut off
by the polar line of 0. If the string oceupy this
part of the are, 4 is negative and the force F
must be attractive. 0
We have taken r or u as the independent
variable. If the centre of force be at the centre
of the circle, this would be an impossible sup- B
position. This case therefore requires a separate
investigation. It is however clear that the string
will be in equilibrinm whatever the law of force may be, provided it is repulsive.

Ex. 3. A uniform string is in equilibrium in the form of the eurve 1®=a" cos nf
under a central force I¥ in the origin: prove that F=pu*.

Ex. 4. A string of infinite length has one extremity attached to a fixed point 4,
and passing through a small smooth fixed ring at B stretches to infinity in a straight
line, the whole being under the influence of a central repulsive force=puu®, where
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n=1, Show that the form of the string between 4 and B is 1 2=)""2cos (n — 2) 0.
If n=2 the curve is an equiangular spiral.

Ex. 5. A closed string surrounds a centre of force=puu®, where n>1and <2.
Show that, as the length of the string is indefinitely increased so that one apse
becomes infinitely distant from the centre of foree, the equilibrium form of the string
tends to become r*~2=p"*cos(n—2)f. If n=32 the form of the eurve is a parabola.

Ex. 6. A uniform string of length 21 4s attached to two fived points 4, B at equal
distances from a centre O of repulsive force=pu®>. If 04=0B=0 and the angle
AOB =28, prove that the equation to the string is le;{:1 +E%E—m—ﬂ) s

a

where the real and imaginary values of M and o are determined from the equations

M cog (8 sin a) . b, :
—_—— A R s T L = %=
5 1+ o sin a 7 sin (B sina).
The equations (1) and (2) of Art. 474 become here AT = pdu, Tp=4.
Proceeding as explained in Axt. 475, we find = [ —'—Aif'i——‘-:: 84 C.
}(B 4 pu)? — 422} *

This integral is one of the standards in the integral caleulus, and assumes
different forms according as 4°— u® is positive, negative or zero. Taking the first
assumption, we have after a slight reduction

A2 ng
B

e ¥
u=p*d cos (1 HHQ) 0+ C).
This formula really includes all eases, for when 42 — u? is negative we may write
for the sine of the imaginary angle on the right-hand side its exponential value.

Proceeding to find the are in the manner already explained, we easily arrive at
Bs= £ {(Br+u?- 4%+ D, ;
where the radical must have opposite signs on opposite sides of an apse.
The conditions of the question require that the string should be symmetrical
about the straight line determined by #=0. We have therefore C=0 and D=0.
ptanial icos_(@i_r}_a_) .

Putting 4 =p sec a, the equation to the curve reduces to —
B Cos o

BIP=(Bb+ u)® — pu*sec? a.

Eliminating B between these equations, we find Isina= =bsin (8sina). We now
put M for the coeflicient of 1/r and include the double sign in the value of a.
Since =0 when #= =8 the three results given above have been obtained.

Ex, 7. A string is in equilibrium in the form of a closed curve about a centre
of repulsive force=pu®. Show that the form of the curve is a cirele.

Referring to the last example, we notice that, since » is unaltered when 8 is
increased by 2w, r must be a trigonometrical function of . Hence sina=1 or 0.
Putting M cos a=1I", the first makes }M'[r=cos 8, which is not a closed curve, the
second gives M =7, which is a circle.

Ex. 8. If the curve be a parabola, and the centre of force at the focus, and if
the equilibrium be maintained by fixing two points of the string, find the law of
force, and prove that the temsion at any point P is 2fr, where r=8P and fis the
force at P per unit of length. [St John’s Coll., 1883.]

Ex.9. An infinite string passes through two small smooth rings, and is acted
on by a force tending from a given fixed point and varying inversely as the cube of
the distance from that point, Show that the part of the string between the rings
assumes the form of an are of a circle. [Coll, Ex., 1884.]

We also have

: "\_,‘J'--
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Ex. 10. If a string, the particles of which repel each other with a force varying

as the distance, be in equilibrium when fastened to two fixed points, prove that the
tension at any point varies as the square root of the radius of curvature.

[Math. Tripos, 1860.]

Ex.11. Show that the catenary of equal strength for a central foree which varies
as the inverse distance is " cognf =a®, where 1 -n is the ratio of the line density
to the tension. Show also that this system of curves includes the circle, the rect-
angular hyperbola, the lemniscate, and when n is zero the equiangular spiral.

[O. Bonnet, Liouville’s .J., 1844.]

Ex. 12. A string is placed on a smooth plane curve under the action of a central
force F, tending to a point in the same plane; prove that, if the curve be such
that a particle could freely describe it under the action of that force, the pressure
of the string on the curve referred to a unit of length will be equal to E{:};n_(p + -E ’
where ¢ is the angle which the radius vector from the centre of force makes with
the tangent, p is the radius of curvature, and ¢ is an arbitrary constant.

If the curve be an equiangular spiral with the centre of force in the pole, and if
one end of the string rest freely on the spiral at a distance a from the pole, then

the pressure is equal to "-"1%:-2 %{ + ale) . [Math, Tripos, 1860.]

Ex. 13. A free uniform string, in equilibrium under the action of a repulsive
central force F, has a form such that a particle could freely deseribe it under a
central force F’ tending to the same centre. Bhow that F=kpF’, where k is a
constant. If v be the velocity of the particle and T the tension of the string, show
also that T'=~/kpv®., See Art. 476, Ex. 1.

Ex. 14. It is known that a particle can describe a rectangular hyperbola about
a repulsive central force which varies as the distance and tends from the centre of
the eurve, Thence show that a string can be in equilibrium in the form of a
rectangular hyperbola under an attractive central force which is constant in
magnitude and tends to the centre of the curve. Show also that the tension
varies as the distance from the centre.

Tor a comparison of the free equilibrium of a uniform string with the free
motion of a particle under the action of a central force, see a paper by Prof.
Townsend in the Quarterly Journal of Mathematics, vol. xmr., 1873,

477. When there are two centres of force the equations of equilibrium are best
found by resolving along the tangent and normal. Let 7, 7" be the distances of any
point P of the string from the centres of force; F, F' the central forces, which are
to be regarded as funetions of r, ' respectively. Let p, p’ be the perpendiculars
from the centres of force on the tangent at P. We then have

dT + Fdr+ F'dr' =0...(1), §-F§~F'§=o...(2).

T= B[ Far=[Far .., .. oenssseinasneesshssbice(Ghs

We may suppose the lower limits of these integrals to correspond to any given point
P, on the string. If this be done B will be the tension at £,. Substituting the
value of T thus obtained from (1) in (2) and remembering that p=rdr/dp,

d " d r ' s -
Ezg(pjb'd-r) +@(PIF e (4);

The first equation gives
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on the other hand, if we find T' from (2) and substitute in (1), we find after reduction

F o 1 f 1D
L (__P__p) +54d (Fp' p)z{) (5)-
7 P 7

P

Thus of the four elements, viz. (1) the force I, (2) the force F”, (3) the tension T,
(4) the equation to the curve, if any two are given, sufficient equations have now
been found to discover the other two.

Ex. 1. A string can be in equilibrium in the form of a given curve under the
action of each of two different centres of force. Show that it is in equilibrium
under the joint action of both centres of force, and that the tension at any point is
equal to the sum of the tensions due to the forces acting separately.

Ex. 2. Prove that a uniform string will be in equilibrium in the form of the
curve r2=2a? cos 26 under the action of equal centres of repulsive force situated at
the points, (a, 0), (—a, 0), the force of each per unit of length at a distance R being
u/R. Prove also that the tension at all points will be the same and equal to $u.

[Coll. Ex., 1891.]

478. String on a surface. A siring rests on a smooth
surfuce under the action of any forces. To find the position of
equilibrium.

Let the equation to the surface be f(z, y, z2)=0. Let Rds be
the outward pressure of the surface on the string. Let (7, m, n)
be the direction cosines of the inward direction of the normal.
By known theorems in solid geometry, [, m, n are proportional to
the partial differential coefficients of f(z, y, z) with regard to
#, 3, z respectively.

If the equations are required to be in Cartesian coordinates, we
deduce them at once from those given in Art. 455 by including R
among the impressed forces. We thus have

—d-(Td—m)+X— Rl =0

ds \" ds
%(T%)+Y—Rm=0
%(T%)+Z-Rn=o

We have here one more unknown quantity, viz. R, than we
had in Art. 455, but we have also one more equation, viz. the
given equation to the surface.

479. Let us next find the intrinsic equations to the string. Let
P() be any element of the string, PA a tangent at P. Let APB
be a tangent plane to the surface, PB being at right angles to PA.
Let PN be the normal to the surface. Let PC be the radius of
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curvature of the string, then PC lies in the plane BPN. Let y
be the angle PN, then x is also the angle the osculating plane
CPA of the string makes with the normal PN to the surface.

The element PQ is in equilibrium under the action of (1) the
forces Xds, Yds, Zds acting parallel to the axes of coordinates,
which are not drawn in the figure, (2) the reaction Rds along NP,
(3) the tensions at P and ), which have been proved in Art. 454
to be equivalent to d1 along P() and T'ds/p along PC.

Resolving these forces along the tangent PA, we have

T + Xczsg—% vds™ + 2ds% 0,
s ds ds

T+ [(Xde+ Ydy + Zdz)=A4 ............ (1).

The forces are said to be conservative, when their components
X, Y, Z are respectively partial differential coefficients with regard
to &, 7, 2, of some function W which may be called the work function,
Art. 209. Assuming this to be the case, the integral in (1) is equal
to the work of the forces. It
follows from this equation that
the tension of the string plus the
work of the forces s the sume at
all points of the string. Taking
the integral between limits for
any two points P, P’ of the string,
we see that the difference of the S
tensions at two points P, P’ is in- z
dependent of the length or form of the string joining those points
and is equal to the difference of the works at the points P', P taken
in reverse order.

We shall suppose that, while p is measured inwards along PC,
the pressure R of the surface on the string is measured outwards
along NP, Art. 457. We shall also suppose that (I, m, n) are the
direction cosines of the normal PN measured inwards. With this
understanding we now resolve the forces along the normal PN to
the surface; we find

Ly

cos x + Xds | + Ydsm + Zdsn — Rds=0.

By a theorem in solid geometry, if p’ be the radius of curva-
ture of the section of the surface made by the plane NPA, ie. by
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a plane ;ontaining the normal to the surface and the tangent to
the sbring, then p’cosy=p. We therefore have

g:+Xa!+ Ym+Zn=R ..c..ccvcvrvurnn (2).
P

It follows from this equation that the resultant pressure on
the surface s equal to the normal pressure due to the tension plus
the pressure due to the resolved part of the forces. The tension at
any point P having been found by (1), the pressure on the surface
follows by (2), provided we know the direction of the tangent P4
to the string. This last is necessary in order to find the value of p'.

Lastly, let us resolve the forces along the tangent PB to the
surface. Let A, g, v be the direction cosines of PB. Since PB is
at right angles to both PN and PA, these direction cosines may be
found from the two equations

de d dz
M+ ufy+vf2=0, 7\£+Pd"—z+vgé=0.

We then have by the resolution

%Tsinx+X7L+Yp+Zv=0 ............... (3).

Ex. An endless string lies along a central circular section of a smooth ellipsoid,
prove that b*F2= T2 (b* - p%), where F is the force per unit of length which acting
transversely to the string in the tangent plane is required to keep the string in its
place, p is the perpendicular from the centre on the tangent plane and b is the
mean semi-axis. [Trin. Coll., 1890.]

480. Geodesics. If any portion of the string is not acted on
by external forces, we have for that portion X =0, ¥Y=0, Z=0.
The equation (1) then shows that the tension of the string s
constant. The equation (2) shows that the pressure at any point
18 proportional to the curvature of the surface along the string. The
equation (3) (assuming the string not to be a straight line) shows
that o =0, ie. at every point the osculating plane of the curve
contatns the normal to the surfuce. Such a curve is called a
geodesic in solid geometry.

Conversely, if the string rest on the surface in the form of a
geodesic under the action of forces, we see by (3) that they must
be such that at every point of the string their resolved part perpen-
dicular to the osculating plane of the string 1s zero.

Returning to the general case in which the string is under the action of forces,
we notice that sin x/[p is the resolved curvature of the string in the fangent plane at
P to the surface. When the resolved curvature vanishes and changes sign as P
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moves along the string the concavity changes from one side of the string to the
other. Such a point may be regarded as a point of geodesic inflexion. It follows
from the equation (8) that a string stretched on a surface can have a point of geodesic
inflexion only when the force transverse to the string and tangential to the surface
18 Zero.

481. A string on a surface of revolution. When the
surface on which the string rests is one of revolution, we can
replace the rather complicated
equation (3) of Art. 479 by a
much simpler one obtained by
taking moments about the axis
of figure. If also the resultant
force on each element is either
parallel to or intersects the
axis of figure, there is a further
simplification. This includes
the useful case in which the
only force on the string is its weight, and the axis of figure of the
surface is vertical.

Let the axis of figure be the axis of z, and let (», 8, ¢) be the
polar coordinates and (+/, ¢, z) the cylindrical coordinates of any
point on the string, so that in the figure »'=O0ON, z= PN, and
¢ = the angle NOx. Then from the equation to the surface we

have z = f(+"). Let the forces on the element ds be Pds, Qds, Zds
when resolved respectively parallel to »/, #’d¢, and 2.

We shall now take moments about the axis of figure. The
moment of R is clearly zero. To find the moment of 7, we
resolve it perpendicular to the axis and multiply the result by the
arm 7. In this way we tind that the moment is 7%’ sin 4, where
Y is the angle the tangent to the string makes with the tangent
to the generating curve of the surface, i.e. Y is the curvilinear
angle OPA. The equation of moments is therefore

&Iy B ) & Qrde =0 e serssmmein (4).
We also have by resolving along the tangent as in Art. 479,
T + Pdr' + Qr'de + Zdz=0 ............... (3).

We have also the geometrical equation expressing sin+r in
terms of the differentials of the coordinates of P. Let the gene-
rating curve OP turn round Oz through an angle d¢ and then
intersect the string in P’ and a plane drawn through MP parallel



332 INEXTENSIBLE STRINGS. [CHAP. X.

to oy in @ Then PQ=PF'sinv, ie r'dp=ds.siny. We
therefore have

('dp) = {(dr' ) + (r'dp)* + (dz)*} sin®yr ......... (6).
Eliminating 7" and sin+r between (4), (5) and (6) we have an
equation from which the form of the string can be deduced.

If the only force acting on the string is gravity, and if the axis is vertical, the
equations take the simple forms

Ty’ gin y=wh, A e (1
Eliminating T and gin , by help of (6), we have
dr’' \? dz \2
202 B2
(z+d)2p2=0F {1+(m) + (1"d¢u) }, R D (. )

Substituting for z from the equation of the surface, viz, z=7 ('), this becomes the
polar differential equation of the projection of the string on a horizontal plane.
The outward normal pressure of the surface on the string may be deduced from
equation (2) of Art. 479.

482. Heavy string on a sphere. Using polar coordinates referred to the
centre O as orvigin, the fundamental equations take the simple forms
I'sin § sin Yy =wl, T'=w (a cos 8+ 4),
(sin fdgp)* = {(sin dep)* + (d6)?} sin v, lla=1w (2a cos 6+ 4),
where y is the angle the string makes with the meridian are drawn through the
summit and B=aB’. These give as the differential equation * of the string
doNE Ly : acosf+4\?
P —_ 4 e
(d‘i‘) +8in”# =sin ﬁ( o ) .

The tension at any point P=1wsz where z is the altitude of P above a fixed hori-
zontal plane called the directrix plane, and every point of the string must be above
this plane. The plane is situated at a depth 4 below the centre of the sphere. At
each point P let the normal OP be produced to cut in some point $ a concentric
sphere whose radius is twice that of the given sphere. The point S is the anti-centre
of P, and the outward pressure on the string is wz'ja where 2’ is the altitude of §
above the directrix plane. As already explained every anti-centre must lie above or

below the directrix plane according as the string lies on the convex or concave side
of the sphere, Art. 460,

The values of the constants 4, B depend on the conditions at the ends of the
string. We see that B'=0, (1) if either end is free, for then 7T vanishes at that
end, (2) if the string pass through the summit of the sphere, for then sin ¢ vanishes,

(3) if a meridian can be drawn from the summit to touch the sphere, for sin y=0
" at the point of contact. In all these cases, siny vanishes throughout the string,
i.e. the string lies in a vertical plane.

If the string form a closed curve, the three guantities T, sin 6, sin ¢ cannot

* The reduction of the integral giving ¢ in terms of @ to elliptic functions is
given by Clebsch in Crelle’s J., vol. 57. A model was exhibited at the Royal
Society, June 1805, by Greenhill and Dewar of an algebraical spherieal catenary.
By a proper choice of the constants the projection of the chain on a horizontal
glanelnbe-igglse a closed algebraical curve of the tenth degree; see also Nature,

an. 10, 5
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vanish or change sign at any point of the string. The highest and lowest points of
the string are therefore given by =14, hence at these points

1T sin 6=wB', T'=w(acos +4), . sinf(acosf+4)=D"

These equations yield only two available values of cos @ ; for tracing the two curves
whose common abscissa is £=cosf and whose ordinates are the reciprocals of the
two values of 7', we have an ellipse and a rectangular hyperbola, which, sinee T must
be positive, give only two intersections. Let #=a, #=4 be the meridian distances
of the highest and lowest points of the string, both being positive. Then

24 _ sin2a —sin 28 B’

2 . z CO8 o — CO8
= . , ——=sinasing . — —'@
@ sin a - 8in i

sina—-sin g’

It follows that the directrix plane passes through the centre of the sphere when a
and 8 are complementary. In general the tensions, and therefore the depths of the
directrix plane below the highest and lowest points, are inversely as the distances
of those points of the string from the vertical diameter.

It has been proved in Art. 480, that the string can have a point of geodesic
inflexion when the transverse tangential force is zero. This requires that the
meridian drawn from the summit should touch the string, and this, we have
already seen, cannot occur. It follows that the string must be concave throughout
its length on the same side.

If the form of the string is a circle its plane must be either horizontal or vertical,
and in the latter case it must pass through the centre of the sphere, To prove this
we give the string a virtual displacement without changing its form, it is easy to
see that the altitude of the centre of gravity ean be a max-min only in the cases
mentioned. In both cases the altitude is a maximum and the equilibrium is
therefore unstable. Art. 218. In the same way it may be shown that any position
of equilibrium of a heavy free string on a smooth sphere is unstable.

Ex. 1. A heavy uniform chain, attached to two fixed points on a smooth
sphere, is drawn up just so tight that the lowest point just touches the sphere.
Prove that the pressure at any point is proportional to the vertical height of the
point above the lowest point of the string. [Coll. Ex., 1892.]

Ex. 2. A string rests on a smooth sphere, cutting all the sections through a
fixed diameter at a constant angle. Show that it would so rest if acted on by a
force varying inversely as the square of the distance from the given diameter, and
that the tension varies inversely as that distance. [Coll. Exam., 1884.]

Ex. 8. A string can rest under gravity on a sphere in a smooth undulating
groove lying between two small circles whose angular distances from the highest
point of the sphere are complementary, without pressing on the sides of the groove.
If ¢ is the acute angle at which the string euts the vertical meridian prove that the
points at which ¢ is a minimum occur at angular distances = from the highest
point and find the value of  at these poiuts. [Math. T., 1889.]

4883. String on a Cylindrical Surface. Ex. 1. A heavy string is in equili-
brium on a eylindrical surface whose generators are vertical, the extremities of the
string being attached to two fixed points on the surface. Tind the cireumstances of
the equilibrium.

Let PQ=ds be any element, wds its weight. Let the axis of 2 be parallel to Fha
generators, and let z be measured in the direction opposite to gravity. Resolving
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along a tangent to the string, we have as in (1) Arf. 479, T'-wz=4. Resolving
d.
vertically, we have by Art. 478, Eds (T EZ)_W=0' These are the same as the

equations todetermine the equilibrium of
a heavy string in a vertical plane. The
constants, also, of integration are deter-
mined by the same conditions in each
case. We see therefore that if the cylinder
is developed on a vertical plane, the equi-
librium of the string is not disturbed. The
circumstances of the equilibrium may
therefore be deduced from the ordinary
properties of a catenary.

To find the pressure on the eylinder,
we either resolve along the normal at P to the surface, or quote the general result
found in Art. 479. We thus find R=1p’, also % = cof‘;} i 51_1;2_4; = cf::_."{’.' by

1 1
Huler's theorem on curvature, where p, is the radius of curvature at M of the
section AMN of the cylinder made by a horizontal plane, and y is the angle the
tangent at P to the string makes with the horizontal plane,

Ex. 2. If a string be suspended symmetrically by two tacks upon a vertical
cylinder, and if z,, z,, 2;... be the distances above the lowest point of the catenary
at which the string erosses itself, then 2,2, ., = (2,4, - 2,)%  [Math. Tripos, 1859.]

Ex. 3. If an endless chain be placed round a rough cireular eylinder, and
pulled at a poing in it parallel to the axis, prove that, if the chain be on the point
of slipping, the curve formed by it on the eylinder when developed will be a parabola;
and find the length of the chain when this takes place. [Math. Tripos.]

Ex. 4. A heavy uniform string rests on the surface of a smooth right circular
cylinder, whose radius is @ and whose axis is horizontal. If (a, 6, z) be the cylindrical
coordinates of a point on the string, § being measured from the vertical, prove that

acdf

T=w(b+acosb), z= ——— , where b and ¢ are two constants.

{(b+acos ) - c?}

It is clear that the tension resolved parallel to z is constant, i.e. T'dz[ds=wec.
Combining this result with the value of T found in Art. 483, Ex. 1, we obtain the
second result in the question.

=

Ex. 5. The extremities of a heavy string are attached to two small rings which
can slide freely on a rod which is placed along the highest generator of a right
circular horizontal eylinder, and are held apart by two forces each equal to wa. The
lowest point of the string just reaches to a level with the axis of the cylinder. If D
be the distance between the rings and L the length of the string, prove that

D ay L_ day 1
4a” | JB+siny)’ 84~ | J(B+sin?y) L+sin’y’
the limits of integration being 0 to .

These follow from the results in the last question. The conditions of the

question give a=b=c¢. The integrals are reduced by putting tan ¢ =sin y.

Ex. 6. A uniform string rests on a horizontal cireular eylinder of radius a with
its ends fastened to the highest generator and its lowest point at a depth a below it ;
prove that the eurvature at the lowest point is 1/a, and that the inclination of the
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string at any point to the axis is sec™!(1+z/a), where z is the height of the point
above the axis, supposing the string cuts the highest generator at an angle of 60°.
[June Exam.]

Ex. 7. A heavy uniform string has its two ends fastened to points in the
highest generator of a smooth horizontal cylinder of radius a, and is of such
a length that its lowest point just touches the cylinder. Prove that, if the
cylinder be developed, the origin being at one of the fixed points, the curve on
which the string lay is given by ¢2 (gg)-za’ cos*% + 2ac cosg . [Math. T., 1883.]

484. String on a right cone. Ex. 1. A string has its extremities attached
to two fixed points on the surface of a right cone, and is in equilibrium under the
action of a centre of repulsive force F at the vertex. Show that the equilibrium is
not disturbed by developing the cone and string on a plane passing through the
centre of foree.

Let the vertex O be the origin, (, &', z) the cylindrical coordinates of any point
P on the string. Let OP=r. Taking moments about the axis and resolving along
the tangent, we have as in Art. 481,

Ty sin =B, T fBdr = Cuvssinsmvasansivvnn (1)

We may imagine the cone divided along a generator and together with the
string on its surface unwrapped on a plane. Let (r, 6) be the polar coordinates of
the position of P in this plane. Let p be the perpendieular from O on the tangent
to the unwrapped string, then p=rsiny. The equations (1) become

To=0% TRl vawammmsmsi i3

These are the equations of equilibrium of a string in one plane under the
action of a central force, and the constants of integration are determined by the
same conditions in each case. We may therefore transfer the results obtained
in Art. 474 to the string on the cone. In transferring these results we notice that
the point (r, #) on the plane corresponds to (+'#z) on the cone, where ' =rsina,
#sina=40, z=rcosa. . g

The pressure R is given by R:g:sli—(’ﬁ . E‘E%Sf, since 1,-: Ry i

P 7 sin® a p @ r'seca
by Euler’s theorem on curvature. Art. 479.

Ex. 2. The two extremities of a string, whose length is 21, are attached to the
same point 4 on the surface of a right cone. The equation to the projection of
the string on a plane perpendicular to the axis is =r'=1Icos (# sin a), the point
A being given by #=a. Show that the string will rest in equilibrinm under the
influence of a centre of force in the vertex varying inversely as the cube of the
distance.

Ex. 3. A heavy uniform string has its ends fastened to two points on the
surface of a right cireular cone whose axis is vertical and vertex upwards, the
string lying on the surface of the cone. Prove that, if the cone be developed
into a plane, the curve on which the string lay iz given by p(a-+br)=1, the
origin being the vertex, p the perpendicular on the tangent, and a, b constants.

[Coll. Ex., 1890.]

485. String on a rough surface. A4 string rests on a
rough surface under the action of any forces, and every element
borders on motion ; to find the conditions of equilibrium.
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The required conditions may be deduced from the equations
for a smooth surface by introducing the limiting friction. The
pressure of the surface on the element ds being Rds, the limiting
friction will be wpRds. This friction acts in some direction PS
lying in the tangent plane to the surface. See figure of Art. 479.
Let 4 be the angle SPA. Resolving along the principal axes at
any point of the string exactly as in Art. 479, we have

dT + Xdz + Ydy + Zdz + pRdscos =0

iy

§+XE+Y?}L+ZR—R =0
£,tanx+X7\.+ Yy + Zv + pR sin w{r:OJ

P

These three equations express the conditions of equilibrium.

486. The simplest case is that in which the applied forces
can be neglected compared with the tension. We then have,
putting zero for X, ¥, Z,

ar \
ot wR cos =0 )
- -
p :
.

s tany + pRsinyr =0

It easily follows from these equations that tany+psin=0.
This requires that tany should be less than x; thus equilibrium
is impossible if the string be placed on the surface so that its
osculating plane at any point makes an angle with the normal
greater than tan— u. Eliminating yrand I from these equations,
A ot
a;“l*;(# tan® x)* =0,
5 lop Jl= C—f? (@ — tan® y)-

Thus, when the string is laid on the surface in a given form and
is bordering on motion, the tension at any point can be found.

It also follows from the equations of Art. 486 that, if x=0,
then ¢ =0. If therefore the string is placed along a geodesic
line on the surface, the friction must act along a tangent to the
string. Putting ¥ = 0, we have from the two first equations

log TzO—in—f.

-
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Since along a geodesic p'=p, we may deduce from this
equation the following extension of the theorem in Art. 463.
If a light string rest on @ rough surfuce in a state bordering on
motion, and the form of the string be a geodesic, then (1) the
Jriction at any point acts along the tangent to the string, and (2)
the ratio of the tensions at any two points is equal to e to the power
of * utemes the sum of the infinitesimal angles turned through by
tangent which moves from one point to the other.

The conditions of equilibrium of a string on a rough surface are given in Jellett’s
Theory of Friction. He deduces from these the equations obtained in Art. 486,

487. Ex, 1. A fine string of inconsiderable weight iz wound round a right
circular eylinder in the form of a helix, and is acted on by two forces F, I’ at its
cos? g

i - ; F’
extremities. Show that, when the string borders on motion, log 7= En 5,

where s is the length of the string in contact with the cylinder, a the angle of the
heliz and a the rading of the eylinder.

Since the helix is a geodesie, this result follows from the equations of Art. 486
by writing for 1/’ its value cos? a/a given by Euler’s theorem on curvature,

Ex. 2. A heavy siring 4B, initially without tension, rests on a rough hori-
zontal plane in the form of a cireular are. Find the least foree F which, applied
along a tangent at one extremity B, will just move the string.

Let O be the centre of the are, let the angle 40P=#, the arc AP=5. Let the
element P@) of the string begin to move in some
direction PP', where P'PQ=y; then by the nature ™ ro--..
of friction the angle ¢ must be less than a right | ¥
angle. The friction at P therefore acts in the
opposite direction, viz. P'P, and is equal to mwds.
The equations of equilibrium are

aT — pawds cos w:l}}

Tde — pavds sin =0
Substituting in the first equation the value of
T given by the second, we have, gince ds=ad#,
dy=d8, and therefore P=00 0 s (2). 4
We have by substituting in (1) 7'=pwa sin (6 + C).

If every element of the string border on motion, the equations (1) hold through-
out the length. Since T must be zero when 6=0, we find that ¢(=0. Hence, if
aa be the given length of the string 4B, the force required to just move if is given
by F=pwasin . It is evident that this result does not hold if the length of the
string exceed a quadrant, for then  at the elements near B would be greater than
a right angle.

Supposing the are 4B to be greater than a quadrant, let the force F acting at B
increase gradually from zero. When F=pwasina, where a<im, it follows from
what precedes that a finite arc EB, terminating at B and subtending at O an angle
EOB equal to a, is bordering on motion, and that the tension at E is zero. When
F = pawa the resolved part of the tension at B along the normal is pwadf, and is just
balanced by the friction. When F increases beyond the value uwa, the whole
friction is insufficient to balance the normal force.

B.8 L 22
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Summing up, the force required to move the string is F=puaw sin a if the length
is less than a quadrant. If the length exceed a quadrant, the force is paw, and the
string begins to move at the extremity at which the force is applied. See Art. 190.

Ex. 3. If a weightless string stretched by two weights lie in one plane across a
rough sphere of radius a, show that the distance of the plane from the centre
cannot exceed a sin ¢, where e is the angle of friction. [St John’s Coll., 1889.]

488. Virtual Work. The equations of equilibrium of a string may he
deduced from the principle of virtual work by taking each element separately, and
following the general method indicated in Art. 203. In fact, the left-hand side of
the z equation given in Art. 455, after multiplication by ds.dw, is the virtual
moment resulting from a displacement dz. This method requires that the tensions
at the ends of the element should be included as part of the impressed forces. The
principle may also be expressed as a max-min condition (Art. 212) in a form
which includes only the given external forces. As an example of this let us
consider the following problem,

A heterogeneous string of given length 1, fized at its extremities 4, B, is in
equilibrium in one plane in a field of foree whose potential is V. It is required to
Jind the form of the string.

Supposing m=f(s) to be the line density at a point whose arc distance from 4
is s, the work function for the whole string is [Fmds, the limits being 0 to I. We
shall take the arc s as the independent variable and regard z, y as two functions of

s connected b? the equat\lon
] 7 san a

Following Lagrange's rule we remove the restriction (1) and make

N R e —1

a max-min for all variations of x and y, the quantity A being an arbitrary function
of s, afterwards chosen to make the resulting values of @, y satisfy the condition (1)*.

As the limits are fixed, there is no obvious advantage in varying all the coordi-
nates. We shall therefore take the variation of u on the supposition that x, y are
variable and s constant. We have

av av dx diz | dy dﬂ)}
au=]{m(aﬁx+aﬁy)+2}\ AT +d5 s ds

Integrating the third and fourth terms by parts and remembering that &z, oy
vanish at the fixed ends of the string, we find

AV Lid fode v, d d_e;)
5u=J’{(mEu2ﬁ(}\£))ax+(m dg—ﬂds (Rds) 8y r ds.

At a max-min, this must be zero for all values of dz, 8y, hence

av . d [ da\_ av_ . d (. dy\_
il ga(}\a)_o, ni -2 (:\ds sl

Restoring the condition (1) we have now three equations from which &, y, and A

* We regard s as the abscissa, @, y as the two ordinates of an unknown curve,
which is to be found by making » a max-min for all variations of @, y. The rules
of the caleulus of variations then enable us to write down fhe equations to find the
curve. The equation of this curve contains X and is made to satisfy (1) by a proper
choice of this quantity. Then since (2) is a max-min for all variations of x, y, it
follows that [Fmde is a max-min for those variations of w, y which satisfy the
condition (1}.
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may be determined as functions of 5. It is evident that these agree with the
equations already found in Art. 455, with — 2\ written for T,

‘We may also deduce the value of A by multiplying the equations (3) respectively
by dz/ds and dy[ds and adding. We then find

AV _1d_, [(de\®  (dy\) .dr
e T R e ey v e R
e {(d;) +(ds)}—2d3’

which agrees with the equation to determine the tension in Art, 479.
If the string is in three dimensions and constrained to rest on a smooth surface,
we make [Vmds a max-min subject to the two conditions
a3 ry?+22-1=0, T T ] | (1),
where accents denote differentiations with regard to s.
method as before we make

w=[{Vm+\(z2+y2+22- 1)+ uF (2, y, 2)} ds
a max-min. Varying only z, y, z and integrating by parts exactly as before, we
find on equating the coefficients of dx, dy, &z to zero
m.‘;}i"_g .Ez_ ( gf).[.#d_'F:
ds dx

Following the same

0, &=0, &e=0.........(»ID,

dy " ds
the two latter equations being obtained from the first by writing y and 2 respec-
tively for . These three equations joined to the conditions (I) determine z,y, z, A,
& in terms of s. These agree with the equations obtained in Art. 478, when — 2
and —p (F,2+F,2+ F2)} are written for T and R.

489. Elastic Strings. The theory of elastic strings depends
on a theorem which is usually called Hooke’s law. This may be
briefly enunciated in the following manner. Let an- extensible
string uniform in the direction of its length have a natural length
. Let this string be stretched by the application of two forces
at its extremities, and let these forces be each equal to 7. Let
the stretched length of the string be 7. Then it is found by
experiment that the extension !—/ bears to the force 7 a ratio
which is constant for the same string.

If the natural or unstretched length of the string were
doubled so as to be 21,, the force 7' being the same as before, it
1s clear that each of the lengths [, would be stretched exactly as
before to a length I. The extension of this string of double length
will therefore be twice that of the single string, More generally,
we infer that the extension must be proportional to the natural
length when the stretching force is the same.

Joining these two results together, we see that
i
:En
where K is some constant, which is independent of the natural
length of the string and of the force by which it is stretched.

222
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It is clear that, if two similar and equal strings are placed
side by side, they will together require twice the force to produce
the same extension that each string alone would require. It
follows that the force required to produce a given extension is
proportional to the area of the section of the unstretched string.
The coefficient & is therefore proportional to the area of the
section of the sfring when unstretched. The value of % when
referred to a sectional area equal to the unit of area is called
Young's modulus. :

To find the meaning of the constant %, let us suppose that the
string can be stretched to twice its natural length without violat-
ing Hooke’s law. We then have [=2[, and therefore E=1.
Thus Z is a force, it is the force which would theoretically stretch
the string to twice its natural length.

490. This law governs the extension of other substances
besides elastic strings. It applies also to the compression and
elongation of elastic rods. It is the basis of the mathematical
theory of elastic solids. But at present we are not concerned
with its application except to strings, wires, and such like bodies.

The law is true only when the extension does not exceed
certain limits, called the limits of elasticity. When the stretching
is too great the body either breaks or receives such a permanent
change of structure that it does not return to its original length
when the stretching force is removed. In all that follows, we
shall suppose this limit not to be passed.

The reader will find tables of the values of Young’s modulus
and the limits of elasticity for various substances given in the
article Elasticity, written by Sir W. Thomson, now Lord Kelvin,
for the Eneyclopedia Britannica.

491. Ex.1. A uniform rod 45, suspended by two equal vertical elastic strings,
rests in a horizontal line; a fly alights on the rod at €, its middle point, and the
rod is thereupon depressed a distance h; if the fly walk along the rod, then when
he arrives at P, the depression of P below its original level is 2k (4 P2+ BP?% |4 B2,
and the depression of Q, any other point of the rod, is 2k (4P.4Q + BP. BQ)/4B%

[St John’s Coll., 1887.]

Ex, 2. A heavy lamina is supported by three slightly extensible threads, whose
unstretched lengths are equal, tied to three points forming a triangle 4ABC. Show
that when it assumes its position of equilibrium the plane of the lamina will meet
what would be its position in case the threads were inelastic in the line whose areal
equation is zay/E +yy,/F +22,/G =0, where I, F, G are the moduli, and x,, y,, 2,
the areal coordinates of the centre of gravity of the lamina referred to the triangle
4BC. [St John’s Coll,, 1885.]

_Q.

ART. 492.] HEAVY STRING ON INCLINED PLANE. 341

492. A uniform heavy elastic string is suspended by one ex-
tremity and has a weight W attached to the other extremity. Find
the position of equilibrivin and the tension at any point.

Let OA, be the unstretched string, P,¢; any element of its
length. Let OA4 be the stretched string, PQ the corresponding
position of P,@,. Let w be the weight of a unit of
length of unstretched string, I, = 04,, #,=0P,; (0 0
l=04, 2=0P. The tension T at P clearly sup-
ports the weight of PA and W. Hence Sj L P

T=wh~a)+ W.oovnenenn(1). e

If PA were equally stretched throughout we
could apply Hooke’s law to the finite length PA. 1[4,
But as this is not the case we must apply the law A
to an elementary length P@. We have therefore

e (2),
where e has been written for the reciprocal of %.

§£= 14wl —z)+ W)

w=a+ e w(ha,— iz’ + Wa} + C

The constant €' introduced in the integration is clearly zero, since

, and @ must vanish together. Putting «,=1;, we find
l—1l,=4%e.wl?+eWI,.

If the string had no weight, the extension due to W would be
eWl,. If there were no weight W at the lower end, the extension
would be Lewl,®. Hence the extension due to the weight of the string
ts equal to that due to half its weight attached to the lowest point.
We also see that the extension due to the weight of the string and
the attached weight is the sumn of the extensions due to each of these
treated separately.

Eliminating T,

Integrating,

Ex. 1. A heavy elastic string O4 placed on a rough inclined plane along
the line of greatest slope is attached by one extremity O to a fixed point, and has a
weight W fastened to the other extremity 4. Find the greatest length of the
stretehed string consistent with equilibrium.

When the string is as much stretched as possible, the friction on every element
acts down the plane and has its limiting value. Let « be the inclination of the
plane to the horizon. Let u, &' be the coefficients of friction between the plane and
the string and between the plane and the weight respectively. If f=sina+ucosa,
then fiw replaces w in Art. 492, We therefore find for the whole elongation
U — 1=}efwl®+ ef' W1, where f* is what f becomes when p' is written for pu.

Ex. 2. A heavy elastic string 44’ is placed on a rough inclined plane along the
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line of greatest slope, Supposing the inclination of the plane to be less than tan—!pu,
find the greatest length to which the string could be stretched consistent with
equilibrium, Compare also the stretching of the different elements of the string.
The frietions near the lower end A of the string will act down the plane, while
those near the upper end 4’ will act up the plane, There is some point O separating
the string into two portions 04, 04’ in which the frictions act in opposite directions.
Each of these portions may be treated separately by the method used in the last
example, An additional equation, necessary to find the unstretched length z of 04,
is obtained by equating the tensions at O due to the two portions. The results are

l tan a tan?
z=-21(1——;—-—), I—Zl=iq.cwcosall2(1— 8'22“).

Ex. 3. A series of elastic strings of unstretehed lengths 1, I, I,... are fastened

together in order, and suspended from a point, I; being the lowest. Show that the
total extension is

3 (epwyl® + eqwals® ) F gl (ealy 4 e5ly + L) ol (305 + ) + &e.y
where w,, w,, &e. are the weights per unit of length of unstretched string, ¢, ¢,, &¢.
the reciprocals of the moduli of elasticity. [Coll. Exam., 1888,]

493. Work of an elastic string. If the length of a light
elastic string be altered by the action of an external force, the
work done by the tension is the product of the compression of the
string and the arithmetic mean of the wnitial and final tensions.

In the standard case let the length be increased from a to o,
then @ —a’ is the shortening or compression of the string. As
before, let I, be the unstretched or natural length.

By referring to Art. 197, we see that the work required is

—[Tdl=—[E 1=t g __p@=ty—(e=by
L l ’

the limits of the integral being from I=a to {=a" This result
may be put into the form (7, +T.)(¢— ), where T, and T,
represent the values of 7' when a and a' are written for /. The
rule follows immediately. See the author’s Rigid Dynamics 1877,

This rule is of considerable use in dynamics where the length of the string may
undergo many changes in the course of the motion. It is important to notice that
the rule holds even if the string becomes slack in the interval, provided it is
tight in the initial and final states, If the string is slack in either terminal state,

we may still use the same rule provided we suppose the string to have its natural or
unstretehed length in that terminal state.

Ex. 1. Show that the depth below the point of suspension O of the centre of
gravity of the elastic string considered in Art., 492 is 31, + el; (15 +47), where S is
the weight of the string. Show also that the work done by gravity as the string
and weight are moved from the unstretched position 04, to the stretched position
04, is el, (352 + ST+ W?) where e=1/E.

Ex. 2. Let one end of an elastic string be fixed to the rim of a wheel sufficiently
rough to prevent sliding, and let the other be attached to a mass resting on the

S
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ground, go that when the string (of length a) is just taut it shall be vertical., Show
that the work which must be spent in turning the wheel so as just to lift the mass
off the ground is Mga + Ealog E|(E +Mg), where E is the tension which v‘vmﬂ&
double the length of the string, neglecting the weight of the string. [Math. Tripos.]

Ex. 3. A dise of radius r is connected by n parallel equal elastic s‘trin.gs, of
natural length [, to an equal fized disc; the wrench necessary to maintain the
dizes at a distance @ apart with the moveable one furned through an angle & about
the common axis, consists of a force X and a couple L given by

i 1 |

L=2nEy*sinf (3_1 - f) ,
where £2=u?+ 41 sin?}0. [Coll, Exam., 1885.]

One disc being moved to a distance « from the other and turned round through
an angle 8, we first show that the length of each string is changed f:om L to &
Using the rule above, the work function is W=n. 3T (§-L)=nE({- L2y,

aw aw

Xdz+Ldo=—7- dz + wa‘

Effecting the differentiations X =dW|dx, L=dw|de, we obtain the results given.

X—'Jrl.?:'::t;(l :
= Il E 1

By Art. 208 we have

494. Heavy elastic string on a smooth curve. Ex. 1. A hea.v::' elastic
string is stretched over a smooth curve in a vertical plane: shovit tha.t the difference
petween the values of T+ T%2E at any two points of the.strmg is .eq_ual.to the
weight of a portion of the string whose unstretched length is the velttlca.l dl.st.m‘lce
between the points. It follows from this theorem that any two points at which
the tensions are equal are on the same level.

If ds, is the unstretched length of any element ds of the strfng, we have by
Hooke's law ds;=dsB[(T +E). If then w is the weigh't per unit of u’nstmtched
length, the weight of any element ds of the stretched stnn‘g. 1s‘equa1 t.o w'ds, where
w' =wE|(T+E). Let us now form the equa,tions. of ethbnulm, l:lSIHg the same
figure and reasoning as in Art. 459, where a similar problerfl iz discussed for .a.n
inextensible string. We evidently arrive at the same equations (1) and (2) with
' written for w. Substituting for ' and integrating, we find that (1) leads to the
result given above.

Ex. 2. A heavy elastic string is stretched on a smooth curve in a vertical plane :

2 13

i S f
show that T+55="Y Rp- =Y

where T is the tension at any point P, R the outward pressure of thfe curve on the
string per unit of length of unstretehed string, w the n.reight l.)f a unit of length of
unstretched string, and y, y' the altitudes of P and its anti-centre above & fixed
horizontal line called the statical directrix of the string, Art. 460. Sho‘w also that
no part of the string can be below the directrix, and that the free ends, if there are
any, must lie on it. [
Ex. 3. A heavy elastic string rests in equilibrium on a smooth cyclo}d with its
cusps upwards. If one extremity is attached fo a point on the curve while tg:le free
extremity is at the vertex, prove that the stretehed length of any unstretche e 8
measured from the vertex is given by ys=sinh ys;, where daFip?=w, and a is the
radius of the generating circle. | ;
Tix. 4. An elastic string rests on a smooth curve whose plane is vertical with
its ends hanging freely. Show that the natural length ¢ may be found from the
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2
equation (%) = Q_y—!:-b’ where y is the verfical height above the free extremities,

and b the natural length of a portion of the string whose weight is the coefficient of
elasticity. If the natural length of each vertical portion be I, and if (14 b)2=2ab,
and if the curve be & circle of radius «, prove that the natural length of the portion
in contact with the curve is 2,/(ad) log (/2 +1). {June Exam., 1877.]
Ex. 5. An elastic string, uniform when unstretched, lies at rest in a smooth
circular tube under the action of an attracting foree (ur) tending to a centre on the
circumference of the tube diametrically opposite to the middle point of the string,
If the string when in equilibrium just occupies a semicircle, prove that the greatest
tension is {h(?\+2ppa3)}i’—)\, where A is the modulus of elasticity, a the radius of
the tube, p the mass of a unit of length of the unstretched string.
[Trinity Coll., 1878.]
Ex. 6. An infinite elastic string, whose weight per unit of length when un-
stretched is m, and which requires a tension ma to stretch any part of it to double
its length (when on a smooth fable), is placed on a rough table (coefficient 4) in a
straight line perpendicular to its edge. The string just reaches the edge, which is
smooth. A weight 4map is attached to the end and let hang over the edge. If the
.weight takes up its position of rest quietly, so that no paxt of the string re-contracts
after having been once stretched, show that the distance of the weight below the
edge of the table is dau (3u+4), and that beyond a distance }a (1 +2) from the edge
of the table the string is unstretched. [Trinity Coll.]

495. Light elastic string on a rough curve. Ex. 1. An elastic string is
stretched over a rough curve so that all the elements border on motion. If no
external forces act on the string except the tensions F, F' at its extremities, then

!
E—-‘, = et"’p, where ¢ is the angle between the normals to the curve af its extremities.

This follows by the same reasoning as in Avt. 463,

Ex. 2. An elastic string (modulus A} ig stretched round a rough circular are
so that every element of it is just on the point of slipping; if 7, 7" are the tensions
at its extremities, the ratio of the stretched to the unstretched length is

log 7 : log %‘1%; . [St John’s Coll., 1884.]

Ex. 3. An endless cord, such as a cord of a window blind, is just long enough
to pass over two very small fixed pulleys, the parts of the cord between the pulleys
being parallel. The cord is fwisted, the amount of twisting or torsion being
different in the two parts, and the portions in contact with the pulleys being unable
to untwist., If the pulleys be made to furn slowly through a complete revolution
of the string, show that the quotient of the difference by the sum of the torsions is
decreased in the ratio ef: 1, [Math, Tripos, 1853.]

Ex. 4. An elastic band, whose unstretched length=2a, is placed round four
rough pegs 4, B, €, D, which constitute the angular points of a square of side=aq.
If it be taken hold of at a point P befween 4 and B, and pulled in the direc-
tion 4B, show that it will begin to slip round both 4 and B at the same time if
AP= ajf(ez”"”+ 1). [May Exam.]

Ex. 5. Anendless slightly extensible strap is stretched over two equal pulleys :

prove that the maximum couple which the strap can exert on either pulley is

2 ; 5 i A 3
aleixel T, where a is the radius of either pulley, ¢ the distance of their

ART. 497.] STRING UNDER ANY FORCES. 345

centres, u the coefficient of friction, and T the fension with which the strap is
put on. [Math, Tripos, 1879.]

Ex. 6. A rough circular cylinder (radius a} is placed with its axis horizontal,
and o string, whose natural length is 1, iz fastened o a point @ on the highest
generator of the cylinder and to an external point P at a distance  from @, P being
horizontal and perpendicular to the axis of the cylinder; the eylinder is then slowly
turned upon its fixed axis in the direction away from P; show that the.string wi’{l
slip continually along the whole of the length in contact with the c.?!lmder until
S (the natural length of the part wound up)=afu, when all slipping will cease, and
that up to this stage the relation between S and 6 (the angle tmrmed through by the

cylinder) is 1" = (I-ag) & +a¢, where S=ag. [Coll. Exam., 1880.]

496. Elastic string, any forces. Lo form the equations of
equilibrium of an elastic string under the action of any forces.

Let ds, be the unstretched length of any element ds of the
string. Then by Hooke’s law ds= ds, (T + E)/L. Th('e forces on
the element, due to the attraction of other bodies, will be pro-
portional to the unstretched length. Let then the resolved parts
of these forces along the principal axes of the string be Fds,, Gds,,
Hds,, as in Art. 454, The equations of equilibrium (1), (2), and
(3) of that article are obtained by equating to zero the resolved
parts of the forces along the principal axes of the curve; these
equations will therefore apply to the elastic string if xve..l:ep}ace
Fds, Gds, Hds, by Fds,, Gds,, Hds,. The equations of equilibrium
for the elastic string may therefore be derived from those for an
inelastic string by treating the forces as

Fd&m, Gds m, Hds m,
ie. reducing all the impressed forces in the ratio & : T' + K.

497. Suppose, for example, that the string rests on any smooth surface. The
resolution along the tangent to the string (as in Art. 479) gives
TE - :r el G
(1-7-%) dT + Xdz + Ydy + Zdz=0. T+§-—E+f(id::+ Ydy + Zdz)=C.
Tt follows that T+ T%2E + the work function of the forces is constant along the
whole length of the string, Art. 479. :

Ex. When gravity is the only force acting, show that the equations of eq.mh
brinm of an elastic string corresponding to (1), (2), (3) of Art. 479 may be written
in the simple forms

T+ Y i
where T is the tension at any point P, R the outward pressure of the surface oriaE :l;e
string per unit of unstretched length, x the angle the ra,dlus.of curvature Dd he
string makes with the normal to the surface, = and 2’ the altitudes of P and the

2 T2 e
RP’—§E=tvz'. (wz-l—ﬁ) tan x =wp’sin 6,
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anti-centre S above & certain horizontal plane, 8 the angle the vertical makes with
the plane containing the normal to the surface and the tangent to the string, and
w the weight of a unit of unstretched length. If PS be a length measured out-
wards along the normal to the surface equal to the radius of curvature of a normal
section of the surface drawn through the tangent at P to the string, S is the anti-
centre of P,

If the surface is one of revolution with its axis vertieal, we replace the third
equation by T7 sin =B, where 7’ is the distance of P from the axis of the surface,
¥ the angle the tangent to the string makes with the meridian and B is a constant,
See Art. 481,

498. To take another example, suppose that the elastic string is under the
action of a central force. Taking moments about the centre of force, and resolving
along the tangent to the string, we find, after integration,

Tp=A4, T+—+_[Fd1

These equations may be treated in a manner somewhat similar to that adopted
for inelastic strings.

499. Ex. 1. An elastic string rests in equilibrium in the form of an arc of a
circle under the influence of a centre of foree at any unoccupied point of the circle.

Show that the law of force is F=f—3 (1+ i l) 2
Ex. 2. An elastic string, whose elements repel each other with a force propor-

tional to the produet of their masses into the square of their distance, rests in
equilibrium on a smooth horizontal plane. If 7' be the tension at a point whose

4
distance from one extremity is y, show that (;z_—w(_'l‘-i-E)B-}- E:O, where ¢ is a

constant depending on the nature of the string. Explain also how the constants of
integration are to be determined.

Ex. 3. An elastic string, whose elements repel each other with a force which
varies as the distance, restz on a smooth horizontal plane. If 21, and 21 be the
unstretched and stretched lengths of the string, show that ¢l=tan ¢l;, where Ec’dx
ig the force due to the whole string on an element whose unstretched length is du
when placed at a unit of distance from the middle point of the string.

Ex. 4. A uniform elastic string lying on a rough horizontal plane is fixed to
two points, and forms a curve every part of which is on the point of motion.
Show that the tension is given by the equation (1 +J\) { ) +t*% = phw?p?,
where w is the weight per unit of length of the unstretched string, n the coeffieient
of friction and p the radius of curvature. [Math. Tripos, 1881.]

Ex. 5. An elastic string has its two ends fastened to points on the surface of a
smooth circular eylinder of which the axis is vertical; show that in the position of
equilibrium of the string on the surface the density of the string at any point varies
ag the tangent of the angle which the oseulating plane at that point makes with a
normal section of the cylinder through the direction of the string. [Math. T., 1886.]

500. A heawy elastic string is suspended from two fized points
and 1s in equalibrium in a vertical plane. To find its equation.

g
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We may here use the same method as that employed in Art.
443 to determine the form of equilibrium of an inelastic string.
Referring to the figure of that article, let the unstretched length
of C'P (i.e. the arc measured from the lowest point up to any point
P) be s, and let the rest of the notation be the same as before.
Consider the equilibrium of the finite portion CP;

Teosyp=T,......(1) T sin 4r = ws,...... (2},
dy _ M &
P dTU‘—‘tall‘\P‘— To 5 e P e e (3)

From these equations we may deduce expressions for # and y
in terms of some subsidiary variable. Since s,=¢ tan 4 by (3), it
will be convenient to choose either s, or 4 as this new variable.

Adding the squares of (1) and (2), we have
Tr=wr (482 ccnnrnnn. el e O (4).
Since da/ds = cos ¢ and dy/ds = sin , we have by (1) and (2)

o 5 aem [ E) b oig AEALED

e ITI‘“‘* (0

where the constants of integration have been chosen to make
=0 and y = ¢+ ¢*w/2E at the lowest point of the elastic catenary.
The axis of « is then the statical directrix, Art. 494, Ex. 2.

J4 o I
+7) 5= g5 (@ + 89+ (@ + ),

501. Ex.1. Prove the following geometrical properties of the elastic catenary
w

{1 + E,J(c“+ slﬂ)} 4

s1+a/(e? +312}}

¢

c +sl

e
() wy=T+z, (B p=

(3) 3—31+QE {SI,J[GZ+812)+6210g

all of which reduce to known properties of the common eatenary when E is made
infinite.

Ex. 2. Let M, 3 be two points taken on the ordinate PN so that I’ is
bisected in N by the statical directrix and let each half be equal to T%/2Ew. If M
be above the directrix draw ML perpendicular to the tangent at P. Show that
T=w.PM, s,=PL, c=ML, w.MN=T%2E and that JI’ is the projection of the
anti-centre on the ordinate.

Ex. 3. An elastic string, uniform when unstretehed, is hung up by two points.
Prove that the intrinsic equation of the catenary in which it will hang under

gravity is s=ctan ,I/+—— -{ta,n ¥ sec Y+ log tan (4 g)}

where ¢ is the natural length of the string whose weight is equal to the tension at
the lowest point, from which s is measured, and A is the natural length of the
string whose weight is equal to the modulus of elasticity. [Coll. Exam., 1880.]



CHAPTER XI.

THE MACHINES.

502. Iris usual to regard the complex machines as constructed
of certain simple combinations of cords, rods and planes. These
combinations are called the mechanical powers. Though given
variously by different authors, they are generally said to be six in
number, viz. the lever, the pulley, the wheel and axle, the inclined
plane, the wedge and the screw *,

Mechanical advantage. In the simplest cases they are
usually considered as acted on by two forces. One of these, viz.
the force applied to work the machine, is usually called the power.
The other, viz. the force to be overcome, or the weight to be raised,
is called the weight. The ratio of the weight to the power is called
the mechanical advantage of the machine.

503. Asa first approximation, we suppose that the several parts of the machine
are smooth, the cords used perfectly flexible, the solid parts of the machine rigid,
and so on. In some of the machines these suppositions are nearly true, but in
others they are far from corvect. It is therefore necessary, as a second approxima-
tion, to modify these suppositions. We take such account as we can of the
roughness of the surfaces in contaet, the rigidity of the cords and the flexibility of
the materials. After these corrections have been made, our result is still only an
approximation to the truth, for the corrections eannot be aceurately made. For
example, in making allowance for friction we assume that the bodies in contact are
equally rough throughout, and that the coefficient of friction is properly known.
The results however thus obtained are much nearer the real state of things than
our first approximation.

504. Efficiency. Suppose a machine to be constructed of a
combination of levers, pulleys, &c., each acting on the next in order.

* In the descriptions of the machines given in this chapter, the author has
derived much assistance from Capt. Kater's Treatise on Mechanics in Lardner's
Cyclopmdia, 1830, Pratt’s Mechanical Philosophy, 1842, Willis’ Principles of
Mechanism, 1870, and other books,

i
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Let a force P acting at one extremity of the combination produce
a force at the other extremity such that it could be balanced by a
force @ acting at the same point. Then, for this machine, P may
be regarded as the power and @ as the weight.

Let the machine be made to work, so that its several parts
receive small displacements consistent with their geometrical
relations. Such a displacement is called an actual drsplacement
of the machine, Taking this as a virtual displacement, the work
of the force P is equal to that of the force @ together with the
work of the resistances of the machine. These resistances are
friction &c., in overcoming which some of the work done by the
power is said to be wasted or lost. The work done by the force @
is called the wuseful work of the machine. The efficiency of a
machine is the ratio of the useful work to that done by the power
when the machine receives any small actual displacement. It
appears that the efficiency of a machine would be unity if all
its parts were perfectly smooth, the solid parts perfectly rigid, and
so on. In all existing machines however the efficiency is neces-
sarily less than unity.

505. Ex. In any machine for raising a weight show that, if the weight
remains suspended by friction when the machine is left free, the efficiency is less
than one half, If however a foree P be required to raise the weight, and a force P’

be required to prevent it from descending, show that the efficiency will be (P + P')/2P,
supposing the machine fo be itself accurately balanced. [St John's Coll., 1834.]

When the force P just raises a weight (), the friction acts in opposition to the
power P; on the contrary it assists P’ in supporting . The frictions in the two
cases are evidently the same in magnitude, being the extreme amounts which ean
be called into play. Lt m, y be the virtual displacements of the points of appli-
cation of P, () when the machine is worked, and let the same small displacement be
given in each case. Let U be the work of the frictions. Then Pr=Qy+ U, and
Pz=Qy-U. The efficiency of the machine is measured by the ratio Qy/Ps.
Eliminating U, we easily obtain the result given. If any of the resistances, other
than friction, have no superior limit, but continually increase with the inerease of
the power, it is easy to see by the same reasoning that the efficiency will be less
than the value found above,

506. The lever. A lever is a rigid rod, straight or bent,
moveable about a fixed axis. The fixed axis is usually called
the fulerum. The portions of the lever between the fulerum and
the points of application of the power and the weight are called
the arms of the lever. The forces which act on the lever are
usually supposed to act in a plane which is perpendicular to the
fixed axis.
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When the forces act in any directions at any points of the body, the problem is
one in three dimensions, the solution of which is given in Art. 268. In what follows

we shall also negleet the friction at the axis, as that case has already been considered
in Art. 179,

507. To find the conditions of equilibrium of two forces acting
on @ lever in a plane perpendicular to its aws.

The axis of the lever is regarded in the first approximation as
a straight line; let C be its intersection with the plane of the forces.

Let the forces be P and Q. Let them act at 4 and B on the arms
CA, OB in the directions DA, DB. When the lever is in its
position of equilibrium, the forces P, @ and the reaction at the
fulerum must form a system of forces in equilibrium. Hence the

resultant of P and @ must act along DC, and be balanced by the
pressure on the fulerum.

The conditions of equilibrium follow at once from the principles
stated in Art, 111. Let CM, CN be perpendiculars drawn from ¢
on the lines of action of the forces. Taking moments about C, we
have P.CM—Q.CN=0. It follows that in a lever, the power
and the weight are to each other inversely as the perpendiculars
drawn from the fulerum on their lines of action.

508. Tv find the pressure on the fulerum, we find the resultant of the two forces
P, Q by any one of the various methods usually employed to compound forces.
For example, if the position of D be known, let ¢ be the angle ADB; we then have
R?=P?+ Q*+2PQ cos ¢, where R is the required pressure.

Let CA=a, CB=0, and let a, 8 be the angles the directions of the forces P, Q
make with the arms CA, CB. Let v be the angle ACB. If these quantities are
known, we may find the pressure by another method. Tet & be the angle the line
of action of R makes with the arm €4, so that the angle DG4 is 7—§. Then,
resolving the forces along and perpendicular to €A, we have

Reosf=Peosa+Qcos(y—p)
Esin=Psina+ Qsin (y-g8){’
whenee tan # and R can be easily found.

Other relations between P, @ and R may be found by taking moments about 4,
B or some other point suggested by the data of the question. In the same way
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other resolutions will sometimes be more convenient than those given above as
specimens, N o

509. When several forces act on the lever, we find the condition of equilibrium
by equating to zero the sum of their moments about the fulerum, each moment bem}g
taken with its proper sign. The moments are taken about the fulerum to avoid
introdueing into the equation the reaction at the axis. : )

To find the pressure on the fulerum we transfer each force parallel tf) itself, in the
plane perpendicular to the axis, to act at the fulerum. We thus obtain a system of

‘forces acting at a single point, viz. the intersection of the axis with the plane of the

forces. The resultant of these is the pressure on the axis.

§10. In the investigation the weight of the lever itself has been supposed to be
inconsiderable compared with the forces P and @. If this cannot. be neglected, let
W be the weight of the lever. There are now three forces a.ctmg on the body
instead of two. These are P, @ acting at 4 and B, and W acting at the centre of
gravity G of the lever. Let the fulernm be horizon_tal, and let CL be the per-
pendicular distance between the fulerum and the vertical through G. Let us a.l}.jo
suppose that in the standard figure the weight W and the forc{e P tend to turn the
lever round the fulerum in the same direction. The equation of mo.ment.s now
becomes P.CM—Q.CN+W.CL=0. The pressure on the fulerum is found by
compounding the forces P, Q, W. .

511. Levers are usually divided into three kinds accor&ing‘ to the relative
positions of the power, the weight, and the fulernm. I_n the first }ﬂnd, the fulerum
is between the power and the weight., In the second kind the weight acts between
the fulerum and the power, and in the third kind the power acts be‘u\vee.n the fulerum
and the weight. The investigation in Art. 507 applies to all three. kinds, t.?:le only
distinction being in the signs given to the forces and the arms, in resolving and
taking moments.

512. The mechanical advantage of the lever is measured by the ratio @ : P.
This ratio has been proved to be equal to CN : CM. By applying the power so
that its perpendicular distance from the fulerum is greater than that of the weight,
a small power may be made to balance a large weight. ’.[:hus a erowbar when 1‘139(1
to move a body is a lever of the second kind. The ground is the fulerum, the weight
acts near the fulernm, and the power is applied at the extreme end of the bar.

513. If the lever be slightly displaced by turning it round its
fulerum through a small angle, the points of application 4, B of
the forces P, Q are moved through small arcs 44’, BB’, whose
centres are on the fulerum. Thus the actual displacements of the
points of application of the power and the weight are proportional
to their distances from the fulerum. It is however the resohfed
part of the displacement 44’ in the direction o.f the force P which
measures the speed of working. For exampl.e, if the force P were
applied by pulling a rope attached to the point A, the amount of
rope to be pulled in would be measured by the resolved part
of AA’in the direction of the length of the rope. The 1‘(-.;solved
parts of AA’, BB' in the direction of the forces P, @ are emde.ntly
AA’ .sina, BB .sin 8. These are proportional to CA sin a,
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O'_B sin B, i.e. to CM, CN. (See fig. of Art. 516.) These resolved
displacements are clearly the same as the virtual displacements
of the points of application; Art. 64.

If then mechanical advantage is gained by arranging the lever
so that the weight is greater than the power, the displacement of
the weight is less, in the same ratio, than that of the power, each
displacement being resolved in the direction of its own force. It
follows that what is gained in power is lost in speed.

514. The reader may easily call to mind numerous instances in which levers
are used. As examples of levers of the first kind we may mention the common
balance, pokers, &e.

‘Wheelbarrows, nuterackers, &e. are examples of levers of the second kind. In
these the weight is greater than the power. They are used when we wish to multiply
the force at our disposal.

In levers of the third kind the welght is less than the power, but the virtual
displacement of the weight is greater than that of the power. Such levers therefore

are used when economy of force is a consideration subordinate to the speed of
working.

515. The most striking example of levers of the third kind is found in the
animal economy. The limbs of animals are generally levers of this description.
The socket of the bone is the fulerum; a strong muscle attached to the bone
near the socket is the power; and the \velght of the limb, together with what-
ever resistance is opposed to its motion, is the weight. A slight contraction of
the muscle in this case gives a considerable motion to the limb: this effect is
particularly conspicuous in the motion of the arms and legs in the human body; a
very inconsiderable contraction of the muscles at the shoulders and hips giving the
sweep to the limbs from which the body derives so much activity.

The treddle of the turning lathe is a lever of the third kind. The hinge which
attaches it to the floor is the fulerum, the foot applied to it near the hinge is the
power, and the crank upon the axis of the fly-wheel, with which its extremity is
connected, is the weight.

Tongs are levers of this kind, as also the shears used in shearing sheep. In these
cases the power is the hand placed immediately below the fulerum or point where
the two levers are connected. Capt, Kater’s Mechanics.

516. The principle of virtual work may be conveniently used
to investigate the conditions
of equilibrium in the lever.
Let P, @ be two forces
acting at 4 and B, and let
C be the fulerum. If the
lever be displaced round C
through a small angle 86, so
that 4, B come into the positions 4’, .B’ we have

P.AA sina— @Q.BB sin 83=0,

ART. 517.] THE LEVER. 353

where a, 8 have the same meanings as in Art. 507. This im-
mediately leads to the result P.CM =@ . CN.

517. Roberval’s Balance. This machine supplies an excellent example of
the prineiple of virtual

work. In this balance B’
the fourrods A4, 4'B', " K
B’'B, B4 are hinged at N N
their extremities and

¥
form a parallelogram. Q

The sides ADB, A'B’ are
also hinged at the
points €, €' to a fixed
vertical rod OCC’. The line CC’ must be parallel to 44" and BE’, but need not
necessarily be equidistant from them. Two more rods MM, NN’ are rigidly
attached to 44’, BB’ so as to be at right angles to them. These support the weights
P and Q suspended in scale-pans from any two points H and K. As the combina-
tion turns smoothly round the supports €, €', the rods A4’, BB’ remain always
vertical, and DMDJI’, NN’ are always horizontal.

The peculiarity of the machine is that, if the weights P, @ balance in any one
position, the equilibrium ig not disturbed by moving either of the weights along the
supporting rods J/3’, NN’, It may also be remarked that, if the machine be turned
round its two supports €, C’ so that one of the rods MM’, NN’ descends and the
other ascends, the two weights continue to balance each other.

To show this, let the equal lengths C4, C’4’ be denoted by a, and the equal lengths
CB, O'B’ by b. Let the inclination to the horizon of the parallel rods 4B, 4'B’ be
8. If the machine is displaced so that the angle @ is increased by 46, the rod 44"
descends a vertical space @ cos 648, and the rod BB’ ascends a space b cos #dd.
When the weights of all the parts of the machine are neglected in comparison with
P and ), we have by the principle of virtual work Pa cos 8df=Qbcos fdf. This
gives Pa=Qb; thus the condition of equilibrium is independent of the positions
H, K at which P and @ act on the supporting rods, and is also independent of the
inclination @ of the rods 4B, A'B’ to the horizon.

If the balance is so constructed that the weights P, @ are equal, when in equili-
brium, we can detect whether any difference in weight exists between two given bodies
by simply attaching them to any points of the supporting rods. The advantage of
the balance is that no special care is necessary to place them at equal distances
from the fulerum.

Ex. 1. If the weights of the rods 4B, A'B" are w, w’ and the weights of the
bodies A4'M', BB'N' are W, W', prove that the condition of equilibrium is
(P+T)a—(Q+T)b+E(w+w') (a-b)=0.
Thence show that, if the weights P, Q balance in one position, they will as before
balance in all positions. Find also the point of application of the resultant pressure
of the stand EI" on the supporting table.

Ex. 2. If the balance be at rest and horizontal, prove that the horizontal
pressure on either support bears to either weight the ratio of the difference of the
horizontal distances of the centres of gravity of the weights from the central plane
of the balance to the distance between the supports. [Math. Tripos, 1874.]

Let X, ¥; X', Y, be the horizontal and vertical components of the reactions at

R. 8. L 23
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4, 4’. By taking moments about A" for the system 4M'A" we have Na=Ph,
where dd’=a, MH=I. We have also X4+ X'=0, Y+Y'=P. Thus X, X' are
known while the separate values of ¥ and ¥’ are indeterminate, Arts. 268, 148,
Similarly if X;, ¥;; X', 17/, are the corresponding components at the points B, B’,
we have X,a=Pk where NK=Fk. Bince the rod 45 is acted on by X, ¥; X, ¥;
(veversed) at the extremities, the horizontal component of pressure at the pin C is
X - X,, which at once leads to the given result.

518. The Common Balance. In the common balance two equal scale-pans
FE, F are suspended by equal fine strings from the extremities 4, B of a straight
rod or beam. The rod 45 can turn freely about a fulerum O, with which it is
connected by a short rod OC which bisects 4B at right angles, The centre of
gravity G of the beam 4 OB lies in the rod OC, and therefore, when the beam and
the empty scales are in equilibrinm, the straight line AR is horizontal.

The bodies to be weighed are placed in the scale-pans, and if their weights are
unequal, the horizontality of the
beam 4B is disturbed. The centre
of gravity G of the beam is now
no longer under the point of sup-
port, and in the new position of
equilibrinm the inelination # of
the rod 4.B to the horizon is such
that the moment of the weight of
the beam about the fulerum 0O is
equal to that of the weight of the bodies and the seale-pans, It is therefore evident
that the fulerum should not coincide with the centre of gravity of the beam.

Let P,  be the weights in the scales E and P, w the weight of either secale, let
W be the weight of the beam AOB. Let 0G=h, 0C=¢, AB=2a. Let§ be the
inclination of AB to the horizon when the system is in equilibrium., Taking
moments about O, we have

{P+uw)(acosd+csing) ~ (Q+10) (wcos § — ¢ sin g) + Whsind=0.

The coeflicient of P 41w in this equation is the length of the perpendicular from O
on the vertical A7, and is easily found by projecting the broken line 0C, €4 on
the horizontal. The other coefficients are found in the same way. We therefore
(@-Pa
(P+Q+2w)e+ TR’
For a minute account of a balance with illustrative diagrams the reader is
referred to the tract, “The theory and use of a physical balance,” by J. Walker, 1887.

have tan 8§ =-

519. A good balance has three requisites. The first is that when loaded with
equal weights in the pans the rod 4B should be horizontal. This is seeured by
making the arms AC, CB equal. To determine when the beam is horizontal, a
small rod called the tongue is attached to it at vight angles at its middle point.
The beam is usually suspended from a point above O, and when the beam is
horizontal the direction of the tongue should pass through the point of sugpension.

The second requisite is sensibility. When the weights P, ( differ by a small
quantity, the angle ¢ should be so large that it can be easily obzerved. For a
given difference ()~ P the sensibility increases as tan # increases. We may
tan @ [

Q-P7(

therefore measure the sensibility by the rati _—
VRS RN PrQ+2w)ct Wh'

The
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sensibility is therefore secured by so constructing the balance that the expression
on the right-hand side of this equation is as largze as possible.

The sensibility is therefore increased (1) by increasing the length of the rod 4B,
(2) by diminishing the length of the rod OC, (3) by diminishing the weight of the
beam. If the balance is so constructed that & and ¢ have opposite signs, the
sensibility can be greatly increased. This requires that the fulerum O should lie
between & and C.

The third requisite of a balance iz usually called stability. When the balance
is disturbed, it should return readily to its horizontal position. The beam
oscillates about its position of equilibrium, and the quicker the oscillation the
sooner can it be determined by the eye whether the mean position of the beam
is or is not horizontal. The balance should be so constructed that the times of
oseillation are as short as possible. The discovery of the nature of the oscillations
is a problem in dynamies, and eannot properly be discussed from a statical point
of view.

§20. Ix.1. If one arm of a common balance, whose weight can be neglected,
is longer than the other, prove that the true weight of a body is the geometrical
mean of the apparent weights when weighed first in one scale and then in the
other. [Coll. Exam.]

Ex. 2. A balance has its arms unequal in length and weight. A certain
article appears to weigh @, or (), according as it is put in the one scale or
the other. Similarly another article appears to weigh R, or R,. Find the true
weights of these articles; and show that if an article appears to weigh the
ST
Q= Qu-Ry+ Ry’

[Coll. Exam., 1886.]

Ex. 3. In a false balance a weight P appears to weigh @, and a weight P’ to
weigh (': prove that the real weight X of what appears to weigh ¥ is given by
X(Q-Q)=Y(P-P)+P'Q-PQ. [Math. Tripos, 1870.]

Ex. 4. A true balance is in equilibrium with unequal weights P, @ in its scales.
If a small weight be added to P, the consequent vertical displacement of @ is equal
to that which would be the vertical displacement of P were the same small weight
to be added to ) instead of to P. [Math. Tripos, 1878.]

Looking at the expression for tand in Art. 518, we notice that the changes
produced in @ by altering either P or @ by the same small quantity are equal with
opposite signs. The effect of inereasing P or @ is therefore to furn the balance the
one way or the other through the same small angle. The vertical displacements
of the weights are therefore equal in the two cases.

Ex. 5. If the tongue of the balance be very slightly out of adjustment, prove
that the true weight of a body is nearly the arithmetic mean of its apparent weights,
when weighed in the opposite scales, [Coll. Exam.]

Ex. 6. A delicate balance, whose beam was originally suspended by a knife-
edged portion of itself (higher than its centre of gravity) resting upon a horizontal
agate plate, has its knife-edge worn down a distance e so that it becomes curved
(curvature=1fr), and has a corresponding lollow made in the agate plate
(eurvature=1/p). If slightly different weights P and @ be placed in i.].\ie.e.;caln?s
(whose weights may be neglected), show that the reciprocal of the sensibility is

increased by (P+ Q+17) (e + ;13) i [Coll. Exam,, 1890.]
23—2

same in whichever scale it is puf, its weight is
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521. The Steelyards. The common steelyard is a lever 4CB with unequal
arms AC, CB, the fulerum

being situated at a point a 5 Jf 4 2 2 1

little above €. The body @ Al e C -
to be weighed is suspended ﬂ ¢D
from the extremity B of the 4

shorter arm, and a given
weight P is moved along the
longer arm CA4 to some point H such that the system balances. Let G be the
centre of gravity of the beam, w its weight. The three weights, P acting at H, w at
G, and @ at B are in equilibrium. Taking moments about ¢, we have

PHOEwsGU=QuOR . i) eenes inrin L)
Let D be a point on the shorter arm CB, such that w.GC=P.CD; the
equation (1) then becomes BLBD Q0 OB rvveisisvismminisesssiivs (2).

Thus the weight of ¢ is determined by measuring the distance HD. To effect
this easily, we measure from D towards 4 a series of lengths DE,, £ E,, E,E,, &o.
each equal to CB. The weight of the body @ is therefore equal to P, 2P, 3P, &e.
according as the weight P is placed at the points B, E,, E,, &e. when the system
is in equilibrium. The intervals E,E,, E,E,, &e. are usually graduated into
smaller divisions, so that the length HD can be easily read. The points E,, E,,
&e. are marked 1, 2, &e. in the figure.

An instrument of this form was used by the Romans and is therefore often
called the Roman steelyard.

522. In the Danish steelyard the weights P and @ act at fixed points of the
lever, but the fulerum or

point of support C is made 4 D ’ 4 B
to slide along the rod 4B G A

until the system balances.

The weight P, being fixed,

can be conveniently joined Q

to that of the lever. Let,

then, P’ be the weight of the instrument, so that P'=P-+w, and let & be the centre

of gravity. Taking moments about C, we evidently have P'. GC=0Q.CB, and
P'.BG 2 A
R - 0 This expression enables us to caleulate the values of BC when

Q=P 2P, 3P, &e. Marking these points of the rod 4B with the figures 1, 2, 3,
&e., the weight of any body placed at B can be read off when the place of the fulerum
C has been found by trial.

If €, ¢’ be two successive marks of graduation when the weights suspended at B
are ) and @+ S, we easily find that . :

BT BE=. !%BG_; since the right-hand side
is constant when S is given, we infer that the marks of graduation on the bar are
such that their distances from B form a harmonical progression when the weights
form an arithmetical progression. Thus in the common steelyard the distances of

the graduations from a certain point are in arithmetical progression, and in the
Danish steelyard in harmonical progression.

523. The advantages of a steelyard over the balance are, (1) the exact adjust-
ment of the instrument is made by moving a single weight P along the rod, (2) when
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the body to be weighed is heavier than the fixed weight the pressure on the point of

support is less than in the balance. The steelyard is therefore better adapted to

measnure large weights. There is on the other hand this advantage in the balance,
that by using numerous small weights the reading can be effected with greater
precision than by subdividing the arm of the steelyard.

524. Ex, 1. The weight of a common steelyard is w, and the distance of its
fulerum from the point from which the weight hangs is @ when the instrument is in
perfect adjustment; the fulerum is displaced to a distance a+ « from this end; show
that the correction to be applied to give the true weight of a body which in the
imperfect instrument appears to weigh W is (W+P+w)ef(a+a), P being the
moveable weight. [Math. Tripos, 1881.]

Ex. 2. In a weighing machine constructed on the prineiple of the common
steelyard the pounds are read off by graduations reaching from 0 to 14, and the
stones by weights hung at the end of the arm; if the weight corresponding o one
stone be 7 oz., the moveable weight 4 Ib., and the length of the arm one foot, prove
that the distances between the graduations are §in. [Math. Tripos.]

Ex. 8. In graduating a steelyard to weigh pounds, marks are made with a file,
a weight @ being removed for each notech. With the moveable weight P at the end
of the beam, n lbs. can be weighed after the graduation is completed, (n+1)
before it is begun., Show that n (n +1) x=2P, and find the error made in weighing
m pounds. The centre of gravity of the steelyard is originally under the point of
suspension. X [Coll. Exam., 1885.]

Ex. 4. Show that, if a steelyard be constructed with a given rod whose weight
is inconsiderable compared with that of the sliding weight, the sensibility varies
inversely as the sum of the sliding weight and the greatest weight which can be
weighed. [Math. Tripos, 1854.]

Ex. 5. A common steelyard is graduated on the assumptions that its weight is
€, and that the moveable weight is 77, both which assumptions are incorrect. If
two masses whose real weights are P and R appear to weigh P+ X and R+ ¥, then
the weight of the steelyard and the moveable weight are less than their assumed

4 -
values by %{X -T) and %[X— l’}-{-%[PY - RX), where b, a are fthe distances

from the fulerum to the centre of gravity of the bar and to the point of attachment
of the substance to be weighed, and D=P-RE+X-Y. [Math. Tripos, 1887.]

Ex. 6. The sum of the weight of a certain Roman steelyard and of its moveable
weight is S, the fulerum is at the point ¢ and the body to be weighed is hung at
the end B. The steelyard is graduated and after graduation the fulerum is shifted
towards B to another point ", A body is then weighed, the old graduation being
used, and the apparent weight is IV, Prove that the true weight is greater than the
apparent weight by (S+ W) CC'/BC". [Trin. Coll., 1889.]

Ex. 7. If, on a common steelyard, the moveable weight P, which forms the
power, be inereased in the ratio 1+ % : 1, prove that the consequent error in @, ﬁ}_le
weight to be found, is kY, where Y is the weight which must be removed from @ in
order to preserve equilibrium when P is moved close to the fulerum.

[Coll, Exam., 1885.]

Ex. 8. In the Danish steelyard, if a, be the distance of the fulerum from that
end of the steelyard at which the weight is suspended, the weight being n1bs., prove

[Math. Tripos, 1859.]
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Ex. 9. An old Danish steelyard, originally of weight 77 lbs., and accurately
graduated, is found coated with rust. In consequence of the rust, the apparent
weights of two known weights of X Ibs. and ¥ lbs. are found when weighed by the
steelyard to be (X — @) Ibs., (¥ —y) lbs. respectively. Prove that the centre of gravity
of the rust divides the gradnated arm in the ratio IV (z—y) : Yo — Xy; and that its
N oo FEEY | WALX
weight is, to a first approximation, X-Y T+ Y=x
Ex. 10. A brass figure ABDC, of uniform thickness, bounded by a circular are
BDC (greater than a semicirele) and two tangents 45, AC inclined at an angle 2a,
is used as a letter-weigher as follows. The centre of the circle, 0, is a fixed point
about which the machine can turn freely, and a weight P is attached to the point 4,
the weight of the machine itself being w. The letter to be weighed is suspended
from a clasp (whose weight may be neglected) at D on the rim of the circle, OD
being perpendicular to O4. The circle is graduated, and is read by a pointer which
hangs vertically from O: when there is no letter attached, the point 4 is vertically
below O and the pointer indicates zero. Obtain a formula for the graduation of the
circle, and show that, if P=Jwsin®a, the reading of the machine will be Jw when
(r+2a)sin*a+2ginacosa
(m+ 2a) sin® a2 cos a }

[Math., Tripos, 1878.]

0. makes with the vertical an angle equal to tan~!

525. The Pulley. The common pulley consists of a wheel
which can turn freely on its axis. A rope or cord runs in a groove
_ formed on the edge of the wheel, and is acted on by two forces P
and P’ one at each end. If the pulley is smooth and the weight
of the string infinitesimal, the tension is necessarily the same
throughout the arc of contact. It follows that the forces P B
acting at the extremities of the string are equal to each other and
to the tension. See fig. 1 of Art. 527. The same thing is true
if the pulley is rough and circular, but can turn freely about a
smooth axis; Art. 197.

526. When the axis of the pulley is fixed one of the forces
P, Q is the power and the other is the weight. Thus a fixed
pulley has no mechanical advantage in the technical semse. A
machine, however, which enables us to give the most advantageous
direction to the moving power is as useful as one which enables a
small power to support a large weight.

527. A moveable pulley can however be used to obfain
mechanical advantage. Suppose a perfectly flexible string to
be fixed at A, pass under a pulley C' of weight @, and to be acted
on at B by a force P; see fig. 2. In the position of equilibrium
the strings on each side of the pulley meet in the line of action of
the force Q (Art. 34), and must therefore make equal angles with

Y. [Math. Tripos, 1885.]

|

e

ART. 529.]

the vertical, then

THE PULLEY. 359

the vertical (Art. 27). Let a be the inclination of either string to

2P cos o= Q.

Fig. 1. Fig. 2.

The mechanical advantage is therefore 2 cosa. Unless o is less
than 60° the mechanical advantage is-less than unity. When the

strings are parallel, we have 2P = Q.

s528. Ex. 1. In the single moveable pulley with parallel strin.gs a weight I-If is
supported by another weight P attached to the free end of Fhe string and ha.n.gl.ng
over a fixed pulley. Show that, in whatever position the weights hang, lfhe pGSlt-IOII.
of their centre of gravity is the same. [Math. Tripos, 1854.]

Ex. 2. A string is attached to the ecentre of a heavy circular pulley of
radiug » and is then passed over a fixed peg, then under the pulley, a_nd afterwards
passes over a second fixed peg vertically over the point where the string 1e.a.v.es the
pulley and has a weight W attached to its extremity. The secon‘d peg is in t.h.e
same horizontal line as the first peg and at a distance §r from 1At. If there is
equilibrium, prove that the weight of the pulley is 377, and find the distance befween
the first peg and the centre of the pulley. [Coll. Exam., 1886.]

Ex. 3. An endless string without weight hangs at rest over two pegs ifl the
same horizontal plane, with a heavy pulley in each festoon of the string; if the
weight of one pulley be double that of the other, show that the angle b.etween j,he
portions of the npper festoon must be greater than 120° [Math. Tripos, 1857.1

529. Systems of pulleys may be divided into two cl&ssgs,
(1) those in which a single rope is used; and (2) those in which
there are several distinct ropes. We begin with the first of these
systems. §

Two blocks are placed opposite each other, containing bl:le
same number of pulleys in each. Three are represented 1In
each block in the figure. The string passes over the pulleys
in the order ADBECF, and has one extremity attached to one
of the blocks. The power P acts at the other extremity of the
string, while the weight @ acts on a block.

Let n be the number of pulleys in either block, W the
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weight of the lower block; we then have @+ W supported by
2n tensions. Since the tension of the sfring is the

same throughout, and equal to P, we have by re- I

solving vertically 2nP = Q + W.

If the pulleys were all of the same size, and exactly under /-d

each other, some difficulty might arise in their arrangement so K‘ P
that the cords should not interfere with each other. For this,

and other reasons, the parts of the string not in contact with the s
pulleys cannot be strictly parallel. Except when the two blocks
are very close to each other the error arising from treating the
strings as parallel is very slight, and may evidently be neglected
when we take no account of the other imperfections of the =\
machine; Arf. 503.

We may also deduce the relation between the
power and the weight from the principle of virtual
work. If the lower block, together with the weight

@, receive a virtual displacement upwards equal to (

¢, it is clear that each string is slackened by the
same space ¢. To tighten the string, P must de-
scend a space ¢ for each separate portion of string, i
ie. P must descend a space 2ng. We have therefore @
by the principle of work

P.2ug=(Q+ W)q

The result follows immediately.

530. In some arrangements of this system the pulleys on each block have a
common axis, but each pulley turns on the axis independently of the others. This
change however does not affeet the truth of the relation just established between
the power and the weight.

‘When the system works, it is clear that all the pulleys, if of equal size, do not
move with equal angular velocities. To give greater steadiness to the several
parts of the machine, it has been suggested that the pulleys in each block should
not only have a common axis, but be of such radii that each turns with the same
angular veloeity. When this has been effected, the pulleys in each block may be
welded into one and the string made to run in grooves cut out of the same
wheel. ;

To understand how this may be done, we notice that if the lower block rises
one foot, each string would be slackened one foot. To tighten the string befween
C and F on the right hand the pulley F' must be turned round so that one foot of
rope may pass over if. The string on the left hand between € and F is now
slackened by two feet, hence the pulley ¢ must be turned round so that two
feet of rope may pass over it. In the same way the pulley 2 must be turned
round go that three feet of rope may pass over it, and 2o on. If then the wheels in
the upper block are constructed so that their radii are in the proportion 2:4 : 6 : &e.,
and those in the lower block so that the radii are in the proportion 1:3:5 : &e.,
the wheels in each block will turn with the same angular velocity.

When very accurately constructed this arrangement works well. It is found
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however that a very slight deviation from the true proportion of the radii will
cause the rope to be unequally stretched, even the thickness of the rope must be
allowed for. Some parts of the rope are therefore unduly tight, and others become
nearly slack. This mode of arranging the pulleys is due to White. It is not
now much used,

531. Ex. In that system of pulleys in which the same cord passes round all
the pulleys it is found that on account of the rigidity of the cord and the friction
of the axle a weight of P 1bs. requires aP-+p lbs. to lift it by a cord passing over
one pulley. Prove that when there are n parallel cords in the above system a

s & m—1)-mfa~1 :
power P can support a weight Q:a‘i_-l- P+a—(-‘—l~—l— i =1) p, and find the

(@ —1)°
additional weight required to be added to P to raise Q. [Math, Tripos, 1884,]
The rigidity of cordage was made the subject of many experiments by Coulomb,
Axt, 170. The discussion of these would require too much space, but the general
result may be shortly stated. Suppose a cord ABCD to pass over a pulley of
radiug 7, touching it at B and C, and moving in the direction ABCD. Then
the rigidity of the portion 4B of the cord which is about to be rolled on the
pulley may be allowed for, by regarding the cord as perfectly flexible and applying
a retarding couple to the pulley whose moment is a+ T, where a and b are constants
which depend on the nature and size of the cord, but are sensibly independent
of the velocity. If 7’ be the tension of the portion CD of the cord which is
being unwound from the pulley, its rigidity may be represented in the same way by
the application of a couple equal to a'+¥'1". The values of @', I’ are so much less
than those of «, b, that this last correction is generally omitted. Taking moments

+0T : -
about the centre this gives 1"~ T = E---?_---- , where r ig the radius.

532. When several cords are used pulleys may be combined in
various ways to produce mechanical advantage. Two systems are
usually described in elementary books, both of which are repre-
sented in the figure.

In fig. (1) each pulley is supported by a separate string, one end
Fig. 2.
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of which is attached to a fixed point of support, and the other to
the pulley next in order. In fig. (2) the string resting on each
pulley has one end attached to the weight and the other to the
pulley next in order. The two systems resemble each other in the
arrangement of the pulleys, but to a certain extent each is the
inversion of the other.

Let w,, w,, &c. be the weights of the pulleys M), M,, &ec.,
T, T,, &c. the tensions of the strings which pass over them. In
the figures only the suffixes of M;, M,, &c. are marked on the
pulleys to save space.

Considering fig. (1), the tension 7;=P. The tensions of the
parts of the string on each side of the pulley M, support the weight
of that pulley and the tension 7, we have therefore

1,=2T —w,=2P —w,.
Considering the pulleys M,, M, we have in the same way
T,=2T,—w,= 2P — 2w, —w,,
T,=21, —w,= 25P — 2%p, — 201, — w,,
and so on through all the pulleys. It is evident that the right-

hand side of each equation is twice that of the one above with a w
subtracted. We therefore have finally
Q=2T, — w,=2"P — 201y, — 2%y, — &e. — 2w, — W,.
If all the pulleys are of equal weight this gives
@Q=2"P—-(2"—1)w.

The relation between the power and the weight follows easily
from the principle of virtual work. If we suppose the lowest
pulley to receive a virtual displacement upwards equal to ¢, each
of the strings on its two sides is slackened by an equal space q.
To tighten these we must raise the next lowest pulley through a
space equal to 2g. In the same way, the next in order must be
raised a space twice this last, i.e. 2%¢, and so on. Hence the power
P must be raised a space 2"g. Multiplying each weight by the
space through which it has been moved, we have, by the principle
of work

(@ +wy)g+wny 2¢+ w2 2% +...=P.2%.
Dividing by ¢ we obtain the same relation as before.
533. Considering fig.(2), the tension 7}, =P. The tensions of

the parts of the string on each side of the pulley M, together with
the weight of that pulley, are supported by the tension 7}, we

S
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therefore have 7, = 21", + w, = 2P +w,. Taking the other pulleys
in order, we see that we have the same results as before except that
the w’s have opposite signs, We thus have

Ty=2T, +wy=2°P + 2w, +w,,

T,=2T, + w,= 2°P + 22w, + 2w, + wy,
and so on. Since the pulleys are all attached to the weight
we have I, + T, + ... + T, = Q + W, where W is the weight of the
bar,

Substituting the values of 7}, 7', &c. in this last equation, we
find Q+ W=(2*—-1)P+ (2" —Dw, + (2" =) wy+ ... + Wy,

If all the pulleys are of equal weight this reduces to

Q+ W=(2"-1)(P +w)—nw.

When the pulleys are arranged as in fig. (1), the mechanical
advantage is decreased by increasing the weights of the pulleys.
In fig. (2) the reverse is the case, for the weights of the pulleys
assist the power in sustaining the weight.

To deduce the relation between the power and the weight
from the principle of virtual work, let us first imagine the bar to
be held at rest and the highest pulley to be moved downwards
through a space ¢. Bach of the strings on the two sides of that
pulley is equally slackened by the space ¢. To tighten the
string, the second highest pulley must be moved downwards
through a space 2¢, and so on. The power must descend a space
279, To restore the upper pulley to its original position let us
now suppose the whole system to be moved upwards through a
space equal to ¢, Art. 65. On the whole, the weight ), together
with the bar ABC, has ascended a space ¢; the downward dis-
placements of the several pulleys in order, counting from the
highest, are respectively 0, (2—1)g, (22=1)¢, ...... ; while the
downward displacement of the power P is (2*—1)g. The prin-
ciple of work at once yields the equation
R+MWMg=wo, 2-1)g+w,(2*°=1)g+...

+w, (21=1) g+ P (2" -1)q.
Dividing by ¢ we have the same relation as before.

534. We notice that the bar ABC will not remain horizontal unless the weight
@ is fastened to it at the proper point. The bar is acted on at the points :_l, B, &ec.
by the tensions T, T, &e., and these are to be in equilibrium with the weight @

acting at some point H and the weight 1" of the bar at its middlePoint G. The
intervals 4B, BC, &c. depend on the radii of the pulleys. If the radii be a;, a,, &e.
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we have AB=2a, - a,;, BC=2a,-a,, and s0 on, Taking moments about 4 we have
Ty . AB+T5. AC+&e.=Q . AH+ W, 4G,

This equation determines the position of H.

If the weights of the strings or ropes cannot be neglected, we may suppose the
weight of the portion of string between the pulleys JM;, M, included in the weight
aw,, that of the portion between the pulleys IM,, I, included in w,, and =0 on. The
portions of string which join the points 4, B, C, &c. to the pulleys are supported by
the fixed beam ABC, &e. in fig. (1), and may be included in the weight of the bar
in fig. (2). The weight of the string wound on any pulley may be included in the
weight of that pulley.

The system of pulleys represented in fig. (1) of Art. 532 is sometimes called the
Jirst system. That represented in Art. 529 is the second system ; while the one drawn
in fig. (2) of Art. 532 is the third system.

535. When the weights of the pulleys are neglected and each hangs by a
separate string, we can eagily find the relation

e )
between the power and the weight when the |
strings are not parallel. \ P
Let 2a;, 2a,, 2a,, &e. be the angles be-

tween free parts of the strings which pass \
over the pulleys M, , M,, J,, &e. respectively.
Let also T, T,, T,, &c. be the tensions. 3
Then by the same reasoning as before \L
T,=P, ,=2T, cosa;, T,=2T,cos0,, &e. Q
If there are n pulleys we easily obtain Q=2%P, cosa,.cos ay. &e. cosa,.

536. Ex. 1. In that system of pulleys in which all the strings are attached to
the weight, if the weight of the lowest pulley be equal to the power P, of the second
3P, and so on...that of the highest moveable pulley being 3°2 P, the ratio of
P W will be 2 : 32 -1, [Math. Tripos, 1856.]

Ex. 2. In that system of pulleys in which each hangs by a separate string
from a horizontal beam the weights of the pulleys, beginning with the highest, are
in arithmetical progression, and a power P supports a weight ¢ ; the pulleys are
then reversed, the highest being placed lowest, and the second highest placed
lowest but one, and so on, and now  and P when interchanged are in equilibrium
show that n (Q+ P)=21, where W iz the total weight of the pulleys, and n the
number of pulleys. [Coll. Exam., 1882,]

Ex. 8, In a system of n pulleys where a separate string goes round each pulley
and is attached to the weight, if the string which goes over the lowest have the end,
at which the power is usually hung, passed under another moveable pulley and
then over a fixed pulley, and attached to the weight ¢ ; and if the weight of
each pulley be w and no other power be used, prove that Q=(3.2"1—n—-1)w,
and find the point of the beam at which @ must be hung. [Math. Tripos, 1876.]

Ex. 4. In that system of pulleys in which each of the strings, supposed parallel,
is attached to the weight, if the power be equal to the weight of the lowest pulley,
and if each pulley weigh three times as much as the one immediately below it,
prove that the weight of each pulley is equal to the tension of the string passing
over it. [Coll. Exam. ]

Ex. 5. In the system of pulleys in which each hangs by a separate string, all

e
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the strings being vertical, if 77" be the weight supported, and w,, w,......w, the
weights of the moveable pulleys, there will be no mechanical advantage unless
W -, +2 (W —w, )+ 22 (W -w, o)+ ...... + 2071 (W —apy)
[Math. Tripos, 1869.]
Ex. 6. In the system of n heavy pulleys in which each hangs by a separate
string, P is the power (acting upwards), @ the weight, and R the stress on the
beam from which the pulleys hang: show that R is greater than @ (1—27") and less
than (2" -1) P. [Math. Tripos, 1880.]
Ex. 7. If there be two pulleys, without weight, which hang by separate strings,
the fized ends only of the string being parallel, and the power horizontal, prove
that the mechanical advantage is /3. [St John's Coll., 1883.]

Ex. 8. In that system of pulleys, in which all the strings are attached to the
weight, if the power be made to descend through one inch, through what distance
will the weight rise? Illustrate by reference to this system of pulleys the principle
which is expressed by the words, *In machines, what is gained in power is lost in
time.” [Math, Tripos, 1859.]

Ex. 9. In the system of pulleys in which all the strings are attached to the
weight @, prove that, if the pulleys be small compared with the lengths of the
strings, the necessary correction for the weight of the strings is the addition to
Q, w,, Wwy...w,_, respectively, of the weights of lengths

It had oty g+l 200 =), 2(ha=Ny),. .2 (g = Byg)
of string; where Iy, %y, ky...h, are the heights of the n pulleys (whose weights are
Wy, w,...1, respectively) above the line of attachment, supposed horizontal, of the
strings to the weight Q, and I the height of the point of attachment of the power
above the same line. [Math. Tripos, 1877.]

Ex. 10. In that system of pulleys in which the strings are all parallel, and
the weights of the pulleys assist the power, show that, if there are n pulleys,
each of diameter 2z and weight w, the distance of the point of suspension of
the weight from the line of action of the power is equal to

WL O+ [(n—3) 2" +n+3]w
227-1) Q %

be positive.

where ) is the weight. [Math, Tripos, 1883.]

Ex. 11. In a system of four pulleys, arranged so that each string is attached to
a bar carrying the weight, the string which usually carries the power is attached to
one end of the same bar, and the fourth string to the other end. The weight and
diameter of each pulley are respectively double of those of the pulley below it, and
the strings are all parallel. The weight being 33 times that of the lowest pulley,
find at what point of the bar it is hung,. [Trin, Coll., 1885.]

Ex. 12, In the system of pulleys, in which each pulley hangs by a separate
string with one end attached to a fixed beam, there are n moveable pulleys of
equal weight w, The rth string, counting from the string round the highest
pulley, cannot bear a greater tension than 7. Prove that the greatest weight
which ean be sustained by the system ig 20—+ 7' — (297 - 1) 2. [Trin., 1890.]

Ex. 13. It is found that any force P being applied to the extremity of a strth
passing over a pulley can just raise a weight P(1~#). In the system of pulleys in
which each hangs by a separate string a weight @ is just supported, the weight of
each pulley being . If « and 6 are small quantities, whose squares and products
may be neglected, show that an additional power equal to nfQ[2" can be applied
without affecting the equilibrium. [Coll. Exam., 1888.]



366 THE MACHINES, [cHAP. XI.

537. The Inclined Plane. 1% find the relation between the
power and the weight in the inclined plane.

Let 4B be the inclined plane, (' any particle situated on it.
Let OV be a normal to the plane and CV vertical ; let a be the
inclination of the plane to the hori- BRA IV
zon, then the angle NCV=a. Let d‘

'\.'.'

@ be the weight of C, P a force 5, \ i 3
acting on € in the direction CK, | d =

where the angle NCK =¢. It is i Ve 7
supposed that CK lies in the ver- ~ ;
tical plane VCN. Te

If the plane is smooth the reaction R of the plane on the
particle acts along the normal CN. We then have by Art. 35

) Q R

It is necessary for equilibrium that R should be positive, for
otherwise the particle would leave the plane. It follows from
these equations that ¢ must be greater than a. This follows
also from an examination of fig. (1), for @ acting along V(' and
R along CN cannot be balanced by a force P unless its direc-
tion lies within the angle formed by 'V and NC produced.
If P act up the plane, ¢ =%w and P=Qsina, R=0Qcosa.
If P act horizontally, ¢ = 47 + &, and P = Q tan a0, R = () sec a.

538. If the plane iz vough, let p=tan e be the coefficient of friction. With the
normal CN as axis describe a right cone whose semi-angle is €; this is the cone of
friction, Art. 178. The resultant action R’ of the plane on the particle lies within
this cone; let CII be its line of action and let the angle NCI =i then i lies
between = e. Let the standard case be that in which a is greater than e, and )
greater than either; this is represented in fig. (2). We therefore have

A8

7B

ey

£

: {

-— -L:.
o0 AN .
T e e (2).
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‘When the foree P is so great that the particle is on the point of asecending the plane,
the reaction R’ acts along CE, and i= —e. Let P, be this value of P, then
P, Q R
S0 (ot e) " ER TR dnpoa e B
When the foree P is so small that the particle is only just sustained, the reaction R’
acts along €D, and i=e. Let P, be the value of P, then

L e, SRS A (4)
Sali=g snle—e Enlp-g rorrrninmslEl

If o = ¢ as in fig. (2), it is clear that the particle will slide down the plane if not
supported by some foree P, Art, 166. When the parficle is just supported the
reaction R’ acts along CD and @ along ¥C; it is clear that these forces could
not be balanced by any force P unless its direction lay within the angle made by
CV and DC produced. Accordingly we see from (4) that R’ is negative unless
¢ =a. In the same way it is impossible to pull the particle up the plane (without
pulling it off) by any force whose direction does nof lie between CV and EC
produced. Assuming ¢ = a, the least force required fo keep the particle at rest
is given by (4), and the greatest by (3).

If e>a as in fig. (3), the particle will rest on the plane unless disturbed by
some foree P. To just pull the particle up the plane the force must act within the
angle formed by €V and EC produced, and its magnitude is given by (3). In order
that the particle may be just deseending the plane the force must act within the
angle formed by CV and DC produced, and its magnitude is given by (4).

539, Ex. 1. If a power P acting parallel to a smooth inclined plane and sup-
porting a weight ¢ produee on the plane a pressure I, then the same power acting
horizontally and supporting a weight R will produce a pressure ¢. [Coll. Ex., 1881.]

Ex, 2. TFind the direction and magnitude of the least force which will pull a
particle up a rough inelined plane. .

By (3) we see that P; is least when ¢ 4e=1m, ie. when the force makes an
angle with the inclined plane equal to the angle of friction,

Ex. 3. Find the direction and magnitude of the least force which will just
support a particle on a rough inelined plane.

Ex. 4. A given particle ¢ vests on a given smooth inclined plane and is
supported by a force acting in a given direction. If the inelined plane is without
weight and has its side 4L moveable on a smooth horizontal table, find the force
which when acting horizontally on the vertical face BL will prevent motion, Find
also the point of application of the resultant pressure on the table.

Ex. 5. A heavy body is kept at rest on a given inclined plane by a force
making a given angle with the plane; show that the reaction of the plane, when
it is smooth, is a harmonic mean between the greatest and least reactions, when it
is rough. [Math. Tripos, 1858.]

Ex. 6. A heavy particle is attached to a point in a rough inelined plane by a
fine rigid wire without weight, and rests on the plane with the wire inclined at an
angle @ to a horizontal line in the plane. Determine the limits of @, the angle of
inclination of the plane being tan—! (u sec ). [Coll. Exam.]

Ex. 7. Two equal particles on two inclined planes are connected by a string
which lies wholly in a vertical plane perpendicular fo the line of junction of the
planes, and passes over a smooth peg vertically above this line of junction. If,
when the particles ave on the point of motion, the portions of the string make
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equal angles with the vertical, show that the difference between the inclinations of
the planes must be twice the angle of friction, [Math. Tripos, 1878.]

540. Wheel and Axle. 7o find the relation between the
power and the weight in the wheel and azxle.

Let @ be the radius of the axle AB, ¢ that of the wheel. The
power P acts by means of a string which passes round the wheel
several times and is attached to a point on the circumference.
The weight @ acts by a string which passes similarly round
the axle. Taking moments round the central line of the axle, we
have Pc= Qa. The mechanical advantage is equal to ¢/c.

2

Fig. 1. Fig. 2,
If p, ¢ be the spaces which the power and weight pass over
while the wheel turns through any angle, we have

plg=cla=Q/P.

541. When a great mechanical advantage is required we must either make the
radius of the wheel large or that of the axle small. If we adopt the former course
the machine becomes unwieldy, if the latter the axle may become too weak to bear
the strain put on it. In such a case we may adopt the plan represented in fig, (2).
The two parts of the axle are made of different thicknesses, and the rope carried
round both. As the power P descends, the rope which supports the weight is coiled
on the thicker part of the axle and uncoiled from the thinner. ILet a, b be the radii
of these two portions of the axis. If Q be the weight attached to the pulley, the
tension of the string is . Taking moments about the central line of the axis, we
have Pe=1%Q(a~D0). The mechanical advantage is therefore equal to the radius of
the wheel divided by half the difference of the radii of the axle. By making the
radii of the two portions of the axis as nearly equal as we please, we can increase
the mechanical advantage without deereasing the strength of the machine. This
arrangement is called the differential axle.

542. Bx.1. A rope passes round a pulley, and its ends are coiled opposite
ways round two drums of different radii on the same horizontal axis. A person pulls
vertically upon one part of the rope with a force P. What weight attached to the
pulley can he raise, supposing the parts of the rope parallel ? [Coll. Exam.]

Ex. 2. In the differential axle if the ends of the chain, instead of being
fastened to the axles, are joined together so as to form another loop in which
another pulley and weight are suspended, find the least force which must be
applied along the chain in order fo raise the greater weight, the different parts
of the chain being all vertical. [Math. Tripos.]

ART. 545.] TOOTHED WHEELS. 369

543. When hoth the power and the weight act on the cirecumference of wheels
there are various methods of connecting the two wheels besides that of putting
them on & comimon axis. Sometimes, when the wheels are at a distance from each
other, they are connected by a strap passing over their circumferences. In some
other cases one wheel works on the other by means of teeth placed on their rims,

544, Toothed Wheels. To obtain the relation between the
power and the weight in « pair of toothed wheels.

Let A, B be the centres of two wheels which act on each other
by means of teeth, the teeth on the axis of one wheel working into
those on the circumference of the other at the point C. Let a,, a,
be the radii of the axles, b,, b, those of the wheels.

Let p, ¢ be the virtual velocities of the power P and weight @),
then Pp=(Qq. If the teeth E
are small the average velo-
cities of the points near C
on the two wheels are equal,
and the common direction is | Be
perpendicular to the straight
line AB. If then 8,, 8, are
the angles turned through by
the wheels when the power
P receives a small displace-
ment, we have 4,0, =0,0,. But p=>5,6,, g=a,0,. It follows that
_%= 21-22 . We have here omitted the work lost in overcoming
i ]

the friction at the teeth in contact and at the points of support.

545. Let a tooth on one wheel touch the corresponding tooth on the other in
some point D, and let FDJF be a common normal to the two surfaces in contact at
D. The point D is not marked in the figure because the teeth are not fully drawn,
but it is necessarily situated near ¢. The aetual velocities of the points of the teeth
in contact at D when resolved in the direction EDF are equal. If, then, h and k
are the perpendiculars drawn from A, B on EDF, it is clear that 6=,k As the
wheels turn, the lengths  and % alter, and if the ratio kfk is not constant, there
is more or less irregularity in the working of the machine. To correct this defect,
the teeth are sometimes cut so that the normal at every point of the boun@aliy
of a tooth is a tangent to the circle to which the tooth is attached. When this is
done, the line EDF is always a common tangent to the two circles. The ratio hfk
is therefore constant throughout the motion and equal to the ratio of the radii of
the circles. One cause of irregularity will thus be removed and the motion will be
made more uniform. This method is commonly ascribed to Euler.

If the normal at every point of the surface of a tooth is a ta.ng:ent to a circle,
each of the two halves of that tooth is bounded by an are of an involute of the

94
R T 24
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circle. The two involutes are unwrapped from the cirele in opposite directions and
portions of each form the sides of the tooth.

When the centres of the toothed wheels are given, and the ratio of the angular
velocities at which they are to work, we may determine their radii in the following
manner. Let 4, B be the given centres; divide 4B in C so that 4C.6,=BC.46,.
Through ¢ draw a straight line ECF, which should not deviate very much from a
perpendicular to 4B. With 4 and B as centres deseribe two cireles touching the
straight line ZCF. The sides of the teeth are to be involutes of these ecircles. By
this construction the common normal to two teeth pressing against each other at D
is the straight line ECF. As the wheels turn round, and the teeth move with them,
the point of contact D travels along the fixed straight line ECF. The perpen-
diculars i and % are equal to the radii of these circles and are constant during the
motion. Their ratio also is evidently equal to the ratio of AC to BC, Le, of
6, to 6,.

It has already been shown that Pp=@Qq, and p=0,6,, g=dyf,. Since 8 h=46,k,
we find as before 2= Y1l

P oma,

We may notice that, if the distance between the centres 4 and B is slightly
altered, the pair of wheels will continue to work without irregularity and the ratio
of the angular velocities will be the same as before. To prove this, we observe that
the common normal to fwo teeth pressing against each other is still a common
tangent to the two circles, though in their displaced positions. Thus, though the
inclination to AB of the straight line ECF is altered, the lengths of the perpen-
dienlars h and % are the same as before.

That the teeth should be made of the proper form is a matter of importance
to the even working of the machine. Many other considerations enter into the
theory besides that mentioned above, Thus defects may arise from the wearing of
the teeth if the pressure be very great at the point of contact. Theres may also be
jolts and jars when the teeth meet or separate. But the subject is too large to be
treated of in a division of a chapter. The reader who is interested in this matter
is referred to books on the principles of mechanism. In Willis’ Principles of
Mechanism (2nd edition, 1870) five different methods of constraeting the teeth are
described, in three of which epieycloids are used ; the advantages and disadvantages
of these constructions are also compared.

546. Ex. 1. In a train of n wheels, the teeth on the axle of each wheel work
on those on the circumference of the next in order. Show that the power and

weight are connected by the relation Q: O304 by
2 Taag. .,

of the axles and b, b, &e. those of the wheels.

s where ay, a, &e. are the radii

Ex. 2. In a pair of toothed wheels show that, if the ratio of the power and
weight is to be approximately constant, the height and breadth of the teeth must
both be small relatively to the radius of each wheel.

Two equal and similar wheels, with straight narrow radial teeth, are started
with a tooth of each in contact and in the same straight line; show that they will
work together without locking, provided that the distance of their centres be
greater than 2 cos 2r(n and less than 2a cos m[n, where a is the radius of either wheel
measured to the summit of a tooth, and n the number of teeth, [Math. T., 1872.]

Ex. 3. Investigate the relation QIP=0byJasa, for a pair of toothed wheels
without using the prineiple of virtual work.

ART. 548.] THE WEDGE. 371

The reaction R between two teeth acts along the straight line EDF. Taking
moments in turn about 4 and B, we have Pb,=Rh, Qua,=RE. As before, we have
when the teeth are small hj{k=a,(b,. The result follows at once.

547. The Wedge. 1o find the relation between the power
and, the weight in the wedge. :

Let M, NV be two obstacles which it is intended to separate by
inserting a wedge 4 BC between them. For the sake of distinctness
these obstacles are represented in
the figure by two equal boxes
placed on the floor, but it is ob- N
vious they may be of any kind.

We shall suppose that the
wedge used is isosceles, and that
it has its median line OV vertical. ¢
Let the angle ACB be 2a. Let '
D, E be the points of contact with the obstacles (not marked in
the figure), R, R the normal reactions at these poin!;s, F, I the
frictions. When the wedge is on the point of motion we have
F = R tane, where tan ¢ is the coefficient of friction.

Let P be a force acting vertically at N urging the wedge
downwards. Supposing P to prevail, the frictions on the wedge
act along CA, OB; we therefore find by resolving vertically

P =2R (sin a + tan e cos @) = 2R sin (2 + ¢) sec &.
The resultant reaction R’ at D is then found by compounding
R and pR.

If the obstacle M can only move horizontally, the whole of the
reaction R’ is not effective in producing motion. The horizontal
component of R’ tends to move M, but the vertical‘ component
presses the box on the floor and possibly tends to increase the
limiting friction between the box and the floor. Let X be the
horizontal component of I’; we find

X=Rcosa—Rtane.sina= R cos(a+¢)sece
The mechanical advantage X/P is therefore equal to § cot (x+ €).

548, It may be noticed that the mechanical advantage of ‘the wedge is
increased by making the angle « more and more acute. There is of course a
practical limit to the acuteness of this angle, for that degree of shal‘Pm":’SS only
can be given to the wedge which is consistent with the strength reguired for

» ich it i lied.
the;iis:sp:gs ‘:?::d:;sls\iv:omiir z:ll)eat?on knives, hatchets, chisels, nails, pins, &e.

Geenerally speaking, wedges are used when a large power can. be eferted through a
small space. This force is usually applied in the form of an impulse.

J.V M
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It has not been considered necessary to consider separately the case in which
the wedge is smooth, as the results obtained on so erroneous a supposition have no
practical bearing.

549. If the force is applied in the form of a blow so that the
wedge is driven forwards between the obstacles, the problem to
determine its motion is properly one in dynamics. Our object
here is merely to find the conditions of equilibrium of a triangular
body inserted between two rough obstacles and acted on by a
force P.

When a series of blows is applied to the wedge, we may
however enquire what happens in the interval between two
impulses. The wedge may either stick fast, held by the friction,
or begin to return to its original position, being pressed back by
the elasticity of the materials, Assuming that these forces of
restitution may be represented by two equal pressures R, R,
acting on the sides of the wedge, let P, be the force necessary
to hold the wedge in position. The friction now acts to assist
the power. To determine P, we write —e for ¢ in the equations
of equilibrinm. We therefore have

P,=2Rsin (2 —¢)sece.

If o is greater than e, P, is positive and therefore some force is
necessary to hold the wedge in position. If « is less than e, P,
1s negative, thus the friction is more than sufficient to hold the
wedge fast. A force equal to this value of P, with the sign
changed is necessary to pull the wedge out. The result is that
the wedge will stick fast or come out according as the angle ACB
is less or greater than twice the angle of friction.

Ex, 1. Referring to the figure of Art. 547, show that if either of the equal
angles 4 or B of the wedge is less than the angle of friction, no force P however
great could separate the obstacles I, N,

It the angle 4 is less than e, we find that o+ ¢ is greater than a right angle, and
therefore that X is negative. It is easy also fo see that, if the angle 4 is equal to e,
the resultant reaction between one side of the wedge and an obstacle is vertical.
The wedge therefore merely presses the obstacle against the floor.

Ex. 2. If the obstacles M, N are nof of the same altitude and are unequally
rough, the position of the wedge when in equilibrium is such that the force P, and
the resultant actions Ry, R, across the faces meet in a point. Supposing the force
P, to act perpendicularly to the face AB of the wedge and to be just sufficient to

Do _ R __ B’
sin (2a—e —¢;) cos(a—¢) cos(a—e)’
the obstacles to be of such form that the wedge must slip at both simultaneously.
Show also that, if the wedge be such that the angle C is less than the sum of the

hold the wedge at rest, show that

assuming

T
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angles e, + e,, the wedge can be Leld fast by the frictions without the application of
any force.

Ex. 3. Deduce from the principle of virtual work the relation between the
force X and the power P in a smooth isosceles wedge as represented in the figure
of Art. 547. Discuss the two cases in which (1) one obstacle iz immovable and
(2) both move equally when the wedge makes an actual displacement.

550. 'The Screw. 1 find the relation between the power and
the weight in the screw.

Let AB be a circular cylinder with a uniform projecting ridge
running round its surface, the
tangents to the directions of the
ridges making a constant angle
o with a plane perpendicular to
the axis of the cylinder. The
screw thus formed fits into a
hollow cylinder with a corre-
sponding groove on its internal
surface, in which the ridge works.
The grooves on the hollow cy-
linder have not been sketched,
but are included in the beam
EF.

The position of the ridge on the cylinder is easily understood by the following
construction. Let a sheet of paper be cut into the form of a right-angled triangle
LN, such that the altitude 37N is equal to the altitude of the eylinder 4B and the
angle the base LI/ makes with the hypothenuse LN is equal to «. Let this sheet of
paper be wrapped round the cylinder 4B; if the base LM is long enough to go
several times round the base of the cylinder, the hypothenuse will appear to wind
gradually round the cylinder. The line thus traced by the hypothenuse is the ecurve
along which the ridge lies.

Let P be the power applied perpendicularly at the end of
a lever CD. Let AC=a, and let b be the radius of the cylinder.
Supposing the body EF in which the screw works to be fixed
in space, the end B of the cylinder will be gradually moved as C
describes a circle round AB. Let Q be the force acting at B.

Let o be any small length of the screw which is in contact with
an equal length of the groove. Let Ro be the normal reaction
between these small arcs, pRo the friction.

In some screws the ridge is rectangular, so that it may be
regarded as generated by the motion of a small rectangle moving
round the cylinder with one side in contact with the surface and
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its plane passing through the axis. When the ridge has this form,
the line of action of R lies in the tangent plane to the cylinder and
its direction makes with the axis of the cylinder an angle equal to
a. In other screws the section of the ridge has some other form,
such, for example, as a triangle. In such cases the line of action
of R makes some angle € with the tangent plane to the cylinder.
We therefore resolve R into two components, one intersecting at
right angles the axis of the cylinder and the other lying in the
tangent plane. The magnitude of the latter is R cos @, and its
direction makes with the axis of the cylinder an angle equal to a.
Since the ridge is uniform the angle ¢ will be the same throughout
the length of the screw.

Let us suppose that the power P is about to prevail, then the
friction acts so as to oppose the power. Resolving parallel to the
axis of the cylinder and taking moments about it, we have

Q=3Ro.cosfcosa—2Reo.pusina,
Pa=3Ro.bcosOsina+3SRe. ubcosa,
Dividing one of these equations by the other we have
Q cosfcosa—psina a
P cosfsina+pcosa’ b’

551. If it be possible to neglect the friction and treat the screw as smooth we
put u=0. We then find for the mechanical advantage the expression (acota)/b.
If a point travelling along the ridge or thread of the screw make one complete
revolution of the cylinder, it advances parallel to the axis a space equal to the
distance & between the ridges. This distance is therefore h=2xbtan a. Substi-
tuting for tan a, we find that the mechanical advantage of a smooth serew is ¢/h,

where ¢ is the circumference deseribed by the power and /i is the distance between
two successive threads of the screw measured parallel to the axis,

552. We may easily deduce the relation between the power
and the weight in a smooth serew from the principle of virtual
work. When the power has turned the handle AC through a
complete circle, the screw and the attached weight have advanced
a space h equal to the distance between two threads of the screw
measured parallel to the axis. When therefore friction is neglected
and no work is otherwise lost in the machine, we have Pc=Qh,
where ¢ is the circumference of the circle described by P.

When the friction between the ridge and the groove is taken
account of we see by Art. 550 that the efficiency of the machine is
@Qh cosf —utana

given by o

e _+ ] e

- ___-;}__
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When the thread of the screw is rectangular the angle @ is
zero. In that case the expression for the efficiency takes the

simple form %—i = tan ?Ei—é)—, where e is the angle of friction.

If the weight @ is about to prevail over the power, we change
the signs of u and e in these formule.

553. Kx. 1. What force applied at the end of an arm 18 inches long will
produce a pressure of 1000 lbs. upon the head of a smooth serew when 11 turns
cause the head to advance two-thirds of an inch? [Trin, Coll,, 1884.]

Ex. 2. A screw with a rectangular thread passes into a fixed nut: show that
no foree applied to the end of the screw in the direction of its length will cause it
to turn in the nut, if the piteh of the serew is not greater than e, where ¢ is the
angle of friction. [Coll. Exam., 1878.]

Ex. 3. A rough screw has a rectangular thread: prove that the least amount of
work will be lost through friction when the pitch of the serew is 1 {m — 2¢), where €
is the angle of friction. [St John's Coll., 1889.]

Ex. 4. The vertical distance between two successive threads of a serew is b, its
radins is b, and the power acts perpendicnlarly to an arm a. If the thread be square
and of small section, and the friction of the thread only be faken into account,
show that if @ and I are given, the efficiency of the machine is a maximum when
97b = I tan (17 + Le), € being the limiting angle of friction. [Math. Tripos, 1867.]

Ex. 5. The axis 4B of a serew is fixed in space and the beam EF through
which the cylinder. passes is moveable. The power P, acting at the end of a lever
CD, tends fo turn the eylinder, while a force Q, acting on EF parallel to the axis
AB, tends to prevent motion, Show that the relation between P and @ is the same
as that given in Arf. 550.

Ex. 6. A weight is supported on a rough vertical screw with a rectangular
thread without the application of any power. If I be the length and b the radius
of the cylinder on which the thread lies, show that the screw has at least %egtb_e_

turns.



NOTE ON SOME THEOREMS IN CONICS REQUIRED
IN ARTS. 126, 127.

Tun following analytical proof of the two theorems in coniecs which are assumed
in these artieles requires a knowledge only of such elementary equations as those of
the normal or of the chord joining two points.

Let ¢, ¢’ be the eccentric angles of two points P, Q on the conie. Taking the
principal axes of the curve as the axes of coordinates, the equations of the normals
at these points are

£ £
_fa_"._v.__b?? =a?- D2, as L - T'Tﬂ?._’zu‘.’_b:)_
cos¢ sing cosg’  sing
The ordinate » of their intersection iz therefore given by
by _ _sink(p+¢)
a®= 12 " cos 4 (f— msm U e e (1).

The ordinate of the middle point of the chord PQ is
J=21b(sing+sing’)=bsin } (¢ + ¢') cos & (¢ - ¢'),
b q_ -singsing' cos’} (¢+¢)

Casuiy GOS‘-}(qb 51 em.-l(¢ ) T sy (2).
Again, the equation to the chord P@ is
Ewsif(¢'+¢’)+%Sin%(¢+¢'}—cos§(¢—¢'}=0 ............... (3).

If p, p’ and q are the perpendiculars on the chord from the foci and the centre,
we have the usual formula for the length of a perpendicular

oy’ _{cos}(p—¢)—ecos}(p+ @)} {eosd(p-¢)+ecosd (p+¢)}

¢ cos'] (p— )
It follows by an easy reduction that
(——1) o * . . "
¥ a q*

Tt is explained in the text that the corresponding form for £ is an inconvenient
one because the foci on the minor axis are imaginary, If the chord cut the axes in
L and 3, we find, from the equation to the ehord PQ given above, that

CL _cos}(p—g¢) C‘II _cos{p—g)
a cosk(p+g)’ Tsing (p+¢)
‘We have immediately from (2)

B e a? (£ CM?— b +a?
&’z(;—;‘l)- Ty E?(__l) mgEE {5).

The second follows from the first by changing the letters. These are the formule
used in Art. 126, Ex. 3. By introducing €I into the right-hand side of (1) we find

c;g————smnpsmqb, CL b:: cos ¢ cos ¢’ | wvevisae (O)s
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When the points P, @ coincide, & » become the coordinates of the centre of
curvature at P. We then deduce from (1) the well-known formuls

; ag
=zin? ¢, —E-i;é—:’—il—excossgﬁ e e

by
TaE—2
The coordinates T, 7 of the middle point G of the chord being given, the chord
itgelf iz determinate. The equation to the chord is

-7z _ (-DF_,,

a* 2
We then readily find the intercepts CL, CM. We deduce from (2) or (5)

- )( 7=
{az—b§§+1, %{L-’—"—i‘;f =

a® £ oy gt
{* m@“% {N % E
Let X, Y be the coordinates of the intersection T' of the tangents at P, @, then
-
T y (/1
because @ is the intersection of the straight line joining the origin to ' with the polar
line of 7. We easily find %, 7 in terms of X, ¥, and the equations (7) then become

7 _ (& bA}{X“_a} {___‘ﬂr’—bﬁ)_(_lf”_—b) e Tt
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which are the equations used in Avt. 127.

Ex.1. A uniform rod, whose ends are constrained to remain on a smooth
elliptic wire, is in equilibrium under the action of a centre of force situated in t.he
centre C and varying as the distance, see Art. 51. Show that the centre of gravity
G must be either in one of the axes or at a distance from the centre equal to

CR*[(a*+ b‘-’)%, where CR is the semidiameter drawn through G. Show that in the

latter case half the length of the rod is equal to CD‘-‘;’{&2+I;2)§‘ where CD is
conjugate to CR. Show also that the tangents at the extremities of the rod are at
right angles. Find the lengths of the shortest and longest rods which eould be in
equilibrium,

Ex. 2. One extremity of a string is tied to the middle point of a rod whose
extremities are constrained to lie on a smooth elliptic wire. If the string is pulled
in a direction perpendicular to the rod, show that there cannot be equilibrium
unless the rod is parallel to an axis of the curve.

Ex. 3. When the conic is a parabola, show that the equations (5), (8), (9)
take the simpler forms,

_ AR "y I 2
g o I Py
1= ( ) m~

a

. (8).

m m
e 21(:1
g:°§—dR+m=E+%+m = _A+m+ﬂ1,
where 4 is the vertex, R the intersection of the chord with the axis, 2m the latus
rectum, and the rest of the notation is the same as before. :

Ex. 4. Show that the length L of a chord, when expressed in terms of its focal
distances p, p’, is given by

oR: —? aﬂbg_ 5 P—P’)e
Lz-_a./\/l_‘.'::’ F—-b"}" 9 :

where R is the length of the semi-diameter parallel to the chord.
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Ex. 5. Two chords of a conie are drawn parallel to any two conjugate diame-
ters and touch a given confoeal. Show that the sum of their lengths is constant,

Ex. 6. If the normals at four points P, @, R, S meet in a point whose eo-
ordinates are (£, u), prove that the middle points of the six chords which join the
points P, @, R, S two and two lie on the conic

(a®- 1) (a®y* - V) + a®D? (w4 qy) =0.
This follows at once from (8).

Ex. 7. A heavy uniform rod is in equilibrium with both ends pressing against
the interior surface of a smooth ellipsoidal bowl. If one axis of the bowl is vertical,
show that the rod must lie in one of the principal planes.

The ellipsoid being referred to its axes, the normals at the extremities of the

2 2 2
rod are %(E—m}:é (??—'y)=% (£ =),

at W e ,
alE-a }—};;(ﬁ—?f)—;(i‘—z )-
1t is necessary for equilibrium that each of these should be satisfied by n=3% (y +v'),
{=%(z+2"). Bubstituting, we find that y'/y ==z'[z, unless either both the y's or both
the 2’8 are zero. Putting y'=py, 2'=pz, the equations become
2a* o s 2a? , e J1-p
—E-a)=Pp-1)=c*p-1), 7 (-o)=0? _—ch--P ;
Unless b2=¢?, these give p=1. It easily follows that y'=y, 2z'=z, 2’=x so that the
two ends of the rod coincide. As this is impossible, we must have either both the
y's or both the z’s equal to zero. The rod must therefore be in a principal plane.

END OF VOLUME I
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The numbers refer to the articles.

Anovrows. Experiments on frietion, 170.
AxcHor Ring, Surface and volume, 415. Centre of gravity of a portion, 425.
Anchor ring slides on an axis, 269.
AxnrtrceNTrRE. Defined, 460. Of a eircle and ellipse, &eo., 460.
ArcmmmepEs. Parallelogram of forces founded on the lever, 31,
Relation of sphere to the eirenmseribing eylinder, 420.
AREAL coorpiNaTES. Defined, 53, Ex. 2. Trilinear equation of the resultant of
any three forces acting along the sides of the triangle, 120. Central axis
in terms of the moments about and resolutes along the sides, 278, Ex. 8.
AsraTics. Equilibrium defined, 70. Astatie triangle, 71, 73. Centre defined, 72,
160. Central point of two forces, 74. Of any forces in a plane, 160,
Aroms. Equilibrium of four repelling atoms, 130.
Eelvin on the theory of Boscovich, 226. Two, three and four atoms in
various arrangements, 227.
Axtons. Newtfon’s laws of mofion, 13. Elementary statical axioms, 18, Other
axioms necessary, 148. Frictional axiom, 164. Axiom on elasticity, 489.
Axrs, See also CExtRan ax1s.  Of a couple, 97.
Friction between wheel and axis, 179.
Instantaneous axis always exists when a body moves in a plane, 180.
Axis of initial motion, 185, 188, &e.
Pressure on axis reduced to two forces, 268.
Axis of revolution and Pappus’ theorems, 413.
Barawer. Three requisifes of the common balance, 519, False balances and other
problems, 520. Roberval’s balance, used to weigh letters, 517.
Bary, Sz Rosenrr. The cylindroid, 287. Reciprocal screws, 294. The sexiant, 326.
The pitch conie, 288.
Bann, W. W, R. History of mathematies. Parallelogram of forces, 31. Catenary,
443 note.
Bespine covrLE. Defined, 142. Of a plank bridge, 144. Of a rod acted on by
forces shown graphically, 145. Heavy rod, 147, Ex. 1. Rotating wire, 147,
Ex. 2. Crane, 147, Ex. 5. Gipsy tripod, 147, Ex. 6. Rod under centre of
foree, 147, Ex, 7. Townsend’s theorem on a bridge, 147, Ex. 3. Found by
graphies, 362.
Berwourni. Discovers the catenary, 443, On the form of a sail, 458. String
acted on by a centre of force, 475.
Besaxt. On roulettes, 244.
Boxxer. The catenary of equal strength for a central force which varies as the
inverse distance, with a list of curves included, 477, Ex. 11.
Boonr, Envelope of an equilibrium locus, 224.
Boscovicr. Theory of atoms, 226.
Bow., BSystem of lettering reciprocal figures, 349.
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Carenary. Centre of gravity of are, with a geometrical construction, 399, 445.

The suspended chain, 443. Examples, 446. The parameter of a suspended
catenary found, 447, 448. Catenary with a heavy ring fixed or moveable, 448.
Examples on smooth pegs, festoons, endless strings, &e., 448,

Stability of equilibrium of a chain over two smooth pegs, 449.

Heterogeneous catenary, 460. The eycloidal chain, 461. Parabolie chain,
when roadway is light, 452. Catenary of equal strength, equation, centre of
gravity, span, d&ec., 453.

Examples. Chain partly in water, partly in air, 466. Heavy string on a
rough catenary, 469, 471. A heavy string fits a tube without pressure, if
cut find the pressure, 462. A heavy endless string hangs round a horizontal

cylinder, 462. The catenary is the only homogeneous curve such that the.

centre of gravity is vertically over the intersection of the tangents, 448, Tix. 24,

Stability of a heavy rod sliding on two catenaries, 243.

Spherical catenary, 482. Bee STRINGS.

Caleulus of variations, 488,

Cavrey. The six coordinates of a line, 260, On four forces in equilibrinm, 316.
Determinant of involution, 324.

Cenrran Axis, defined and found in terms of R, G, 270. Cartesian equation found
in terms of the six components, 273.

Central axis of forces 4;4,'; 4,4, ; &ec. 278, Ex. 6, 7. Central axis with
trilinear coordinates, 278, Ex. 8. Central axis of forces represented by the
sides of a tetrahedron, 278, Ex. 5. Central axis in tetrahedral eoordinates
in terms of forces along the edges, 339. Central axis of conjugate forces,
285, 309. Problems on central axis, 278, 283, 310.

CextrE oF Graviry. Definition, 51, 3874. Unique point, 375. Working rule, 52,
380; with examples, 382. Triangular area, 383; equivalent poinfs, 385;
perimeter, 386. Quadrilateral, 387 ; pentagonal area, trapezium, 388. Tetra-
hedron, 389; frustum, 391; faces and edges, 392; isosceles tetrahedron, 393;
double tetrahedra, 394. Pyramid and Cone, 390, 418.

Cireular are, 396 dc., other arcs and the curve 7 sin ng=a”, 399. Circu-
lar sectors, 400; quadrant, 401; segment, 402. Elliptic areas, 404; other
areas, 409, 412. Space bounded by four coaxials, 406; by four confocals, 412.

Pappus’ theorems, 413, &e., with extensions when axis does not lie in the
plane of the curve, 417,

Spherical surfaces, 420; hemisphere, segment, 423. Spherical triangle,
424. Spherical solid sector, segment, 426, 427. Ellipsoidal sectors &o., 428,
429. ILllipsoidal thin shells, both kinds, 430 ; also shell when the density
varies as the inverse cube of the distance from a point, 430, &c.

Any volume and surface, 431, The solid (z)“ + (%)“ + (;ﬂi)w=l, 434,
Octant of an ellipsoid when density is a%y™z", 434. Triangle of density x'y™,
434,

Lagrange’s two theorems, 436, 437. Franklin's extensions, 438.

Applications of the centre of gravity to pure geometry, 439.

CENTRE OF PARALLEL FORCES. Defined, 83; distinguishéd from the centre of
gravity, 373.

CENTROID, 51. See CENTRE OF GRAVITY.

CHaingrTE. See CATENARY, 443.

CHARACTERISTIC OF A PLANE. Defined, 314,

CHORDAL CONSTRUCTION OF MAPS, 421.

“'-h—fi

INDEX. 381

Crasnes. BRadius of eurvature of a roulette, 242,
Invariants of two systems of forces, 280.
Characteristic of a plane, 314.
Four forces in equilibrium, 316.
Circre. Least force to move a hoop, dise, &e. placed on a rough plane, 189,
Crarge. Principles of Graphic statics, 340 note.
Cravustus. Virial, 157.
CrEpscH. HExpresses the form of a heavy string on a sphere in elliptie integrals,
482 note.
CompoNENT. Defined, 40. In three dimensions, 257, 260.
The six components of a system of forces, 273, 276.
Coxg. Centre of gravity of volume, 390; of surface, 418 ; of cone on elliptic base, 419,
Cone of friction, 173.
Couple to furn a cone in a hole, 189, Ex. 12.
Conie. The relations of a chord to the normals at its extremities, 126 and note.
Conic of clozest contact, position found, 249.
Centre of inscribed and circumseribing conie, 440.
The pitch conic, 288.
CoxyuGATE FORCES AND LINES. A system ean he reduced to two forces, one line of
action arbitrary, 303; other elements arbitrary, 313. Self-conjugate lines,
306. Conjugate of a given line found, 308.
Arrangement of conjugate forces round the central axis, 309; arranged in
hyperboloids, 310; in planes, 311.
Theorems on conjugates, 312, 313. Two systems of forces with common
conjugate lines, 311.
CoXsERVATIVE 8YsTEM. Definition and fundamental theorem, 211. See also 479.
Coorpinates. Of a system defined, 206, 207.
The sixz coordinates of a line, 260.
Areal eoordinates, 53. Tetrahedral coordinates, 339.
CourLe. Poinsot’s theory of couples, 89, &e. Measure of couple, 96; axis, 97.
Laws of combination of forces and couples, 101. Tetrahedron of couples,
99. Any four axes being given, couples in equilibrium can be found, 99.
Forces represented by skew polygon are equivalent to a couple, 99.
Friction couple, 167. Least couple which can turn a table on a rough
floor; a cone in a rough circular hole; and ofher problems, 188, 189.
Minimum couple of a system of forces, 277.
Conroris. Invents the catenary of equal strength, after Gilbert, 453.
Courome. Experiments on friction, 170.
Cremoxa.  The polar plane of a system of forees, 298. Double lines, 306.
Reciprocal figures, 342.
CroFroN. On self-strained frames of six joints, 238,
Curmany.  Graphical staties, 340. Method of sections, 366.
Curris. Problem on two spheres in a paraboloid, 129.
Corve. Equilibrium of a particle on a smooth ecurve, 56, 59. Rough curve, 172,
174, Pressure, 58.
Centre of gravity, 398; the curve r*sin nf =a", 399.
String on a curve, 457, &ec.
Cyonom.  Centre of gravity of the arc, 399; of the aren, 412.
Cyecloidal catenary, the law of density, centre of gravity &e., 451,
Heavy string on a rough cycloid, 469.
Cyrixoproip, Defined, 287; the fundamental theorems, 289-291.
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Darpoux. Astatic equilibrium in two dimensions, 157, 162.
On the relation of four forces in equilibrium to a hyperboloid, 316.
DeroruatioN. Normal and abnormal deformations defined, 231. Abnormal defor-
mations lead to indeterminate reactions, 235.
De Morean. The polygon of maximum area, 133.
On Lagrange’s proof of virtual velocities, 256.
On the use of Jacobians in integration, 411.
Dinarapre, Framework defined, 231,
Directrix, Of a catenary, 443, Statical directrix of a heavy string on a smooth
curve, 460, Other cases, 482, 494, 500.
DoupLe Lives. Defined by Cremona, 306. See NUL LINES.
Duonaxza.  Proof of the parallelogram of forees, 27.
Dywame, Defined by Pliicker, 261. Relation to a wrench, 271.
Epny. Graphical statics, 340.
Erricievcy. Of a machine defined, 504. If a force P raise and P’ support a
weight, the efficiency is (P + P')/2P, 508.
Eristic srrixes. Hooke's law, 489, Heavy string (a) free, (b)) on an ineclined
plane, 492,
Work of stretching, 493. Various problems, 492, 493.
Heavy string on a smooth curve, temsion, pressure &e., 494, Light
string on a rough curve, 495. See ExpLEss sTrINGs, Various problems, 495.
General equations, 496.
Heavy string on various surfaces, 497,
String under central force, 498, 499.
Flastic catenary, equations, 500, geometrieal properties, 501, Ex. 2.
Erwrse. See Cowic. Centre of gravity of sector, segment, &e., 405; of the space
bounded by co-axials, 406 ; confoeals, 412; of the space between ellipse and
two tangents, 406.
Equilibrium of a rod in an ellipse, 126, 243.
Erpresorps. Centres of gravity of the two kinds of thin shells, 430. Centre of
gravity when the density varies as the cube of the distance from a point,
430. Centre of gravity of an octant, density «'ymz", 434.
Resultant of normal forees to an octant, 319.

ExprLess sthives.  Slipping of a band whieh works two wheels, 466, Ex. 5. Maxi-
mum tension when string is slightly extensible, 495, Ex. 5. Festoons, 466,
Ex. 10.

Strings which just fit a eurve, 472. Exzamples of a cirele, catenary,
cycloid, ellipse &e., 473.

Twisted cords, 495, Ex. 3.

Slipping of cords round pegs &o., 495, Ex. 4, &e.

Eouinierrua.  Of a particle, 45. Of a rigid body in two dimensions, 109. In three
dimensions, 259; problems on, 268.

Conditions deduced from the principle of wnrk 203. Altitude of the
centre of gravity a max-min, 218. Stability defined, 70, 75; of three forces,
77, 221; conditions of stability, 214, 220; of rocking stones, 244, &e.

Critical equilibrium, 246.

On the sufficiency of the six conditions, i.e. m moments and n resolutions
being zero, 331.

Condition of equilibrium found by Graphies, 353.

Condition that six wrenches of given pitches on six given axes ean be
in equilibrinm, i.e. sexiant, 326.
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Eyrer. Quadrilateral of jointed rods, not acted on by external forces, tightened
by strings, 132.

Relation between corners, faces and edges in a polyhedron, 351.
Form of the teeth of wheels, 545.

Ewixa. Experiments on friction, 170,

Frve rorees, Two straight lines can be drawn to cut five forces in equilibrium,
820, Invariant, Central axis &e., 323. Given the five lines of action, to find
the forces, 323, &e.

Freemine JExkiN, Practical use of reciprocal figures, 340.

Forcr, TIts characteristics, 5. Represented by a straight line, 7. How measured,
10, 16. Superposition, 15.

n forces act along the generators of a hyperboloid, 816, 817. =n forces
intersect two straight lines, 320, 323. Forces represented by the sides of a
skew polygon are equivalent to a couple, 103.

Forems ar A pornr. Resultant, 42, 44, 46, Conditions of equilibrium, 45, 49. A
force moved parallel to itself, 100.

Four Forcms. Their relations to (a) a skew quadrilateral, 103, 323 ; () a hyper-
boloid, 316; (c¢) a tetrahedron, 40, 318. Ceometrical proofs, 316; analytical,
317.

Conditions of equilibrium of four forces acting at a point, 40. Rankine’s
theorem on four parallel foreces in equilibrinm, 86,

Four forees acting along tangents to a conie, 120, Ex. 5, 317, Ex. 4.

The invariants, 316, 817, 323.

Griven the lines of action, to find the forces, 3186, 317.

Irer. Problem on the most stable position of the feet, 88.

Fourier. Proof of the principle of virtual work, 193.

Fraumwork. Defined, 160. The number of rods necessary to stiffen a framework,
151. The reactions are determinate in a simply stiff framework, 163. The
same deduced from the principle of work, 232; in an overstiff framework,
indeterminate, 155, 235. Problems on hexagons, tetrahedra, polygons &ec.,
234, Self-strained frameworks, 132, 238.

Reactions found by graphical methods, 363. Problems on graphical
statics, 372.

Frankniy, Extension of Lagrange’s two theorems on centres of gravity, 438.

Fricrion, Defined, 54; experiments, 164, 166 ; laws, 165; limiting friction, 165,
Coefficient and angle of friction, 166. Friction couple, 167. Cone, 173.

The two kinds of problems, 171, 181. Problems of the first kind, 176,
178, &e. The ladder, 177, 178. Tripos and College problems, 178. Wheel
and axle, 179, &e. The indeterminateness of frietion, 181, Limiting equi-
librium, 182.

Problems of the second kind, 182, &e. The least couple or foree which
can move a triangular table, a rod, a lamina, a hoop, a dise, a cone in a hole
and other bodies, 188, 189.

Two connected particles, 190; a string of n particles arranged in a cireular
are, 190, 487, Ex. 2,

Friction in three dimensions, 269. Examples, a rod over a wall, against
a wall ; spheres, curtain ring on a pole, cone rolling on a wall, 269.

Fuxicursr Porveon. For parallel forces, 140, 356. For forces not parallel, 353,
&e.  Theorems, 357-360.

Fuss. Polygon of jointed rods, 133, The parabolic catenary, 452. General
equations of equilibrium of a string, 455.
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Girserr. Invents the catenary of equal strength, 443, 463.

Gronio. Centre of gravity of a spherical triangle, 424; also of a solid generated by
a catenary, 424.

Goopwix, Harvey. Stability of a rod inside a spheroid, 126, 243.

Gramay, Graphic and Analytic statics, 340.

GreeNninn Axp DeEwar,  Construet a model of an algebraic spherical catenary, 482.

GrEGory. Solves the problem of the catenary, 443.

Gurpmy. Centre of gravity of 2n sides of a regular polygon, 397. Centre of gravity
of the area of a right cone, 418.

Guldin’s or Pappus’ theorems on surfaces of revolution, 413.

Hooxe. Law on elastic strings, 489.

HyrErnors. Relation of the theory of projection to the hyperbola, 408.

Hyeerporomn. Forces act along the generators, pitch, single resultant, central axis,
&a., 317.

Locus of principal force of a given system, 277.
Locus of conjugate forces, 310.

INCLINED FLANE. Smooth, 537; rough, 538; problems, 539.

INDETERMINATE. Problems so called, if the elementary laws of statics are in-
sufficient for their solution, 148. Additional laws derived from the elasticity
of bodies, 148, Examples of such problems, weight on a table, the gallows
problem, bars suspended by several sfrings, framework, &c., 149.

The reactions of a framework are not or are indeterminate according as
it is simply or over stiff, 153, 155, 235.

Indeterminate tensions, 237, 368. Indeterminate friction, 181.

Indeterminate multipliers, 213.

Indeterminate reciprocal figures, 351.

TNDEPENDENCE OF FORCES, Prineiple explained, 15.

INERTNESS OF MATTER. HExplained, 14.

INFINITE FORCES. 154, 198, 306.

Ixrrian motioN.  Of a body when acted on by a couple, 102.

Of a system is such that the initial work is positive, 200; and that the
potential energy decreases, 216.

Ixvariaxts. The two invariants defined, 279.

Meaning of the vanishing, 279. .

Chasgles’ invariants of two systems of forces, 280.

Rules to find the invariants of two forces, any number of forces, of
couples, of wrenches, 281, 282.

Invariant of forces acting along n generators of a hyperboloid, 317. Of
forces intersecting two directors, 323. Invariant of any forces along the
edges of a tetrahedron, 339.

Invorurios. Forces in involution defined, 325.

Forces along the edges of a tetrahedron are not in involution, 339.

Jiconran. The Jacobian condition of equilibrium of a particle on a curve, 59.

Applied to centre of gravity of an area, 411.

Jerzerr. Conditions of equilibrium of a string on a rough surface, 486.

Jouserr. Theorems on forces normal to every element of a surface, 319.

Karer. Treatise on mechanics, 502.

Kervin. Proof of the principle of virtual work, 199.

On atoms in equilibrium in Boscovich’s theory, 226.
Span of the catenary of equal strength, 453.
On Young's modulus, 490.

INDEX, 385

Lacraxce. Remarks on the parallelogram of forces, 31.
Method of indeterminate multipliers, 213.
Proof of the principle of virtual work, 255.
Two theorems on centre of gravity, 436, 437.

Larrace. Proof of the parallelogram of forees, 31.

Lararor.  Astatic equilibrium in two dimensions, 162. Critical equilibrinm, 246

Liaws or moTion. Newton's, 18. : .

Lzissrrz. Theorem on the mean centre, 51. Solves the problem of the eatenary, 443.

Lewxiscars.  Centre of gravity of the are AP lies in the bisector of the angle ‘:1 oP
399. The locus of the centre of gravity of an are of given length, 399. The‘
centre of gravity of half the area of either loop, 412, string 477.

Lever. Three kinds, 511. Conditions of equilibrium, 507, pressure, 508,

‘What is gained in power is lost in speed, 513.
Examples from animal economy, 515.

Levy. Statique Graphigue, on the reactions of frameworks, 150. His definitions
231. Theorem on indeterminate tensions of a frameworlk, 236, 368. Gmphicai
statics, 340. Theorems on the force polygon, 357.

Livrrise. Frietion, 165, equilibrium, 182.

Lock. Elementary staties, 41.

Macuise, Mechanical advantage defined, 502; lever, 512; pulley, 527, 532, &e.:
inclined plane, 537 ; wheel and axle, 540 ; wedge, 547 ; screw, 550, i

Mars. The two systems of equal areas and of similarity, 421.

Maxwenn. On stiff jointed frameworks, 150, 151.

Friction locus of a particle, 189.

If R be the thrust of a rod in a framework, r its length, ZRr found in
terms of the forces, 230.

Theorem on reeiprocal figures, 341, de.

Meax cENTRE. See also CENTRE oF araviry, Use of, in resolving and compounding
forces which meet at a point, 51. Also other forces, 120.

MiLye., Application of centre of gravity to pure geometry, 439,

Mixmua.,  Minimum method of solving frietion problems, 185.

The work is a max-min in equilibrium, 212.

Altitude of eentre of gravity a max-min, 218.

Minimum couple of forces in three dimensions, 277,

Minimum couples and forees to move a body, 188, 189. Minimum force
at one end to move (a) a string of particles, 190, and () a heavy string in a
cireular are on a rough floor, 487.

Mogrtvs. The polyhedron of couples, 99.

The nul plane, 298.

Four forees in equilibrium lie on a hyperboloid, 316.

Five forces intersect two directors, 320.

Six forces in equilibrinm, 324.

Mo:\mx:. Moment of a force defined in two dimensions, 113, in three dimensions,

63.
Proved equal to dW|dg where 1V is the work, 209.
Moment of a line in geometry, 265. Represented by the volume of a
tetrahedron, 266. By a determinant, 266, 267. In tetrahedral coordinates,
267, 339,
Morexo. The astatic triangle of forces, 71.
Definition of principal force, 257.
Monrucra. History of the Catenary, 443.

R, 8. 1.
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Moriy. Experiments on friction, 170.
Newron. Laws of motion, 13. Proof of the parallelogram of forces, 25.
NoruaL Forces. To a polygon, 133; to a tetrahedron, 318; to a polyhedron, 318; to
a closed surface, 819; to an octant of an ellipsoid, 319.
Nur. Nul plane defined, 298. Its Cartesian equation, 301. Its tetrahedral equa-
tion, 839. Theorems on the nul plane, 304.
The Cartesian condition that a given line is a nul line, 301. Nul point of
a given plane found geometrically and analytically, 302.
Oprique. Resolution of forces, 40. Axes, 50.
Pappus. The surface and volume of a solid of revolution deduced from a centre of
gravity sometimes ealled Guldin’s theorems, 413.
Pirapona. Centre of gravity of areas, bounded by an ordinate, 412; bounded by
four parabolas, 412, &ec. ;
Parabolic chain, tension, centre of gravity, &c., 452.
PanraineL rorces. Centre of parallel forces, 83, 373, Conditions of equilibrinm, 85.
A given force replaced by two parallel forces, 79; by three forces, 86.
Rankine on the equilibrium of four parallel forces, 86.
Theory of couples, 89.
PararrepirED oF rorces. Theorem, 39,
Psravrenoaran.  The parallelogram law, 7. Of velocities, 12. Of forces, 24.
Pexracow., Centre of gravity of a homogeneous pentagon, 388, Ex. 5.
Prren.  Defined, 271, Pitch of an equivalent wrench found, 273.
Priticerr., The six coordinates of a line, 260. A dyname, 261,
A proof of Moebins’ theorem, 316.
Porxsor. Theory of couples, 89.
Why some problems are indeterminate, 148.
Method of finding resultants, 104, 257.
Central axis, 270.
Poran praxe. Cremona’s polar plane defined, 298.
Sylvester’s defined, 325. Various theorems, 336, &c.
PorexTisn. Defined, 59. Potential energy, 211. Decreases in initial mofion, 216.
Porygon. The polygon of forces, 36. Forces at the corners, 37. Forces perpen-
dienlar to the sides, 87. TForces wholly represented by the sides make a
couple, 103, Ex. 6. TForces proportional to the sides at an angle # and
dividing the sides in a given ratio, 103, Ex. 9. Forees which join the corners
of two positions of the same polygon, 120, Ex. 6.
Polygon of heavy rods, 134, Subsidiary polygon, 139.
On the number of conditions necessary to determine a polygon, 152.
Povrvueprow, Polyhedron of forces, 47, 318.
Tuler’s relation between the number of corners, faces and edges, 351.
Reciprocal polyhedra, 341, 351.
Centre of gravity of polyhedron cireumseribing a sphere, 392, Ex, 5.
Prarr, Treatise on Mechanical Philosophy, 502.
Purey. Single pulley, 527. Systems with one rope, 529; several ropes, two
cases, 532. Problems, 535.
Pressune, See Rmacrrons. Pressure of a particle on curves and surfaces, 58, 175.
Of a body on the supports, 87, 88.
Pressure found by graphical method, 361.
Line of pressure, 369. Various theorems, 370, &e.
Prixcipal ForcE, DMoigno's definition, 257.
Prrverran courni.  Of a system at any point defined, 257. See NUL PLANE,

INDEX. 387

Proprens. Rules for resolving and taking moments in the solution of problems,
121, &e. ’
Prosecrion. Centre of gravity of the projection of an area, 403.
Working rule to project figures, 403.
Analytical aspect of projections, 407.
Pyrawin. Centre of gravity of the volume, 390.
The five equivalent points of a pyramid on a quadrilateral base, 395.
QuapBILATERAL, Jointed with attracting particles at the corners, 130. 'With various
strings, 132.
Centre of gravity when uniform, 387, 388. When heterogeneous, 434.
Some geometrical theorems deduced from statics, 439, 441.
Forces along the sides of a skew quadrilateral are not in equilibrium, form
a couple or single resultant, 103. Their invariant, 323.
Raxkrye.  Equilibrium of four parallel forces, 86.
Foree diagram, 140.
Moment of flexure or bending stress, 142.
Graphical statics, 3¢0.
Rescrions. Three rules (1) when two smooth rods press, 126; (2) when two rods
are jointed, (a) line of symmetry, (b) one rod not acted on by a force, 131,
(¢) when more than two rods meet at the same point, 132; (3) when two rods
ave rigidly connected the reaction is a force and a couple, 142, 143.
Jointed quadrilaterals tightened up by various strings, 132.
Jointed polygons acted on by normal forces, 133. Reactions at the joints
of a polygon of heavy rods, 134, Varions problems on reactions at
joints, 141.
Bending moment, 142. Weight cn a light plank bridge, 144. Diagram
of stress for a rod acted on by forces at isolated points, 145. Weight on a
heavy bridge, 147, Ex. 1. Bending moment for a rotating semicircular wire,
147, Ex. 2. Townsend’s problem on a bridge, 147, &e.
Principle of work used to find reactions at the joints of a hexagon, tetra-
hedron, thombus, tripods, &c., 234
Reactions in three dimensions, at an axis, pressures, joints, &e., 268.
Reactions found by graphics, 361, 363, &c.
n spheres in a eylinder, 129.
RECIPROCAT TIGURES. Defined, 340. Maxwell’s theorem, 341; (Cremona’s, 3¢2. To
draw reciprocal figures, 343, 350. Mechanical property, 346.
Rusorure. Defined, 41. Equal to dW/[ds where TV is the work, 209.
Resorvrion. Defined, 40. Resolved part or resolute, 41.
Three methods of oblique resolution, 40.
Use of the mean centre, 51.
Resolution in three dimensions, 260.
Along three lines by a tetrahedron, 53, Kx. 3.
Along six lines in space, 329.
Graphical method, 360.
Resynrast. Resultant force defined, 22. Torces in a straight line, 23; at @
point, 42.
Method of the mean centre, 51. With an extension, 53, Ex. 4,
Parallel forces, 78, 80.
Single resultant in two dimensions, 118, A trilinear equation, 120.
Resultant force and couple in three dimensions, 257. Single resultant, 274.
Resultant found by a graphical method, 352.
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Ruyrorps, Osnonxe, Experiments on frietion, 170.

Ricip ooy, Defined, 19. Rigidity of cords, 531.

Rovrrrs, R. A.  Theorem on the centre of gravity of the are of a lemniscate, 399.

Romrrvan. Method of finding envelopes, 242.

Balance, 517.
Rocrmxe nopies,  Condition of stability, 244. '
Hollow bodies with fluid, 245.
Second approximations, 247, 249.
In three dimensions, 251.

Ropo. Heavy rod in a bowl and cylinder, 125. In a spheroid, 126, 243. Two rods
support an ellipse, 127. Jointed light rods forming quadrilaterals and
polygons, 181—133. Jointed heavy rods, 132,  Friction problems, 178.

Bending couple due to a weight, 142, 144, &ec.

Various problems, 141, 149. Stability, 221, &c.

Tod on rough wall in three dimensions, 269.

Pressure on supports of a rod found by graphics, 361. Stress at any
point, 362.

Samn.  Can a boat sail quicker than the wind? 53, Ex. 10. Form of a sail acted on
by the wind and its best position, 458.

Sararon.  The relation between the inclinations of any four lines in space, 48.

A leading theorem on determinants quoted, 49,

On rounlettes, 244.

On the six coordinates of a line, 260.

Generalization of a theorem on the relations of a c¢hord of a conic to the
two normals, 126 and note.

Scorr, R, F. Treatise on determinants, 267.

Screws. See also WrencH. Piteh defined, 271. Right and left handed, 272.

Work of a wrench on a serew, 292.

leciproecal screws, 294,

As a machine defined, 550. Mechanical advantage, 550. Various theorems,
551.

SHEAR., Defined, 142.

Six rorcEs. Analytical view, 324. Geometrical view, 334.

Two methods of deseribing the sixth line (a) as a plane locus, (b) as the
nul line of two fixed forces, 334.

Only one way in gemeral of reducing a system to six forces along given
straight lines, 329. !

The case of involution, 328. '

On the ratio of P, to Py and other theorems, 336. See also Equinibrrvar

On six forces along the edges of a tetrahedron, 339. See also TETRAHEDROX.

Sarre, R H. On graphies quoted, 364,

SuoorE popy. Defined, 54. Reactions, 55. |

Srorrswoonr. The determinant of involution, 327. |

Stapmrary.  Defined, 70, 76. Of two forces, 76. Of three forces, 77, 221. Resolute |
of restitution for a particle on a surface, 77.

Deduced from the prineiple of work, 214.

Analytical rule when gravity is the only force, 220. Geometrical rule, 239.

Alternation of stable and unstable positions, 219.

Stability of a body when two points are constrained to slide on eurves,
222. When two rods slide, 225.

Various problems on stability, 223. l

INDEX. 389

Sraproity. Cirele of stability in rocking bodies, 244, 251. Stability of neutral
equilibrium determined by second approximations, 247.

Stability of a heavy string suspended from two points, 447; over two
pegs, 449. Of a free string on a sphere, 482,

Srarics. Defined as one ease of mechanies, 1. As the science of force, 21.

SrEeryarp.  (a) Roman, 521, (b) Danish, 522. Comparison of a steelyard and a
balance, 523. Problems on steelyards, 524. i

STEREOGRAPIIC PROJECTION, On the prineciple of similitude in Maps, 421.

SteEviNvs. Enuneiates the triangle of forees, 31.

StreEss. Defined, 142, See BENDING COUPLE.

SrriNe., See Carexary, Brasric striNgs, EXDLESS STRINGS.

Tension of a light string unaltered by passing over a smooth surface, 197.

Intrinsic equations of equilibrium, 454¢. Cartesian form, 455. Polar, 456.

Constrained by a curve, four eases, (a) string light, curve smooth, 457,
(D) string heavy, eurve smooth, 469, (¢) string light, eurve rongh, 463,
() string heavy, curve rough, 467, &e.

String with normal forces, 458.

The statical directrix, 460. Heavy string on a civele with hanging ends
and a catenary, 462,

Methods of integration in ease (d), 468, 469.

Rope wound round thin rough posts and pegs, 466.

One centre of force, 474, 476, Force when the curve is a cirele, Ex. 2, the
eurve 1"=qa"cosnd, Ex, 3; infinite strings, Ex. 4, &c.; force the inverse
square, Ex. 6; catenary of equal strength when the force varies as the
inverse distance, Ex. 11; dynamic curves, Ex. 12.

Two centres of force, 477. The lemniscate, Ex. 2,

Constrained by a surface. General equation, 478. Geodesic sirings, 480.
Inflexional points, 480.

Solid of revolution, 481.

Spherical catenary form, tension, pressure, 482. Case of one end free,
cease when directrix plane passes through the centre of the sphere, &ec., 482.
Instability, 482.

Cylindrical surface, if smooth and vertical the string when developed is a
catenary, 483; if rough, Ex. 3. Examples on a horizontal eylinder, 483.

Coniecal surface with centre of forece at the vertex, 484.

Rough surfaces, general equation, 485, (Geodesics, 485. Helix, 487.

Minimwm force to move a cirenlar heavy string on a rough horizontal
plane, 487.

Caleulus of variations. A string (a) suspended from two peints, (b) on a
surface under any forces, 488.

SUPERPOSITION OF FORCES. A principle of staties, 15.
Surrace. Particle on a smooth surface in equilibrium, 57.  On a rough surface, 175.

Resultant of normal forces, 319.

Suseession,  Of a heavy body, with examples on triangles, rods, cones, &e., 87.

Of a polygon of heavy rods, 134.

Of a heavy string, 447.

SUSPENSION BRIDGE, See CaTENARY. When the main chain alone is heavy, 443.

When the roadway alone is heavy, 452.

When the vertical rods are heavy, 452. Other problems, 452. i ;

SyrvEsTER. On the equilibrium of six forces, 324. The determinant of involution,
325,
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TeExpENCY To pREsK. Defined, 142, see BENDING COUPLE,

Texston. Of a rod defined, 142; of a string, 442. See FRaMEWORKS AND STRINGS.

A bundle of heavy horizontal eylinders tied by a string, 129, Ex. 7.

Terrameprox,  Used in two ways to resolve forces (a) by sines of angles, 40, (b) by
the mean centre of the baze, 53, Ex. 3.

Volume found, 266 ; used to measure moments, 266, 267.

Any six forces along edges are not in involution, 339.

Central axis of the forces represented by the six sides, 278.

Forees referrved to tetrahedral coordinates, 267, 339.

Relation of four forces (a) acting at the corners perpendicularly to the
opposite faces, (b) at the centres of gravity of the faces, (¢) at middle points
of the edges, 318.

Centre of gravity of the volume, 389; frmstum, 391; double tetrahedra,
394; faces and edges, 392; heterogeneous, 434.

The isozceles tetrahedron, 393,

Geometrical theorems deduced from the centre of gravity, 439.

Troumsox axp Tarr, see Ksnvin.  Proof of the prineiple of virtual work, 199,

THREE Forces, see TriaxeLe. A system reduced to three forces acting at the
corners of an arbitrary triangle, (a) in two dimensions, 120, (b) in three
dimensions, 315.

Parallel forees reduced to three, 86.

Trrusts. Defined, 364, see 'rayMEwoRks,

Ties, Defined, 364, see I'RAMEWORKS.

TooTHEP WHEELS. Small teeth, 54¢. Involute of a circle, 545; effect of sepa-
rating the wheels, 545. Epicycloidal teeth, 545. Problems, locking of
teeth, dc. 546.

TowxsseExp. Bending moment of a bridge with a carriage of finite size, 147.

Relation between the equilibrium of a string and the free motion of a
particle, 476.

TRANSMISSIBILITY OF YoRrcE. A principle of statics, 17.

Transox. Radius of eurvature of a roulette, 242,

Trarezivar. Centre of gravity of the area, 388.

Triavere. Triangle of forees, 32, &e.; theorems, 103; astatic triangle, 73.

A heavy triangle suspended by strings and in other ways, 87.

A system of forces reduced to three along the sides of an arbitrary
triangle, 120, A system in three dimensions reduced to forces at the
corners, 315,

The least couple to move a triangular table on a rough floor, 188.

Centre of gravity of area, 883; various equivalent points, 385; perimeter,
386 ; heterogeneous density afy™z», 434,

Greometrical property of the product of the alternate segments of points
on the sides, 132. Centre of the nine points circle and the orthocentre found
by centre of gravity, 440.

Two roRcus, see CONJUGATE ¥oRcES. A system reduced to two forces (a) in two
dimensions acting at arbitrary points, 120, (b) in three dimensions with one
line of action arbitrary, 303, &c. 313.

Uxrrs. Various kinds, 11.

Vanienox. On the transformation of forces, 116.

Vexroronr, Contradicts Montucla's assertion about Galileo, 443.

Vivce, Experiments on frietion, 170.

VIRTUAL VELOCITIES, see WORK.,

INDEX. 391

Warnnis, Centre of gravity of a circular are, 396.
area, 412.
Warroy. Centre of gravity of a spherical triangle, 424. Of the space between a
parabola and two tangents, 412. Of the lemniscate, 399,
WARREN GIRDER, Problem on, 372,
Warson. Problems of the reacfi.ons of the legs of a table supporting a weight, 149.
On a case of neutral equilibrium, 88,
Wepee, Defined, 547 ; mechanical advantage, 548. Condition that a wedge stays
in when struck, 549,
WuerL axp axie. Mechanical advantage, 540 ; differential axle, 541. Problems
on the wheel and axle, 542,
Friction between wheel and axle, 179.
Work required to turn the wheel when the string is elastie, 493, Ex. 2.
Wuite, A system of pulleys invented to diminish friction &e., 530.
Wirnis, His principles of mechanism, 502. On the form of toothed wheels, 545.
Wonk., Defined, 62 ; equilibrinm of a particle, 66 ; rings on elliptic wires, &e., 69.
Proof of the general principle, after Fourier, 194, 195. The converse
after Thomson and Tait, 199. Work of forces equal to that of resultants,
194, List of forces which do not appear, 196,
Work of a bent elastic string, 197, 493.
Method of using the principle, 202, examples, semicircle, rods, &e., 205,
Work function defined, 208; stability deduced, 214; application to
frameworks, 229.
Lagrange’s proof of virtnal veloeities, 255.
Weexcn, Defined, 271, See CENTRAL AXIs,
Equivalent wrench (a) when R and G are given, 270, (b) when system is
given by its six components, 273, (¢) when the system is two wrenches, 285,
{d) when the system is two forces, 284.
Method of compounding wrenches by the cylindroid, 287.
Problems on wrenches, 278,
The work of a wrench, 292.
Condition of equilibrium of six wrenches, the sexiant, 326.
Used by Cremona for reciprocation, 342.
Youxo., Modulus of elastie strings, 490.

Cirenlar sector, 400, Cycloidal
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