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PREFACE TO THE FIRST EDITION.
THE present volume is not a treatise upon the ap-

plication of the principles of mechanics. Its aim is
to clear up ideas, expose the real significance of the
matter, and get rid of metaphysical obscurities. The
little mathematics it contains is merely secondary to
this purpose.

Mechanics will here be treated, not as a branch of
mathematics, but as one of the physical sciences. If
the reader’s interest is in that side of the subject, if he
is curious to know how the principles of mechanics
have been ascertained, from what sources they take
their origin, and how far they can be regarded as per-

manent acquisitions, he will find, I hope, in these
pages some enlightenment. All this, the positive and
physical essence of mechanics, which makes its chief
and highest interest for a student of nature, is in exist-
ing treatises completely buried and concealed beneath
a mass of technical considerations.

The gist and kernel of mechanical ideas has in al-
most every case grown up in the investigation of very
simple and special cases of mechanical processes ; and
the analysis of the history of the discussions concern-

THE SCIENCE OF MECHANICS
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ing these ca^the most eff (Æ
gist and kerne
say that it is the only way in which a real comprehen -
sion of the general upshot of mechanics is to be at -
tained.

ethod at onci

jpFfor laying thi:
not too much t(

I have framed my exposition of the subject agree-
ably to these views. It is perhaps a little long, but
the other hand, I trust that it is clear. I have not in
every case been able to avoid the use of the abbrevi-
ated and precise terminology of mathematics. To do
so would have been to sacrifice matter to form; for the
language of everyday life has not yet grown to be suf -
ficiently accurate for the purposes of so exact a science
as mechanics.

The elucidations which I here offer

AUTHOR’S PREFACE TO THE TRANS-
LATION. , on

Having read the proofs of the present translation
of my work, Die Mechanik in ihrer Entwickclung, I can

testify that the publishers have supplied an excellent,
accurate, and faithful rendering of it, as their previous
translations of essays of mine gave me every reason to

My thanks are due to all concerned, andexpect.
especially to Mr. McCormack, whose intelligent care

in the conduct of the translation has led to the dis-
are, in part,

substantially contained in my treatise, Die Geschichte
and die Wurzel des Satzes von der Erhaltung der Arbeit
(Prague, Calve, 1872). At a later date nearly the

covery of many errors, heretofore overlooked. I may,
thus, confidently hope, that the rise and growth of the

ideas of the great inquirers, which it was
portray, will appear to my new public in distinct and
sharp outlines.

PRAGUE, April 8th, 1893.

same
views were expressed by KIRUHHOFF (Vorlesungen über
mathematische Physik: Mechanik, Leipsic, 1874) and by
HELMHOLTZ ( Die Thatsaclien in der Wahrnehmung,
Berlin, 1879), and have since become commonplace
enough. Still the matter, as I conceive it, does not
seem to have been exhausted, and I cannot deem my
exposition to be at all superfluous.

In my fundamental conception of the nature of sci-
as Economy of Thought,— a view which I in-

dicated both in the treatise above cited and in my

my task to

E. MACH.

ence

""•"mv



PREFACE TO THE FIRST EDITION.

pamphlet, Die Gestalten dcr Fliissigkeit (Prague, Calve, A

1872), and which I somewhat more extensively develJ|
oped in my academical memorial address, Die okono-
viische Natur dcr physikalischen Forschimg (Vienna, Ge-
rold, 1882, — 1 no longer stand alone. I have been
much gratified to find closely allied ideas developed,
in an original manner, by Dr. R. AVENARIUS (.Philoso-
phie aIs Denizen dcr Well, geviàss dnn Princip des klein-
sten Kraftmaasses, Leipsic, Fues, 1876). Regard for
the true endeavor of philosophy, that of guiding into
one common stream the many rills of knowledge, will
not be found wanting in my work, although it takes a
determined stand against the encroachments of meta-
physical methods.

The questions here dealt with have occupied me
since my earliest youth, when my interest for them was
powerfully stimulated by the beautiful introductions of
LAGRANGE to the chapters of his Analytic Mechanics, as
well as by the lucid and lively tract of JOLLY, Principien
der Mechanik (Stuttgart, 1852). If DUEHRING S esti-
mable work, Kritische Geschichte der Principien der Me-
chanik (Berlin, 1873), did not particularly influence
me, it was that at the time of its appearance, my ideas
had been not only substantially worked out, but actually
published. Nevertheless, the reader will, at least on
the destructive side, find many points of agreement

I between Diihring’s criticisms and those here expressed.
new apparatus for the illustration of the sub-

ject, here figured and described, were designed entirely

TRANSLATOR’S PREFACE.

The Open Court Publishing Company has acquired
the sole right of English translation of this work,
which in its German original formed a volume of
the Internationale wissenschaftliche Bibliothek, of F. A.

Brockhaus, of Leipsic.
In the reproduction, many textual errors and ir-

regularities have been corrected, marginal titles have
been inserted, and the index has been amplified. It
is believed that the usefulness of the book has thus
been increased.

No pains have been spared to render the author’s
meaning clearly and faithfully. In this, it has often
been necessary to depart widely from the form of the
original, but never, it is hoped, from its spirit.

The thanks of the translator are due to Mr. C. S.
Peirce, well known for his studies both of analytical
mechanics and of the history and logic of physics, for
numerous suggestions and notes. Mr. Peirce has read
all the proofs and has rewritten § 8 in the chapter on
Units and Measures, where the original was inappli-
cable to this country and slightly out of date.

THOMAS J. MCCORMACK.

The

SIBÉLA SALLE, III. , June 28, 1893. - infill-' in
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by me and constructed by Mr. F. Hajek, the mechani-
cian of the physical institute under my control.

In less immediate connection with the text stand
the fac-simile reproductions of old originals in mypos-

The quaint and naïve traits of the great in-
quirers, which find in them their expression, have al-
ways exerted upon me a refreshing influence in my
studies, and I have desired that my readers should
share this pleasure with me.

session.
PREFACE TO THE SECOND EDITION.

IN consequence of the kind reception which this
book has met with, a very large edition has been ex-

hausted in less than five years. This circumstance and
the treatises that have since then appeared of E. Wohl-

will, H. Streintz, L. Lange, J. Epstein, F. A. Midler,
J. Popper, G. Helm, M. Planck, F. Poske, and others
are evidence of the gratifying fact that at the present
day questions relating to the theory of cognition are
pursued with interest, which twenty years ago scarcely
anybody noticed.

As a thoroughgoing revision of my work did not
yet seem to me to be expedient, I have restricted my-
self , so far as the text is concerned, to the correction
of typographical errors, and have referred to the works
that have appeared since its original publication, as
ar as possible, in a few appendices.

E. MACH.
PRAGUE, May, 1883.

E. MACH.
PRAGUE, June, 1888.
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INTRODUCTION.
4

i. THAT branch of physics which is at once the old- Thescience
of mechan-est and the simplest and which is therefore treated ics.

as introductory to other departments of this science,
is concerned with the motions and equilibrium of

It bears the name of mechanics.masses.
2. The history of the development of mechanics,

is quite indispensable to a full comprehension of the
science in its present condition. It also affords a sim-
ple and instructive example of the processes by which
natural science generally is developed.

An instinctive, irreflective knowledge of the processes instinctive
knowledge .

of nature will doubtless always precede the scientific,
conscious apprehension, or investigation, of phenom-

The former is the outcome of the relation inena.
, which the processes of nature stand to the satisfac-

tion of our wants. The acquisition of the most ele-
j mentary truth does not devolve upon the individual

alone : it is pre-effected in the development of the race.
In point of fact, it is necessary to make a dis- Mechanica

experiencestinction between mechanical experience and mechan-
ical science, in the sense in which the latter term is at
present employed. Mechanical experiences are, un-

^uiestionably, very old. If we carefully examine the
Hsient Egyptian and Assyrian monuments, we shall

ft there pictorial representations of many kinds of
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implements and mechanical contrivances ; but ac-
of the scientific knowledge of these peoples

either totally lacking, or point conclusively to a
By the side of

highly ingenious ap-
behold

sess have led us to underrate the science of the ancient
world. Passages occur in ancient authors which

The me-
chanical
knowledge COUlltS
of antiquityseem

to indicate a profounder knowledge than we are wont
to ascribe to those nations.

are
very inferior grade of attainment.Take, for instance, the

following passage from Vitruvius, De Architectural
Lib. V, Cap. Ill, 6 : as pliancies, we

the crudest and roughi t>“ The voice is a flowing breath, made sensible toApassage
“ the organ of hearing by the movements it producesJiS Vltru

“ in the air. It is propagated in infinite numbers of
“ circular zones : exactly as when ar stone is thrown
“ into a pool of standing water countless circular
Adulations are generated therein, which, increasing
“ as they recede from the centre, spread

1“ great distance, unless the narrowness of the locality
“ or some obstacle prevent their reaching their ter-
“ mination ; for the first line of waves, when impeded
“ by obstructions, throw by their backward swell the
“ succeeding circular lines of waves into confusion.
“ Conformably to the very same law, the voice also
“ generates circular motions ; but with this distinction,
“ that in water the circles, remaining upon the surface,

propagated in the horizontal direction only, while
“ the voice is propagated both horizontally and
“ tically.”

Does not this sound like the imperfect exposition Controvert-
of a popular author, drawn from more accurate disqui- evidenceer
sitions now lost ? In what a strange light should
ourselves appear, centuries hence, if our popular lit-
erature, which by reason of its quantity is less easily
destructible, should alone outlive the productions of
science ? This too favorable view, however, is very
rudely shaken by the multitude of other passages con-taining such crude and patent errors as cannot be con-
ceived to exist in any high stage of scientific culture.

cruxi est expedients em-
ployed— as the u3e of
sleds, for instance, for
the transportation of

• enormous blocks of
stone. All bears an
instinctive, unperfcc-
ted, accidental char-

un-

out over a
HI

oao acter.
So, too, prehistoric

graves contain imple-
mentswhoseconstruc-
tion and employment
imply no little skill
and much mechanical
experience. Thus,long
before theory was
dreamed of , imple-

03 ^

CZ3
OQ

<303
&

“ are

ver-

ments, machines, me-
chanical experien-
ces, and mechanical
knowledge were abun-

we

dant.
3. The idea often {

suggests itself that J
perhaps the ineo’^Bgjlj
plete accounts we pJT^^

eve we
Idcrrated



THE SCIENCE OF MECHANICS.4

4. When, where, and in what manner the develop-
ment of science actually began, is at this day difficult
historically to determine. It appears reasonable to
assume, however, that the instinctive gathering of ex-
periential facts preceded the scientific classification of
them. Traces of this process may still be detected in
the science of to-day; indeed, they are to be met with,
now and then, in ourselves. The experiments that
man heedlessly and instinctively makes in his strug-
gles to satisfy his wants, are just as thoughtlessly and
unconsciously applied. Here, for instance, belong the
primitive experiments concerning the application of
the lever in all its manifold forms. But the things
that are thus unthinkingly and instinctively discovered,
can never appear as peculiar, can never strike us as
surprising, and as a rule therefore will never supply an
impetus to further thought.

The transition from this stage to the classified,

The origin
of science. I

\
The func-
ciaïScîisses scientific knowledge and apprehension of facts, first be-
veiopnufnt comes possible on the rise of special classes and pro-
of science. fessions who make the satisfaction of definite social

wants their lifelong vocation. A class of this sort oc-
cupies itself with particular kinds of natural processes.
The individuals of the class change ; old members
drop out, and new ones come in. Thus arises a need
of imparting to those who are newly come in, the
stock of experience and knowledge already possessed ;
a need of acquainting them with the conditions of the
attainment of a definite end so that the result may be
determined beforehand. The communication of knowl-
edge is thus the first occasion that compels distinct re-
flection, as everybody can still observe in himself.
Further, that which the old members of a guild me-
chanically pursue, strikes a new member as unusual

The com-
munication
of knowl-
edge.
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and strange, and thus an impulse is given to fresh re-
flection and investigation.

When we wish to bring to the knowledge of a per- involves
description.

i
(

any phenomena or processes of nature, we have
\ the choice of two methods : we may allow the person to

observe matters for himself , when instruction comes
to an end ; or, we may describe to him the phenomena
in some way, so as to save him the trouble of per-
sonally making anew each experiment. Description,
however, is only possible of events that constantly re-

son

( or of events that are made up of component
That only can be de-

cur,
parts that constantly recur,

scribed, and conceptually represented which is uniform
in and conformable to law ; for description presupposes

the employment of names by which to designate its
elements ; and names can acquire meanings only when
applied to elements that constantly reappear.

S. In the infinite variety of nature many ordinary A uni tary
u . conception

events occur ; while others appear uncommon, per- of nature,

plexing, astonishing, or even contradictory to the or-

dinary run of things. As long as this is the case we
do not possess a well-settled and unitary conception of
nature. Thence is imposed the task of everywhere
seeking out. in the natural phenomena those elements
that are the same, and that amid all multiplicity are
ever present. By this means, on the one hand, the
most economical and briefest description and com-
munication are rendered possible ; and on the other, The nature

when once a person has acquired the skill of recog- edge,

msing these permanent elements throughout the great-
est range and variety of phenomena, of seeing them in
the same, this ability leads to a comprehensive, compact,
consistent, and facile conception of the facts. When once

have reached the point where we are everywherewe
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the greatest possible number of

• rts at once and in the concisest manner. All this will sion merely

. . preparatory

be made clearer by the examination of - points of detail

be done by a general discussion. It is fitting,
to prepare the way, at this stage, for the

f outlook which in the course

different ob- Their pres-
ent discus-sion O?1' al)le to detect the saine few simple elements, combin -thoughts to ing in the ordinary manner, then they appear tofsctSi

mthings that are familiar ; we are no longer surprised,there is nothing new or strange to us in the phenom-ena, we feel at home with them, they no longer per-plex us, they are explained. It is a process of adaptation
of thoughts to facts with which we are here concerned.6. Economy of communication and of apprehen-sion is of the very essence of science.

scribing
us as

than can
however
most important points o

work we shall have occasion to occupy.

7. We now propose to enter more minutely into the Proposed

subject of our inquiries, and, at the same time, without treatment.
of mechanics the chief topic of

of our
The econ-
omy of
thought. Herein liesits pacificatory, its enlightening, its refining element.Herein, too, we possess an unerring guide to the his-torical origin of science. In the beginning, all economyhad in immediate view the satisfaction simply of bodily

wants. With the artisan, and still more so with theinvestigator, the concisest and simplest possible knowl-edge of a given province of natural phenomena— aknowledge that is attained with the least intellectual
expenditure— naturally becomes in itself an econom-ical aim ; but though it was at first a means to an end,when the mental motives connected therewith are oncedeveloped and demand their satisfaction, all thoughtof its original purpose, the personal need, disappears.To find, then, what remains unaltered in the phe-nomena of natu-re, to discover the elements thereofand the mode of their interconnection and interdepend-ence— this is the business of physical science,

deavors,

making the history
consider its historical development so

understanding of the pres-
and so far as it does

discussion, to

far as this is requisite to

ent state of mechanical science,
conflict with the unity of treatment of our

subject. Apart from the consideration that we cannot

afford to neglect the great incentives that it is in our

to derive from the foremost intellects of all The incen-
tives de-

a whole are more rived from
contact

an

mam
not

power
epochs, incentives which taken as

fruitful than the greatest men of the present day are with the
. .. great intel-

able to offer, there is no grander, no more intellectually lects of the
world .

elevating spectacle than that of the utterances of the

fundamental investigators in their gigantic power.
Possessed as yet of no methods, for these were first
created by their labors, and
hensiblc to us by their performances, they grapple with

d subjugate the object of their inquiry, and imprint
upon it the forms of conceptual thought. They that
know the entire course of the development of science,

freely and And the in-
crease of

Further de-
velopment
of these
ideas. only rendered compre-are

It en-by comprehensive and thorough description,
to make the waiting for
it seeks to save us the trouble of

an

new experiences unnecessary ;_ experimentation, bymaking use, for example, of the known interdepend-ence of phenomena, according to which, if one kind of
event occurs, we may be sure beforehand that
other event will

will, as a matter of course, judge
more correctly of the significance of any present scum- power

^ ^tific movement than they, who limited in their views a contact
J _ lends.

to the age in which their own lives have been spent,
contemplate merely the momentary trend that thecourse
of intellectual events takes at the present moment.

more

a certain
Even in the description itselflabor may be saved, by discovering methods of de-

occur.

1



i THE PRINCIPLES OF STATICS. 0

b. Magnitudes of equal weight acting at
qual distances (from their point of support)
not in equilibrium, but the one acting at the
greater distance sinks.

l ine- Axiomatic
assump-are tions of Ar-chimedes.

From these assumptions he deduces the following
proposit ion :

c. Commensurable magnitudes are in equilib-
rium when they are inversely proportional to their

CHAPTER I.
distances (from the point of support).

It would seem as if analysis could hardly go be-
hind these assumptions. This is, however, when
carefully look into the matter, not the case.

Imagine (Fig. 2) a bar, the weight of which is
neglected. The bar rests on a fulcrum. At equal dis-
tances from the fulcrum we

THE DEVELOPMENT OF THE PRINCIPLES OF
STATICS.

we

THE PRINCIPLE OF THE LEVER.
1. The earliest investigations concerning mechan-
of which we have any account, the investigations

of the ancient Greeks, related to statics, or to the doc-
trine of equilibrium. Likewise, when after the taking
of Constantinople by the Turks in 1453 a fresh impulse
was imparted to the thought of the Occident by the an-
cient writings that the fugitive Greeks brought with
them, it was investigations in statics, principally evoked
by the works of Archimedes, that occupied the fore-
most investigators of the . period.

2. ARCHIMEDES of Syracuse (287-212 B. C.) left
behind him a number of writings, of which several
have come down to us in complete form,

first employ ourselves a moment with his treatise De
Æquiponderantibus, which contains propositions re-
specting the lever and the centre of gravity.

In this treatise Archimedes starts from the follow-
ing assumptions, which he regards as self -evident :

a. Magnitudes of equal weight acting at equal
distances (from their point of support) are in equi-
librium.

The earliest
mechanical .
researches ICS
related to
statics.

ap-
pend two equal weights. That
the two weights, thus circum-
stanced, are in equilibrium, is

A

Fig. 2.the assumption from which Archi-
medes starts. We might suppose that this was self - Analysis of
evident entirely apart from any experience, agreeably to
the so-called principle of sufficient reason ; that in viewsumptlons-
of the symmetry of the entire arrangement there is no
reason why rotation should occur in the one direction
rather than in the other.

the Archi-
medean as-

Archimedes
of Syracuse
(287-212 n. But we forget, in this, that

a great multitude of negative and positive experiences
is implicitly contained in our assumption ; the negative,
for instance, that dissimilar colors of the lever-arms,
the position of the spectator, an occurrence in the vi-
cinity, and the like, exercise no influence ; the positive,on the other hand, (as it appears in the second as-sumption , ) that not only the weights but also their dis-tances from the supporting point are decisive factors
ln disturbance of equilibrium, that they also

c.) . We will

Axiomatic
assump-
tions of Ar-
chimedes.

are cir-
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The equal The general
proposition

at the extremities of the bar supply accor- of the lever
reduced to
the simple
and partic-
ular case.

will have to support the weight 2.cumstanccs determinative of motion. By the aid of
these experiences we do indeed perceive that rest (no
motion) is the only motion which can he uniquely* de-
termined, or defined, by the determinative conditions
of the case.f

Now we are enti t led to regard our knowledge of
the decisive conditions of any phenomenon as sufficient
only in the event that such conditions determine the
phenomenon precisely and uniquely. Assuming the
fact of experience referred to, that the weights and
their distances alone are decisive, the first proposit ion
of Archimedes really possesses a high degree of evi-
dence and is eminently qualif ied to be made the foun-
dation of further investigations. If the spectator place
himself in the plane of symmetry of the arrangement
in question, the first proposit ion manifests itself, more-
over, as a highly imperative instinctive perception,— a
result determined by the symmetry of our own body.
The pursuit of proposit ions of this character is, fur-

thermore, an excellent means of accustoming ourselves
in thought to the precision that nature reveals in her

bar,
weights _
dingly the place of the double weight at the centre.

Character
and value of
the Archi-
medean re-
sults.

32
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Fig. 4*Fig. 3-
On a lever (Fig. 4), the arms of which are in the

proportion of 1 to 2, weights are suspended in the pro-
The weight 2 we imagine replacedportion of 2 to 1.

by two weights 1, attached on either side at a distance
1 from the point of suspension. Now again we have
complete symmetry about the point of suspension, and
consequently equil ibrium.

On the lever-arms 3 and 4 (Fig. 5) are suspended
the weights 4 and 3. The lever-arm 3 is prolonged
the distance 4, the arm 4 is prolonged the distance 3,
and the weights 4 and 3 are replaced respectively by

processes.
3. We will now reproduce in general outl ines the X /The general

of the lever train of thought by which Archimedes endeavors to re-
the simple duce the general proposit ion of the lever to the par-
ami partic-
ular case.

EJ à tü.! J A X
L.J L.J rh»— »rh X

LJ
X
LJ

X r>- L.J> r^i
> I

1— J 1 1L.J
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ticular and apparently self -evident case. The two
equal weights 1 suspended at a and b (Fig. 3) are, if
the bar ab be free to rotate about its middle point c, in
equil ibrium. If the whole be suspended by a cord at
c, the cord, leaving out of account the weight of the 3

Fig- 5

4 and 3 pairs of symmetrically attached weights J,
in the manner indicated in the figure. Now again we
have perfect symmetry. The preceding reasoning, The gener-
which we have here developed with specific figures, is
easily generalised.

4- I t will be of interest to look at the manner in
which Archimedes’s mode of view, after the precedent
of Stevinus, was modified by GALILEO.

* So as to leave only a single possibility open.
t If , for example, we were to assume that the weight at the right de-

scended, then rotation in the opposite direction also would be determined by
the spectator, whose person exerts no influence on the phenomenon, taking
up his position on the opposite side.
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Galileo imagines (Fig. 6) a heavy horizontal prism,
homogeneous in material composition, suspended by

its extremities from a homogeneous bar of the same
length.

prominently displayed in this form of the deduction

than in that of Archimedes.
We may discover, moreover, in this beautiful pre-

sentation, a remnant of the ponderousness which was
particularly characteristic of the - investigators of an-
tiquity-

How a modern physicist conceived the same prob- Lagrange’s

lem, may be learned from the following presentation of

LAGRANGE. Lagrange says : Imagine a horizontal ho-
mogeneous prism suspended at its centre. Let this
prism (Fig. 7) be conceived divided into two prisms
of the lengths 2m and 2n. If now we consider the
centres of gravity of these two parts, at which we may
imagine weights to act proportional to 2m and 2n, the

Galileo’s
mode ot’
treatment.

The bar is provided at its middle point
with a suspensory attach-
ment. In this case equi-
librium will obtain ; this
we perceive at once. But
in this case is contained

mm
presenta-
tion.

every other case. Which
Galileo shows in the
following manner. Let
us suppose the whole

length of the bar or the prism to be 2(;;/ + ;/). Cut

the prism in two, in such a manner that one portion

shall have the length zm and the other the length 2//.
We can effect this without disturbing the equilibrium

2 n2 m

Fig. 6.

2n
L I

by previously fastening to the bar by threads, close to

the point of proposed section, the inside extremities of

the two portions. We may then remove all the threads,
if the two portions of the prism be antecedently at-

tached to the bar by their centres. Since the whole
length of the bar is 2( in + //), the length of each half

The distance of the point of suspension of

S'

FiR - 7.
two centres thus considered will have the distances n
and m from the point of support. This concise dis-
posal of the problem is only possible to the practised
mathematical perception.

5. The object that Archimedes and his successors object of

sought to accomplish in the considerations we have here and his suc-
presented, consists in the endeavor to reduce the

is m +;/.
the right-hand portion of the prism from the point of

suspension of the bar is therefore 7;/, and that of the
The experience that we have

cessors.more
complicated case of the lever to the simpler and ap-
parently self -evident case, to discern the simpler in the
more complicated, or vice versa. In fact, we regard
a phenomenon as explained, when we discover in it
known simpler ph

But surprising as the achievement of Archimedes
and his

left -hand portion n.
here to deal with the weight, and not with the form,
of the bodies, is easily made. It is thus manifest, that

equilibrium will still subsist if any weight of the mag-

nitude 2m be suspended at the distance n on the one
side and any weight of the magnitude 2n be suspended
at the distance in on the other. The instinctive elements

enomena.

successors may at the first glance appear to
Us> doubts as to the correctness of it, on further reflec-of our perception of this phenomenon are even more
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critique of tion, nevertheless spring up. From the mere assump-their meth- . . . . . 1ods. tion of the equilibrium of equal weights at equal dis-
tances is derived the inverse proportionality of weight
and lever-arm ! How is that possible ? If we were
unable philosophically and a priori to excogitate the
simple fact of the dependence of equilibrium on weight
and distance, but were obliged to go for that result to
experience, in how much less a degree shall we be able,
by speculative methods, to discover the form of this
dependence, the proportionality !

As a matter of fact, the assumption that the equi-
librium - disturbing effect of a weight P at the distance

6. HUYGENS, indeed, reprehends this method, and Huygens’s

gives a different deduction, in which he believes he has
avoided the error. If in
the presentation of La-
grange we imagine the
two portions into which G
the prism is divided
turned ninety degrees
about two vertical axes y/
passing through the cen-
tres of gravity s,s of the
prism-portions (see Fig.
ga), and it be shown
that under these circum
stances equilibrium still D
continues to subsist, we
shall obtain the Huygenian deduction. Abridged
and simplified, it is as follows. In a rigid weightless

C

E

H
s\

Thestatical
moment in-
volved in
all their de- . _
ductions. L from the axis of rotation is measured by the product,

P.L (the so-called statical moment), is more or less
covertly or tacitly introduced by Archimedes and all
his successors. For when Archimedes substitutes for H

Fig. 9.
a large weight a series of symmetrically arranged pairs
of small weights, which weights ex / end beyond the point
of support, he employs in this very act the doctrine of
the centre of gravity in its more general form, which is
itself nothing else than the doctrine of the lever in its
more general form.

Without the assumption above mentioned of the im-
port of the product P.L, no one can prove (Fig. 8) 1

that a bar, placed in
any way on the ful-
crum S, is supported,
with the help of a
string attached to its
centre of gravity and
carried over a pulley,

by a weight equal to its own weight. But this is con-
tained in the deductions of Archimedes, Stevinus,
Galileo, and also in that of Lagrange.

Without it
demonstra-
tion is im-
possible.

AS
Fig - 8.

Fig. 9.
we draw a straight

we cut off on the one side the length 1

plane (Fig. 9) through the point S
line, on which



r
The error first arises in the inference : if equilib- Yet invoiv-

f rium obtains for two axes of the plane, it also obtains final infer-
i . . . . ence an er-

for every other axis passing through the point of inter- ror.
section of the first two. This inference (if it is not to
be regarded as a purely instinctive one) can be drawn
only upon the condition that disturbant effects are as-
cribed to the weights proportional to their distances
from the axis. But in this is contained the very kernel
of the doctrine of the lever and the centre of gravity.

Let the heavy points of a plane be referred to a
system of rectangular coordinates (Fig. n). The co-
ordinates of the centre of gravity of a system of masses
m in tn" . . . having the coordinates x x x" . . . y ÿ y" . . .
are, as we know,

THE SCIENCE OE MECHANICS.16 THE PRINCIPLES OF STATICS. i7

His own de- and on the other the length 2, at A and B respectively.
On the extremities, at right angles to this straight
line, we place, with the centres as points of contact, the
heavy, thin, homogeneous prisms CD and PIN, of the
lengths and weights 4 and 2. Drawing the straight
line ITSG (where AG=%AC ) and, parallel to it, the
line CF, and translating the prism-portion CG by par-
allel displacement to FIT, everything about the axis
GH is symmetrical and equilibrium obtains. But
equilibrium also obtains for the axis AB ; obtains con-
sequently for every axis through S, and therefore also
for that at right angles to AB : wherewith the new
case of the lever is given.

Apparently, nothing else is assumed here than that
equal weights /,/> (Fig. 10) in the same plane and at
equal distances /, / from an axis AA' (in this plane)
equilibrate one another. If we place ourselves in the
plane passing through AA' perpendicularly to /, /, say

y ,v

Apparently
unimpeach-
able. Mathemat-

ical discus-
sion of
Huygens’s
inference.

2my
>>= 2m

If we turn the system through the angle #, the new co-
ordinates of the masses will be

2mx
2m’

xl — x cos# — y sin#, y1=y cos# x sin #

and consequently the coordinates of the centre of
gravity

A

o
P 2mx

2m
•„

_ 2my
2m

2m ( x cos# — y sin#)
2m£ x =M — sin#— = cos#

X — B, cos# — 1] sin#'-O o
and, similarly,P

A*
Fig. 10.

at the point M, and look now towards A and now
towards A', we shall accord to this proposition the
same evidentness as to the first Archimedean proposi-
tion. The relation of things is, moreover, not altered if
we institute with the weights parallel displacements
with respect to the axis, as Huygens in fact does.

r/ 1 = ;/ cos# -f- B, sin#.
We accordingly obtain the coordinates of the new

centre of gravity, by simply transforming the coordi-
nates of the first centre to the new axes. The centre
of gravity remains therefore the self-same point. If
we select the centre of gravity itself as origin, then
2mx=2my=0. On turning the system of axes, this
relation continues to subsist. If , accordingly, equi-
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deductions sti l l retain considerable value, in so far as Function of

the modes of conception of different cases are supported medean de-
the one on tile other, in so tar as it is-* shown that one
simple case contains all others, in so far as the same
mode of conception is established for all cases. Im-
agine (Fig. 12) a homogeneous prism, whose axis is
AB, supported at its centre C. To give a graphical
representation of the sum of the products of the weights
and distances, the sum decisive of the disturbance of
equil ibrium, let us erect upon the elements of the axis,
which are proportional to the elements of the weight,
the distances as ordinates ; the ordinates to the right

Tht 1
l ibrium obtains for two axes of a plane that are per-
pendicular to each other, i t also obtains, and obtains
then only, for every other axis through their point of
intersection. Hence, if equil ibrium obtains for any
two axes of a plane, it will also obtain for every other
axis of the plane that passes through the point of in-
tersection of the two.

These conclusions, however, are not deducible if

be :

The infer-
sibie only the coordinates of the centre of gravity are determined
on one con-
dition. by some other, more general equation, say

m/ ( x ) -f m'f ( x' ) + m"f ( x") -f . . .5= E.m -j- 111 + m"
U />

The Huygenian mode of inference, therefore, is in-
admissible, and contains the very same error that we
remarked in the case of Archimedes.

Archimedes’s self -deception in this his endeavor to
reduce the complicated case of the lever to the case
instinctively grasped, probably consisted in his uncon-
scious employment of studies previously made on the
centre of gravity by the tieIp of the very proposition he
sought to prove. I t is characterist ic, that he will not
trust on his own authority, perhaps even on that of
others, the easily presented observation of the import
of the product P.L, but searches after a further verifi-
cation of i t.

Now as a matter of fact we shall not, at least at
this stage of our progress, attain to any comprehension
whatever of the lever unless we directly discern in the
phenomena the product P.L as the factor decisive of
the disturbance of equil ibrium. In so far as Archi-
medes, in his Grecian mania for demonstration, strives
to get around this, his deduction is defective. But re-
garding the import of P.L as given, the Archimedean

W1
;

r
A SSelf -decep-

tion of Ar-
chimedes. Q

~B
V

R

DX
Fig. 12.

of C (as posit ive) being drawn upwards, and to the left illustration
of C (as negative) downwards. The sum of the areas °£ lts value

of the two triangles, ACD -f- CBE = 0, illustrates here
the subsistence of equil ibrium. If we divide the prism
mto two parts at M, we may substi tute the rectangle
MUWB for MTEP, and the rectangle MVXA for
I'MCAD, where TP =\TE and TR= J TD, and the
prism-sections MB, MA are to be regarded as placed
at right angles to AB by rotation about Q and S.

\j

> w
he
si-
t if
i ts
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nised the essential circumstances by which the effect
of the weight is determined.

Considerations similar to those of Leonardo da Guido
Vinci are also found in the writings of GUIDO UBALDI.

8. We will now endeavor to obtain some idea of
the way in which the notion of statical moment, by
which as we know is understood the product of a force
into the perpendicular let fall from the axis of rotation
upon the line of direction of the force, could have been
arrived at, — although the way that really led to this
idea is not now fully ascertainable. That equilibrium
exists (Fig. 14) if we lay a
cord ,subjected at both sides

In the direction here indicated the Archimedean
view certainly remained a serviceable one even after

longer entertained any doubt of the significance
on this point had

no one
of the product P.L, and after opinion
been established historically and by abundant verifica-

Ubaldi.

tion.
7. The manner in which the laws of the lever, as

by modern handed down to us from Archimedes in their original
physic is ts.

Treatment

simple form, were further generalised and treated by
modern physicists, is very interesting and instructive.
LEONARDO DA VINCI (1452-1519), the famous painter
and investigator, appears to have been the first to rec-
ognise the importance of the general notion of the so-

to equal tensions, over a
pulley, is perceived without
difficulty. We shall always
find a plane of symmetry for
the apparatus— the plane
which stands at right angles
to the plane of the cord and bisects ( EE) the angle madeby its two parts. • The motion that might be supposed A methodpossible cannot in this case be precisely determined or the not ionj r 1 1 i i ... . of thes ta t-denned by any rule whatsoever : no motion will there- ica i mo-fore take place. If we note, now, further, that the mate- have beenrial of which the pulley is made is only essential to theextent of determining the form of motion of the pointsof application of the strings,

'kD
0

Fig. 14.

Qp
Fig. 13.

In thè manuscripts he hascalled statical moments.
(1452-1519). left us, several passages are found from which this

He says, for example : We have a

Leonardo

arr ived at.clearly appears,

bar AD (Fig. 13) free to rotate about A, and suspended
from the bar a weight P, and suspended from a string
which passes over a pulley a second weight Q. What
must be the ratio of the forces that equilibrium may ob-

we shall likewise easilyperceive that without disturbing the equilibrium ofthe machine, almost any portion of the pulley may be
remain only the rigid radii that

tangential points of the string. Wesee, thus, that the rigid radii (or the perpendiculars ondie linear directions of the strings) play here a partsimilar to the lever-arms in the lever of Archimedes.

removed. Essential
lead out to the

tain ? The lever-arm for the weight P is not AD, but
The lever-arm for thethe “ potential ” lever AB..

weight Q is not AD, but the “ potential ” lever AC.
The method by which Leonardo arrived at this view

But it is clear that he recog-is difficult to discover.
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chines, to search after a new principle beyond that of
the lever ; for the latter is sufficient by itself . Galileo,
for example, explains the inclined plane from the lever
in the following manner.
We have before us (Fig.
17) an inclined plane, on
which rests the weight
Q, held in equilibrium
by the weight P. Gali- a

called wheel and axle (Fig.Let us examine a so-

15) of wheel-radius 2 and axle-radius 1, provided re-
spectively with the cord-hung loads 1 and 2 ; an appa-
ratus which corresponds in every respect to the lever

If now we place about the axle, in
may choose, a second cord, which we

the tension of a weight 2, the
It is

This notion
derived
from the
considera-
tion of a
wheel and
axle.

of Archimedes.
any manner we
subject at each side to
second cord will not disturb the equilibrium.

also permitted to regard

Op

plain, however, that we are
leo, now, points out the
fact, that it is not

Fig- 17-
requisite that Q should lie directly

upon the inclined plane, but that the essential point
is rather the form,
of Q.

or character, of the motion
We may, consequently, conceive the weight

attached to the bar AC, perpendicular to the inclined
plane, and rotatable about C.

2 25 m 1 If then we institute a Galileo’svery slight rotation about the point C, the weight will
move in the element of an arc coincident with the idined plane. That the path assumes a curve on the
motion being continued is of no

explanation
of the in-
clined

m- plane by
the lever.

Fig. 16.Fig. 15-
the two pulls marked in Fig. 16 as being in equilib-

by leaving the two others, as mutually destruc-

tive, out of account. But we arrive in so doing, dis-rium,
consequence here,

since this further movement does not in the case ofequilibrium take place, and the
stant alone is decisive. ~~

observation before mentioned

missing from consideration all unessential features, at

the perception that not only the pulls exerted by the
but also the perpendiculars let fall from the

the lines of the pulls, are conditions deter-
The decisive factors are, then,

movement of the in-
Reverting, however, to the

of Leonardo da Vinci,
readily perceive the validity of the theorem Q.CB= P.CA or Q/ P= CA/CB= ca/ct>, and thus reachthe law of equilibrium on the inclined plane. Oncehave reached the principle of the lever, we may, then,easily apply that principle to the comprehension ofthe other machines.

weights
axis on
minative of motion,

the products of the weights into the respective per-
the directions of

we

pendiculars let fall from the axis
the pulls ; in other words, the so-called statical mo-

on we

ments.
g. What we have so far considered, is the devel-

opment of our knowledge of the principle of the lever.

Quite independently of this was developed the knowl-

edge of the principle of the inclined plane. It is not

necessary, however, for the comprehension of the ma-

The princi-
ple of the
lever all-
sufficient to
explain the
other ma-
chines.
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the conditions of the event are not altered by its mo-
tion, must, when once actually in motion, continue to
move for ever, that is, it must present a perpetual mo-
tion, which Stevinus deems absurd. Consequently only
the first case is conceivable. The chain remains in equi- of the Vaw
librium. The symmetrical portion ADC may, there-
fore, without disturbing the equilibrium, be removed. plane'

The portion AB of the chain consequently balances
the portion BC. Hence : on inclined planes of equal
heights equal weights act in the inverse proportion of
the lengths of the planes.

THE SCIENCE OF MECHANICS. 252 4

11.

THE PRINCIPLE OF THE INCLINED PLANE.
Stevlnus’s

i. STEVINUS, or STEVIN, (1548-1620) was the first
first investi- who investigated the mechanical properties of the in-
gates the .
mechanics dined plane ; and he did
of the in- r
dined
plane.

Stevinus
of the in-
clined

so in an eminently original
manner. If a weight lie (Fig.
18) on a horizontal table, we
perceive at once, since the
pressure is directly perpendic-
ular to the plane of the table,

Drr.

by the principle of symmetry,
that equilibrium subsists. On a

vertical wall, on the other hand, a weight is not at all
obstructed in its motion of descent. The inclined plane

an intermediate case betweenaccordingly will present
these two limiting suppositions. Equilibrium will not
exist of itself , as it does on the horizontal support, but
it will be maintained by a less weight than that neces-
sary to preserve it on the vertical wall. The ascertain-
ment of the statical law that obtains in this case, caused
the earlier inquirers considerable difficulty.

Stevinus's manner of procedure is in substance as
follows. He imagines a triangular prism with horizon-
tally placed edges, a cross-section of which ABC is
represented in Fig. 19.

will say that AB='iBC ; also that AC is horizon-
Over this prism Stevinus lays an endless string

which 14 balls of equal weight are strung and tied
We can advantageously re -

cndless uniform chain or cord.

Hismodeof
reaching its
law.

For the sake of illustration
we
tal.
on

In the cross-section of the prism in Fig. 20 let us
imagine AC horizontal, BC vertical, and AB = 2BC;
furthermore, the chain-weights Q and P on AB and
PC proportional to the lengths ; it will follow then that

at equal distances apart ,

place this string by an
The chain will either be in equilibrium or it will not.
If we assume the latter to be the case, the chain, since
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Q/ P= AB/ BC= 2. The generalisation is self -evi-
dent. dications that we possess in the primitive history of iiighhistor-

mechanics, and throws a wonderful light on the pro- Stevinus’s

cess of the formation of science generally, on its rise
from instinctive knowledge. We will recall to mind
that Archimedes pursued exactly the same tendency
as Stevinus, only with much less good fortune. In
later times, also, instinctive knowledge is very fre-
quently taken as the starting-point of investigations.
Every experimentator can daily observe in himself the
guidance that instinctive knowledge furnishes him. If
he succeed in abstractly formulating what is contained
in it, he will as a rule have made an important advance
in science.

Stevinus’s procedure is no error. If an error were The trust-
contained in it, we should all share it.
perfectly certain, that the union of the strongest in- edge'

stinct with the greatest power of abstract formulation
alone constitutes the great natural inquirer. This by
no means compels us, however, to create a new mysti-
cism out of the instinctive in science and to regard this
factor as infallible. That it is not infallible, we very
easily discover. Even instinctive knowledge of so
great logical force as the principle of symmetry em-
ployed by Archimedes, may lead us astray. Many of
my readers will recall to mind, perhaps, the intellectual
shock they experienced when they heard for the first
time that a magnetic needle lying in the magnetic
meridian is deflected in a definite direction away from
the meridian by a wire conducting a current being ear-
ned along in a parallel direction above it. The instinc-
tive is just as fallible as the distinctly conscious. Its only
value is in provinces with which we are very familiar.

Let us rather put to ourselves, in preference to
Pursuing mystical speculations on this subject, the

2. Unquestionably in the assumption from which
Stevinus starts, that the endless chain does not move,
there is contained primarily only a purely instinctive
cognition. He feels at once, and we with him, that
we have never observed anything like a motion of the
kind referred to, that a thing of such a character does
not exist. This conviction has so much logical cogency

The as-
sumptions
of Stevi-
nus’s de-
duction.

that we accept the conclusion drawn from it respecting
the law of equilibrium on the inclined plane without the
thought of an objection, although the law if presented
as the simple result of experiment, or otherwise put,
would appear dubious. We cannot be surprised at thisTheir in-

character. when we reflect that all results of experiment are ob- T , , worthiness
Indeed, it is of instinc-

tive knowl-scured by adventitious circumstances (as friction, etc.),
and that every conjecture as to the conditions which are
determinative in a given case is liable to error. That
Stevinus ascribes to instinctive knowledge of this sort
a higher authority than to simple, manifest, direct ob-
servation might excite in us astonishment if we did not
ourselves possess the same inclination. The question
accordingly forces itself upon us : Whence does this
higher authority come ? If we remember that scientific
demonstration, and scientific criticism generally can
only have sprung from the consciousness of the individ-
ual fallibility of investigators, the explanation is not far

We feel clearly, that we ourselves have con-
tributed nothing to the creation of instinctive knowl-
edge, that we have added to it nothing arbitrarily, but
that it exists in absolute independence of our partici-
pation. Our mistrust of our own subjective interpre-
tation of the facts observed, is thus dissipated.

Stevinus’s deduction is one of the rarest fossil in-

Their cog- to Seek,
ency.
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The origin question : How does instinctive knowledge originate
tiveknowi- and what are its contents? Everything which we ob-
edge.

1he reasoning of Stevinus impresses us as so The ingen-
. _ . . - . . . . . . . . uity of Ste-

highly ingenious because the result at which he arrives vinus’s

apparently contains more than the assumption from
which he starts. While on the one hand, to avoid con-
tradictions, we are constrained to let the result pass, on
the other an incentive remains which impels us to seek
further insight. If Stevinus had distinctly set forth
the entire fact in all its aspects, as Galileo subsequently
did, his reasoning would no longer strike us as ingen-
ious ; but we should have obtained a much more satis-
factory and clear insight into the matter. In the
endless chain which does not glide upon the prism, is
contained, in fact, everything. We might say, the
chain does not glide because no sinking of heavy bodies
takes place here. This would not be accurate, how-
ever, for when the chain moves many of its links really
do descend, while others rise in their place. We must
say, therefore, more accurately, the chain does not
glide because for every body that could possibly de- CnHque of

scend an equally heavy body would have to ascend deduction ,

equally high, or a body of double the weight half the
height, and so on. This fact was familiar to Stevinus,
who presented it, indeed, in his theory of pulleys ;
but he was plainly too distrustful of himself to lay
down the law, without additional support, as also valid
for the inclined plane. But if such a law did not exist
universally, our instinctive knowledge respecting the
endless chain could never have originated. With this
our minds are completely enlightened.— The fact that
Stevinus did not go as far as this in his reasoning and
rested content with bringing his (indirectly discovered)
ideas into agreement with his instinctive thought, need
not further disturb us.

The service which Stevinus renders himself and his

rea-
soning.serve in nature imprints itself uncomprehended and u?i-

analysed in our percepts and ideas, which, then, in their
turn, mimic the processes of nature in their most gen-
eral and most striking features. In these accumulated
experiences we possess a treasure-store which is ever
close at hand and of which only the smallest portion
is embodied in clear articulate thought. The circum-
stance that we are easier able to employ these expe-
riences than we are nature itself , and that they are,
notwithstanding this, free, in the sense indicated, from
all subjectivity, invests them with a high value. It
is a peculiar property of instinctive knowledge that it
is predominantly of a negative nature. We cannot so
well say what must happen as we can what cannot hap-
pen, since the latter alone stands in glaring contrast to
the obscure mass of experience in us in which single
characters are not distinguished.

Still, great as the importance of instinctive knowl-Instinctive

and^xtern- edge may be, for discovery, we must not, from
al realities
mutually

each other, authority. We must inquire, on the contrary : Under

our
point of view, rest content with the recognition of its

what conditions could the instinctive knowledge in
question have originated ? We then ordinarily find that
the very principle to establish which we had recourse
to instinctive knowledge, constitutes in its turn the fun-
damental condition of the origin of that knowledge.
And this is quite obvious and natural. Our instinctive
knowledge leads us to the principle which explains that
knowledge itself , and which is in its turn also corrobo-
rated by the existence of that knowledge, which is a
separate fact by itself . This we will find on close ex-

amination is the state of things in Stevinus’s case.
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% * work Hypomnemata Mathematica (Leyden, 1605).* As Eniighten-
a fact, every enlightening progress made in science is science ai-

accompanied with a certain feeling of disillusionment, companied

We discover that that which appeared wonderful tosionment.
11s is no more wonderful than other things which we
know instinctively and regard as self -evident ; nay,
that the contrary would be much more wonderful ; that
everywhere the same fact expresses itself. Our puzzle
turns out then to be a puzzle no more ; it vanishes into
nothingness, and takes its place among the shadows
of history.

4. After he had arrived at the principle of the in - Expiana-
i * i i *

tion of the
dined plane, it was easy for Stevmus to apply that other. . chines by
principle to the other machines and to explain by it Stevinus’s

their action. He makes, for example, the following
application.

We have, let us suppose, an inclined plane (Fig.
22) and on it a load Q. We pass a string over the
pulley A at the summit and imagine the load Q held in
equilibrium by the load P.
Stevinus,now,proceeds by
a method similar to that
later taken by Galileo. He
remarks that it is not ne-

cessary that the load Q
should lie directly on the ^inclined plane. Provided
only the form of the machine’s motion be preserved, the
proportion between force and load will in all cases re-
main the same. We may therefore equally well conceive
the load Q to be attached to a properly weighted string
passing over a pulley D: which string is normal to the

eaders, consists, therefore, in the contrast and com-

mitseproce- parison of knowledge that is instinctive with knowledge
dure.
The ineri

that is clear, in the bringing the two into connection
and accord with one another, and in the supporting

i

ma-

D

o
ARO c1 q.

v
\F \R

Fig. 22

the one upon the other. The strengthening of mental
view which Stevinus acquired by this procedure, we
learn from the fact that a picture of the endless chain
and the prism graces as vignette, with the inscription

Wonder en is gheen wonder, ” the title-page of his
*The title given is that of Willebrord Snell ’s Latin translation (1608) of

Simon Stevin's Wisconstige Gedacktenissen, Leyden, 1605.— Trans.
( <
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The funicu- inclined plane,
lar machine

If we carry out this alteration, we
shall have a so-called funicular machine. We now

given angles, and the weight P is suspended from the
first, the tensions may be determined in the following
manner. We produce (Fig. 23) AB to X and cut off
on it a portion AE. Drawing from the point E, EE
parallel to AD and EG paral-
lel to AC, the tensions of AB,
AC, AD are respectively pro-
portional to AE, AE, AG.

With the assistance of this

perceive that we can ascertain very easily the portion
of weight with which the body on the inclined plane
tends downwards. We have only to draw a vertical
line and to cut off on it a portion ab corresponding to
the load Q. Then drawing on aA the perpendicular
be, we have P/Q= AC/ AB= ac/ ab. Therefore ac
represents the tension of the string aA. Nothing pre-
vents us, now, from making the two strings change
functions and from imagining the load Q to lie on the

V

0principle of construction Ste-
vinus solves highly compli-

0 oAnd the
special case . . . .. . .
of the parai- dotted inclined plane EDF. Similarly, here, we ob-lelogram of J

forces.

Fig. 25.
cated problems. He determines, for instance, the solution of

tensions of a system of ramifying strings like that plicated

illustrated in Fig. 24 ; in doing which of course he problLlns'

starts from the given tension of the vertical string.
The relations of the tensions of a funicular polygon

are likewise ascertained by construction, in the man-
ner indicated in Fig. 25.

tain ad for the tension of the second string. In this
manner, accordingly, Stevinus indirectly arrives at a
knowledge of the statical relations of the funicular
machine and of the so-called parallelogram of forces ; at
first, of course, only for the particular case of strings
(or forces) ac, ad at right angles to one another.

Subsequently, indeed, Stevinus employs the prin-
ciple of the composition and resolution of forces in

The general
form of the
last-men-
cipie also a more general form ; yet the method by which he
employed.

We may therefore, by means of the principle of the General re-
sult.inclined plane, seek to elucidate the conditions of op-

eration of the other simple machines, in a manner sim-
ilar to that which we employed in the case of the prin-
ciple of the lever.

.V

E D
/ l \

F HI .
G

THE PRINCIPLE OF THE COMPOSITION OF FORCES.
i . The principle of the parallelogram of forces, at The princi-

which STEVINUS arrived and employed, (yet without ex- para/ieio6
pressly formulating it,) consists, as we know, of the forces?*
following truth. If a body A (Fig. 26) is acted upon
by two forces whose directions coincide with the lines
AB and AC, and whose magnitudes are proportional to
the lengths AB and AC, these two forces produce the

A

B

P o
Fig. 23.

reached the principle, is not very clear, or at least is
not obvious. He remarks, for example, that if we
have three strings AB, AC, AD, stretched at any

Fig. 24.
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(following Stevinus’s principle) by two new rectangular The d
^
educ-

pulls, one in the direction Ou (the prolongation of genera l
1 . pr inciple
OX ), and one at right angles thereto in the direction f rom the

J ° ° . specia l case
Ov. And let us similarly resolve the pull OZ in the of s tevinus.
directions Ou and Ow. The sum of the pulls in the di-
rection On, then, must balance the pull OX, and the
two pulls in the directions Ov and Ow must mutually
destroy each other. Taking the two latter as equal
and opposite, and representing them by Om and On,
we determine coincidently with the operation the com-
ponents Op and Oq parallel to Ou, as well also as the
pulls Or, Os. Now the sum Op + Oq is equal and op-
posite to the pull in the direction of OX ; and if we
draw st parallel to OY, or rt parallel to OZ, either line
will cut off the portion Ot — Op Oq : with which re-
sult the general principle of the parallelogram of forces
is reached.

The general case of composition may be deduced A different
• i . . mode of the

in still another way from the special composition ot same de-
rectangular forces. Let OA and OB be the two forces
acting at O. For OB substitute
a force OC acting parallel to ^
OA and a force OD acting at
right angles to OA. There
then act for OA and OB the D B
two forces OE = OA ~f- OC
and OD, the resultant of which forces OF is at the same
time the diagonal of the parallelogram OAFB con-
structed on OA and OB as sides.

3. The principle of the parallelogram of forces, The prin-^ A ciple here
when reached by the method of Stevinus, presents it- presents i t-

T " .. . j se l f as an
self as an indirect discovery. It is exhibited as a con- indi rec t

sequence and as the condition of known facts. We
perceive, however, merely that it does exist, not, as yet

same effect as a single force, which acts in the direction
of the diagonal AD of the parallelogram ABCD and is
proportional to that diagonal. For instance, if on the

strings AB, AC weights
exactly proportional to the
lengths AB, AC be sup-
posed to act, a single
weight acting on the string
ADexactly proportional to

the length AD will produce the same effect as the first
two. The forces AB and AC are called the compo-
nents, the force AD the resultant. It is furthermore

» obvious, that conversely, a single force is replaceable
by two or several other forces.

2. We shall now endeavor, in connection with the

A B

Fig. 26.

Method by
which the . . .
tionof 'the

" mvestl&ati°ns Stevinus, to give ourselves some idea
para l le lo-
gram of
forces
might have
been ar-
r ived at.

of the manner in which the
Z general proposition of the

parallelogram of forces
might have been arrived
at. The relation,— dis-

Y covered by Stevinus, —
that exists between two
mutually perpendicular

v forces and a third force

A E
>

0 mw n
Fig. 28.

that equilibrates them, we
shall assume as (indi-
rectly) given. We sup-
pose now (Fig. 27) that
there act on three strings
OX, OY, OZ, pulls which

X ,

Fig. 27.

balance each other. Let us endeavor to determine the
nature of these pulls. Each pull holds the two remain-
ing ones in equilibrium. The pull OY we will replace
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And is first 7.vhy it exists ; that is, we cannot reduce it (as in dy-
clearly . . . . _ .
enunciated namics) to still simpler propositions. In statics, m-
and Varig- deed, the principle was not fully admitted until the
non.

drawn, the theorem passes into the form p . u
r . — q . v

w. Finally, if m be taken on the diagonal and
perpendiculars again be drawn, we shall get, since the
perpendicular let fall on the diagonal is now zero,p . u — q. v= 0 or / . u= q . v.

With the assistance of the observation that forces The deduc-tion.

time of Varignon, when dynamics, which leads directly
to the principle, was already so far advanced that its
adoption therefrom presented no difficulties. The prin-
ciple of the parallelogram of forces was first clearly
enunciated by NEWTON in his Principles of Natural Phi-
losophy. In the same year, VARIGNON, independently of
Newton, also enunciated the principle, in a work sub-

mitted to the Paris Academy (but not published un-
til after its author’s death), and made, by the aid of a
geometrical theorem, extended practical application

are proportional to the motions produced by them in
equal intervals of time, Varignon easily advances from
the composition of motions to the composition of forces.
Forces, which acting at a point are represented in
magnitude and direction by the sides of a parallelo-
gram, are replaceable by a single force, similarly rep-
resented by the diagonal of that parallelogram.

If now, in the parallelogram considered, p and
represent the concurrent forces (the components) and r
the force competent to take their place (the resultant),
then the products pu, qv, rw are called the moments
of these forces with respect to the point m. If the point
m lie in the direction of the resultant, the two moments
pit and qv are with respect to it equal to each other.

4. With the assistance of this principle Varignon isyarignon’s
treatment
of the sim-
ple ma-
chines.

of it.* q Moments of
forces.The geometrical theorem referred to is this. If we

consider (Fig. 29) a parallelogram the sides of which
are p and q, and the diagonal is r, and from any point m

in the plane of the par-
allelogram we drawper-

v pendiculars on these
# #

) three straight lines,
/ which perpendiculars

/ we will designate as

The geo-
metrical
theorem
employed
by Varig-
non.

I

now in a position to treat
the machines in a much 'X

v, w, then p . u +
This is

simpler manner than were
his predecessors. Let us
consider, for example,
(Fig. 31) a rigid body
capable of rotation about
an axis passing through
O. Perpendicular to the /
axis we conceive a plane, B
and select therein two
points A, B, on which two forces P and <2 in the planeare supposed to act. We recognise with Varignon

u,
(Mq . v — r . w.

easily proved by draw-
ing straight lines from m

to the extremities of the diagonal and of the sides of
the parallelogram, and considering the areas of the
triangles thus formed, which
of the products specified. If the point m be taken
within the parallelogram and perpendiculars then be

*In the same year, 1687, Father Bernard Laini published a little appendix
to his Traité de mèchanique, developing the same principle.— Trans.

oFig. 29.

B
equal to the halvesare

0
Fig- 31 -
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is derived the majority of the theorems and methods
of presentation which make up the statics of modern
elementary text-books.

5. As we have already seen, purely statical consid- S p e c i a l
i i i 1 . . c . .. . s t a t i c a l con-erations also lead to the proposition ol the parallel- s i dér a t i o n s

ogram of forces. In special cases, in fact, the principle the prin-
admits of being very easily verified. We recognise at
once, for instance, that any number whatsoever of equal
forces acting (by pull or pressure) in the same plane at
a point, around which their suc-
cessive lines make equal angles,
are in equilibrium. If, for exam-
ple, (Fig. 32) the three equal
forces OA, OB, OC act on the
point 0 at angles of 120°, each
two of the forces holds the third
in equilibrium. We see imme-
diately that the resultant of OA
and OB is equal and opposite to OC. It is represented
by OD and is at the same time the diagonal of the
parallelogram OADB, which readily follows from the
fact that the radius of a circle is also the side of the
hexagon included by it.

deduc- that the effect of the forces is not altered if their points
of application be displaced along their line of action,

lever from . , . . . . . . .
the parai- since all points in the same direction are rigidly con-
l e l o g r a m- . i n
principle, nected with one another and each one presses and pulls

We may, accordingly, suppose P applied

The
tion of the
law of the

the other.
at any point in the direction AX, and Q at any point
in the direction BY, consequently also at their point
of intersection M. With the forces as displaced to M,
then, we construct a parallelogram, and replace the

We have now to do only tforces by their resultant,
with the effect of the latter. If it act only on movable

If , however, thepoints, equilibrium will not obtain,

direction of its action pass through the axis, through
the point O, which is not movable, no motion can take
place and equilibrium will obtain.
O is a point on the resultant, and if we drop the per-
pendiculars it and v from O on the directions of the
forces p, q, we shall have, in conformity with the the-

With this we

In the latter case

Fig. 32.

before mentioned, p • it = q • v.
have deduced the law of the lever from the principle
orem

of the parallelogram of forces.
Varignon explains in like manner a number of other

of equilibrium by the equilibration of the result-
On the in-

The statics
of Varignon
adynamical Cases
statics. 6. If the concurrent forces act in the same or in The case of

opposite directions, the resultant is equal to the sum forcesdem
or the difference of the

ant force by some obstacle or restraint,

dined plane, for example, equilibrium exists if the re-
sultant is found to be at right angles to the plane. In
fact, Varignon rests statics in its entirety on a dynamic
foundation ; to his mind, it is but a special case of dy-
namics. The more general dynamical case constantly
hovers before him and he restricts himself in his inves-

merely a
particular
case of the

__ general
Q principle.

components. We rec-
ognise both cases with- B‘

A
B C

out any difficulty as
particular cases of the 0' A'

Fig. 33.

If in the two drawings of Fig. 33
imagine the angle AOB to be gradually reduced

to the value o°, and the angle A' O' B’ increased to the

principle of the paral-
lelogram of forces.tigation voluntarily to the case of equilibrium. We

confronted here with a dynamical statics, such
possible only after the researches of Galileo.

Incidentally, it may be remarked, that from Varignon

are we
as was
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value i8o°, we shall perceive that OC passes into OA -)-
AC= OA + OB and 0' C into O' A' — A’ C = 0' A'

— 0' B'. The principle of the parallelogram of forces
includes, accordingly, propositions which are generally
made to precede it as independent theorems.

7. The principle of the parallelogram of forces, in

Since, however, the forces q acting at right angles
to r destroy each other, while those parallel to r con-
stitute the resultant, it further follows that

r = 2q; hence fx= ]/2, and r — 1/2 . p.
The resultant, therefore, is represented also in re-

spect of magnitude by the diagonal of the square con-
structed on p as side.

Similarly, the magnitude may be determined of the The case of

resultant of unequal rectangular components. Here, rectangular
. . . . . . c componentshowever, nothing is known before-
hand concerning the direction of
the resultant r. If we decompose
the components /, q (Fig. 35), P
parallel and perpendicular to the
yet undetermined direction r, into
the forces u, ^ and v, t, the new
forces will form with the compo-
nents /, q the same angles that p,
q form with r. From which fact the following relations
in respect of magnitude are determined :

— = — and r — ^ , 1=1and — = —V q
from which two latter equations follows s
On the other hand, however,

r= u + v=

The princi-
ple a propo-
si t ion de- the form in which it was set forth by Newton and
r ived from . . . . . .
exper ience. Varignon, clearly discloses itself as a proposition de-

rived from experience. A point acted on by two forces
describes with accelerations proportional to the forces
two mutually independent motions. On this fact the
parallelogram construction is based. DANIEL BER-
NOULLI, however, was of opinion that the proposition of
the parallelogram of forces was a geometrical truth, in-
dependent of physical experience. And he attempted
to furnish for it a geometrical demonstration, the chief
features of which we shall here take into consideration,

s a
P

v

a I

as the Bernoullian view has not, even at the present
day, entirely disappeared.

If two equal forces, at right angles to each other
(Fig. 34), act on a point, there can be no doubt, ac-

cording to Bernoulli, that the line
of bisection of the angle (con-
formably to the principle of sym-

p metry) is the direction of the re-
sultant r. To determine geomet-
rically also the magnitude of the
resultant, each of the forces p is
decomposed into two equal forces

q, parallel and perpendicular to r. The relation in
respect of magnitude thus produced between p and q
is consequently the same as that between r and p. We
have, accordingly :

p= fx . q and r — /x . p\ whence r = /x 2 q.

Fig- 35-
Danie l Ber-
noul l i’s a t-
tempted
geometrical
demonst ra-
t ion ot the
t ru th.

a p ~

* 'p u s
t= pq/r.99

P‘ p 2 q 2— + — or r 2= p2 + q 2 .r r
The diagonal of the rectangle constructed on p and

q represents accordingly the magnitude of the result-
ant.

Fig. 34-

Therefore, for all rhombs, the direction of the re- General re-
sultant is determined ; for all rectangles, the magni-
tude; and for squares both magnitude and direction.
Bernoulli then solves the problem of substituting for

sui ts.
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11two equal forces acting at one given angle, other equal,
equivalent forces acting at a different angle ; and finally
arrives by circumstantial considerations, not wholly
exempt from mathematical objections, but amended
later by Poisson, at the general principle.

8. Let us now examine the physical aspect of this

such as temperature, potential function, but not direc-

tion. The fact that both magnitude and direction are
determinative in the efficiency of a force impressed
a point is an important though it may be an unob-
trusive experience.

Granting, then, that the magnitude and direction Magnitude

of forces impressed on a point alone are decisive, it will tion the sole
• decisivebe perceived that two equal and opposite forces, as they factors,

cannot uniquely and precisely determine any motion,
are in equilibrium. So, also, at
right angles to its direction, a
forcep is unable uniquely to de-
termine a motional effect. But
if a force p is inclined at an an-
gle to another direction ss' (Fig.
36), it is able to determine a mo-
tion in that direction. Yet ex-
perience alone can inform us,
that the motion is determined in the direction of s' s
and not in that of s s’ ; that is to say, in the direction
of the side of the acute angle or in the direction of the
projection of p on s's.

Now this latter experience is made use of by Ber- The f̂^of
noulli at the very start. The sense, namely, of the re- derivable
sultant of two equal forces acting at right angles to one
another is obtainable only on the ground of this expe-
rience. From the principle of symmetry follows only,
that the resultant falls in the plane of the forces and
coincides with the line of bisection of the angle, not
however that it falls in the acute angle. But if we sur-
render this latter determination, our whole proof is ex-
ploded before it is begun.

10. If , now, we have reached the conviction that
our knowledge of the effect of the direction of a force is

on

Critique of
Bernoulli’s
method. As a proposition derived from experience,question.

the principle of the parallelogram of forces was already
known to Bernoulli. What Bernoulli really does, there-
fore, is to simulate towards himself a complete ig?iora?ice

of the proposition and then attempt to philosophise
it abstractly out of the fewest possible assumptions.
Such work is by no means devoid of meaning and pur-
pose. On the contrary, we discover by such proce-
dures, how few and how imperceptible the experiences

that suffice to supply a principle. Only we must
not deceive ourselves, as Bernoulli did ; we must keep
before our minds all the assumptions, and should over-
look no experience which we involuntarily employ.
What are the assumptions, then, contained in Bernoul-
li’s deduction ?

9. Statics, primarily, is acquainted with force only
as a pull or a pressure, that from whatever source it

rived°from
" may come always admits of being replaced by the pull

experience.
^^pressure Qf a weight. All forces thus may be re-
garded as quantities of the same kind and be measured
by weights. Experience further instructs us, that the
particular factor of a force which is determinative of
equilibrium or determinative of motion, is contained
not only in the magnitude of the force but also in its
direction, which is made known by the direction of the
resulting motion, by the direction of a stretched cord,
or in some like manner. We may ascribe magnitude
indeed to other things given in physical experience,

P

are
S'

Fig. 36.

The as-
sumptions
of his de-

only from
experience.
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solely obtainable from experience, still less then shall one and the same point at the angles a, a' , a" . . . with Mathemat-
a given direction X. These forces, let us suppose, are sis oHhe

"

replaceable by a single force 77, which makes with Xthelrue^nd
an angle p. By the familiar principle we have then assumption.

2Pcosa — II cosp.
If 77 is still to remain the substitute of this system of
forces, whatever direction X may take on the system
being turned through any angle d, we shall further '

have

So also
must the . .. . . .
form < > f the we believe it in our power to ascertain by any other wayeffect be
thus de-
rived. the form of this effect. It is utterly out of our power,

to divine, that a force p acts in a direction s that makes
with its own direction the angle a, exactly as a force
p cos a in the direction s ; a statement equivalent to the
proposition of the parallelogram of forces. Nor was
it in Bernoulli’s power to do this. Nevertheless, he
makes use, scarcely perceptible it is true, of expe-
riences that involve by implication this very mathe-
matical fact.

-

<r 'XP cos (or -f Ô )= II cos ( p 4- Ô ),
or

A person already familiar with the compositionThe man-
ner in
which the and resolution of forces is well aware that several forcesassump-
tions men-
tioned enter
into Ber-
noulli’s de-
duction.

(2Pcosa — ITcos/<) cosô — (^’/> sinrr -7/ sinp) sine)'=0.
If we putacting at a point are, as regards their effect, replaceable,

in every respect and in every direction, by a single force.
This knowledge, in Bernoulli’s mode of proof , is ex-
pressed in the fact that the forces p, q are regarded as
absolutely qualified to replace in all respects the forces
s, u and t, v, as well in the direction of r as in every
other direction. Similarly r is regarded as the equiv-
alent of p and q. It is further assumed as wholly in-
different, whether we estimate J*, U , l , v first in the
directions of p, q, and then p, q in the direction of r, or
s, u, t, v be estimated directly and from the outset in
the direction of r. But this is something that a person
only can know who has antecedently acquired a very
extensive experience concerning the composition and
resolution of forces. We reach most simply the knowl-
edge of the fact referred to, by starting from the knowl-
edge of another fact, namely that a force p acts in a
direction making with its own an angle a, with an effect
equivalent to p • cos a. As a fact, this is the way the
perception of the truth was reached.

Let the coplanar forces P, P ', P". . . be applied to

2P cosa — II cosp — A,
— ÇEPsinor — IT sinp)= B,

tanr == -
B
A ’

it follows that
A cosd + B sinâ =.*VA2 + B2 sin ( Ô + r) = 0,

subsist for every ô only on the con-which equation can
dition that

A = XPcosa — 77 cos p= 0
and

B= ( IZPsina — 77 sinp)= 0 ;
whence results

77 cos p = 2Pcosa
Ilsinp= 2Psma.

From these equations follow for 77 and p the deter-minate values

n= l/[(^sina)2 -f (.S.Pcosa')*]and
TZPsina
2PCOSOL

tan p=
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as we have to do with uniform or symmetrical systemsof forces, all equal in magnitude, each can be affectedby the others, even if they are not independent, onlyto the same extent and in the
three forces, however, of which two are symmetrical
to the third, and even then the reasoning, provided
we admit that the forces may not be independent, pre-sents considerable difficulties.

Granting, therefore, that the effect of a force in every
direction can be measured by its projection on that di-

other sup- rection, then truly every system of forces acting at aposition.

The actual
results not
deducible

same way. Given butpoint is replaceable by a single force, determinate in
gnitude and direction. This reasoning does not hold,

however, if we put in the place of cosa any general func-
tion of an angle, (p (or). Yet if this be done, and we still
regard the resultant as determinate, we shall obtain for
<p ( cx ) y as may be seen, for example, from Poisson’s
deduction, the form cos a. The experience that several
forces acting at a point are always, in every respect,
replaceable by a single force, is therefore mathemat-
ically equivalent to the principle of the parallelogram
of forces or to the principle of projection. The prin-
ciple of the parallelogram or of projection is, how-
ever, much easier reached by observation than the

general experience above mentioned by statical
And as a fact, the principle of the par-

ma

11. Once we have been led, directly or indirectly, Discussionto the principle of the parallelogram of forces, once weacter of thehave perceived it, the principle is just as much an ob-
pnnciple*

servation as any other. If the observation is recent, itof course is not accepted with the same confidence asold and frequently verified observations. We then seekto support the new observation by the old, to demon-strate their agreement. By and by the new observa-tion acquires equal standing with the old. It is thenno longer necessary constantly to reduce it to the lat-Deduction of this character is expedient only incases in which observations that

General re- more
marks. observations.

ter.It would require in-allelogram was reached earlier,

deed an almost superhuman power of perception to
deduce mathematically, without the guidance of any
further knowledge of the actual conditions of the ques-
tion, the principle of the parallelogram from the gen-
eral principle of the equivalence of several forces to a

We criticise accordingly in the deduction

are difficult directlyto obtain can be reduced to simpler ones more easilyobtained, as is done with the principle of the parallel-ogram of forces in dynamics.

r'

12. The proposition of the parallelogram of forces Experimen-has also been illustrated by experiments especially tion of theinstituted for the purpose. An apparatus very wellacontnv-
by

adapted to this end was contrived by Cauchy. The Cauchy,centre of a horizontal divided circle (Fig. 37) is markedby a pin. Three threads/,/', /", tied together at apoint, are passed over grooved wheels
can be fixed at any point in the circumference of thecircle, and are loaded by the weights If threeequal weights be attached, for instance, and the wheelsplaced at the marks of division o, 120, 240, the point at

single one.
of Bernoulli this, that that which is easier to observe
is reduced to that which is more difficult to observe.
This is a violation of the economy of science. Bernoulli
is also deceived in imagining that he does not proceed

r, r , r", whichfrom any fact whatever of observation.
We must further remark that the fact that the forces

sumption of are independent of one another, which is involved inBernoulli.

An addi-

the law of their composition, is another experience
which Bernoulli throughout tacitly employs. As long
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Experimen- which the strings are knotted will assume a positiontal illustra- 0 1tionof the just above the centre of the circle. Three equal forcesprinciple. . 1acting at angles of 120°, accordingly, are in equilib-

rium.

49

IV.

THE PRINCIPLE OF VIRTUAL VELOCITIES,

i . We now pass to the discussion of the principle The truth
of the prin-

of virtual (possible) displacements.* The truth ofcipiefirst

this principle was first remarked by STEVINUS at the by Stevinus

close of the sixteenth century in his investigations on
the equilibrium of pulleys and combinations of pulleys.
Stevinus treats combinations of pulleys in the same
way they are treated at the present day. In the case

*Termed in English the principle of “ virtual velocities,” this being the
original phrase (vitesse virtuelle ) introduced by John Bernoulli. See the
text, page 56. The word virtualis seems to have been the fabrication of Duns
Scotus (see the Century Dictionary, under virtual ) ; but virtualiter was used
by Aquinas, and virtus had been employed for centuries to translate rYuvafuç,
and therefore as a synonym for potentia. Along with many other scholastic
terms, virtual passed into the ordinary vocabulary of the English language.
Everybody remembers the passage in the third book of Paradise Lost,

“ Love not the heav’nly Spirits, and how thir Love
Express they, by looks onely, or do they mix
Irradiance, virtual or immediate touch ? ” — Milton.

So, we all remember how it was claimed before our revolution that America
had “ virtual representation ” in parliament. In these passages, as in Latin,
virtual means : existing in effect, but not actually. In the same sense, the
word passed into French ; and was made pretty common among philosophers
by Leibnitz. Thus, he calls innate ideas in the mind of a child, not yet brought
to consciousness, “ des connoissances virtuelles.” This does not mean “ pos-
sible,” but just what virtual ordinarily means now, as just defined.

The principle in question was an extension to the case of more than two
forces of the old rule that “ what a machine gains in power, it loses in velocity
Bernoulli’s modification reads that the sum of the products of the forces into
their virtual velocities must vanish to give equilibrium. He says, in effect :
give the system any possible and infinitesimal motion you please, and then
the simultaneous displacements of the points of application of the forces,
resolved in the directions 0/ those forces, though they are not exactly velocities,
since they are only displacements in one time, are, nevertheless, virtually
velocities, for the purpose of applying the rule that what a machine gains in
power, it loses in velocity.

Thomson and Tait say : “ If the point of application of a force be dis-
placed through a small space, the resolved part of the displacement in the di-
rection of the force has been called its Virtual Velocity. This is positive or
negative according as the virtual velocity is in the same, or in the opposite,
direction to that of the force.” This agrees with Bernoulli’s definition which
may be found in Varignon’s Nouvelle mécanique, Vol. II, Chap, ix.— Trans.

Fig- 37-
If we wish to represent another and different case,

we may proceed as follows. We imagine any two
forces /, q acting at any angle a, represent (Fig. 38)them by lines, and construct on them as sides a paral-

lelogram. We supply, further, a force
equal and opposite to the resultant r.
The three forces /, q, — r hold each

a other in equilibrium, at the angles vis-j ible from the construction.

A T

We now
place the wheels of the divided circle
the points of division o, 01, a -f- ft, and
load the appropriate strings with the
weights /, q, r. The point at which the

P V on
p

Fig. 38.

strings are knotted will come to a position exactly
above the middle point of the circle.
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Stevinus’s a (Fig. 30) equilibrium obtains, when an equal weight P
investiga-
tions on '

equilibrium
of pulleys.

In a system of pulleys in equilibrium, therefore, His conciu-
the products of the weights into the displacements germ of the

they sustain are respectively equal. (“ Ut spatium pnnclple‘

agentis ad spatium patientis, sic potentia patientis ad
potentiam agentis.,,— Stevini, Hypomnemata, T. IV,
lib. 3, p. 172.) In this remark is contained the germ
of the principle of virtual displacements.

2. GALILEO recognised the truth of the principle in Galileo's
another case, and that a somewhat more general one ; of the prin-
namely, in its application to the inclined plane. On case of the

an inclined plane (Fig. 40), plane,

the length of which AB is

l" . 9
a m

the is suspended at each side, for reasons already familiar.
In b, the weight P is suspended by two parallel cords,

db ca
9 u$

WN

<V p
p 8
2

p p
v :

p H N

adouble the height BC, a load
Q placed on AB is held in
equilibrium by the load P act -
ing along the height BC, if
P= <2/2. If the machine be
set in motion, P= Q/ 2 will descend, say, the vertical
distance h, and Q will ascend the same distance h along
the incline AB.

PP UP
Fig. 39

each of which accordingly supports the weight P/2,
with which weight in the case of equilibrium the free
end of the cord must also be loaded. In c, P is sus-

pended by six cords, and the weighting of the free ex-
tremity with P/6 will accordingly produce equilibrium.
In d, the so-called Archimedean or potential pulley,* P
in the first instance is suspended by two cords, each

of which supports Pj2 ; one of these two cords in turn

is suspended by two others, and so on to the end, so

that the free extremity will be held in equilibrium by
the weight P/ S.
of pulleys displacements corresponding to a descent of

the weight P through the distance h, we shall observe
that as a result of the arrangement of the cords

a distance /1 in a
2/1 “ b
6h “ c
8h “ d

Fig. 40.

Galileo, now, allowing the phenom-
enon to exercise its full effect on his mind, perceives,
that equilibrium is determined not by the weights
alone but also b)' their possible approach to ami
sioit from the centre of the earth.

reces-
Thus, while Q/2 de-

scends along the vertical height the distance h, Q as-
cends h along the inclined length, vertically, however,
only h/ 2 ; the result being that the products Q(h/ 2)
and ( Q/ 2 )h come out equal on both sides. The eluci-
dation that Galileo’s observation affords and the light Character
it diffuses, can hardly be emphasised strongly enough. Observation
The observation is so natural and unforced,
that wfc admit it at

If we impart to these assemblages

the counterweight P
P/ 2

( i ( (
( (c e ;will ascend \ moreover,

What can appear simpler
motion takes place in a system of heavy

t (P/6 i ct (( ( once.
than that( t t (P/ Si (1 1 no

* These terms are not in use in English.— Trans.
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bodies when on the whole no heavy mass can descend.
not descend. The Torricellian form of expression, how-
ever, contains in no respect more than the Galilean.

4. As with systems of pulleys and with the inclined The appu-
plane, so also the validity of the principle of virtual the Princi-
displacements is easily demonstrable for the other ma- Sther0ma-
chines : for the lever, the wheel and axle, and the rest.
In a wheel and axle, for instance, with the radii R, r
and the respective weights P, Q, equilibrium exists,
as we know, when PR= Qr.
and axle through the angle a, P will descend Ra, and
Q will ascend ra. According to the conception of
Stevinus and Galileo, when equilibrium exists, P. Ra
= Q • ra, which equation expresses the same thing as
the preceding one.

Such a fact appears instinctively acceptable,

o f i t w t h
Galileo’s conception of the inclined plane strikes

thatofste- us as much less ingenious than that of Stevinus, but
vinus.

Comparison

we recognise it as more natural and more profound. It
is in this fact that Galileo discloses such scientific great- chines.

: that he had the intellectual audacity to see, in aness
subject long before investigated, more than his prede-
cessors had seen, and to trust to his own perceptions.
With the frankness that was characteristic of him he If we turn the wheel

unreservedly places before the reader his own view,
together with the considerations that led him to it.

3. TORRICELLI, by the employment of the notion of

“ centre of gravity,” has put Galileo’s principle in a
form in which it appeals still more to our instincts, but
in which it is also incidentally applied by Galileo him-

According to Torricelli equilibrium exists in a

The Torri-
cellian
form of the
PrinciPle.

5. When we compare a system of heavy bodies inThecrite-
which motion is taking place, with a similar system
which is in equilibrium, the question forces itself
us : What constitutes the difference of the two cases?
What is the factor operative here that determines
tion, the factor that disturbs equilibrium,— the factor
that is present in the one case and absent in the other?
Having put this question to himself , Galileo discovers
that not only the weights, but also the distances of
their vertical descents (the amounts of their vertical
displacements) are the factors that determine motion.
Let us call P, P ', P" . . . the weights of a system of
heavy bodies, and h, h' , IP . . . their respective, simul-
taneously possible vertical displacements, where dis-
placements downwards are reckoned as positive, and
displacements upwards as negative. Galileo finds
then, that the criterion or test of the state of equilib-
rium is contained in the fulfilment of the condition •
Ph + PI/ + pn h"

rion of the
state of
equilibriumself.

machine when, on a displacement being imparted to it,
the centre of gravity of the weights attached thereto
cannot descend. On the supposition of a displacement
in the inclined plane last dealt with, P, let us say, de-
scends the distance //, in compensation wherefor Q

upon

mo-

Assuming that the centrevertically ascends h . sin a.
of gravity does not descend, we shall have

P. /1 — Q . h sin a
- = 0, or P. h — Q . h sin a= 0,

P + Q
or

PC
P= Q sin a= Q

If the weights bear to one another some different pro-
portion, then the centre of gravity can descend when a
displacement is made, and equilibrium will not* obtain.
We expect the state of equilibrium instinctively, when
the centre of gravity of a system of heavy bodies

AB’

t* . . . = 0. The sum Ph -f- P'h'
"T P’h"-\- . . . is the factor that destroys equilibrium,

can-
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or a similar character must, however, in the necessity of
the case precede any judgment of ours with regard to
the phenomenon in question. The particular way in
which the disturbance of equilibrium depends on the
conditions mentioned, that is to say, the significance
of the statical moment (/’Z) or of the work (TV/), is
even less capable of being philosophically excogitated
than the general fact of the dependence.

7. When two equal weights with equal and op- Reduction

posite possible displacements are opposed to each erai case of
1 • -1 , . r .... the princi-

other, we recognise at once the subsistence 01 equilib- pie to the

We might now be tempted to reduce the more speS^case

general case of the weights P, P' with the capacities of
displacement h,/i , where
Ph P'h' , to the sim -
pler case. Suppose we
have, for example, (Fig. Q

41) the weights 3 P and
4 P on a wheel and axle

Owing to its im-the factor that determines motion,

portance this sum has in recent times been character-

ised by the special designation work.
6. Whereas the earlier investigators, in the compari-

son of cases of equilibrium and cases of motion, directed

their attention to the weights and their distances from

the axis of rotation and recognised the statical mo-
the decisive factors involved, Galileo fixes

There is no
necessity in
our choice
of the cri-
teria.

merits as
his attention on the weights and their distances of de-

scent and discerns work as the decisive factor involved.

It cannot of course be prescribed to the inquirer

what mark or criterion of the condition of equilibrium rium.

he shall take account of, when several are present to

The result alone can determine whether
But if we cannot, for rea-choose from. -3

his choice is the right one.
already stated, regard the significance of the stat-

ical moments as given independently of experience, as

something self -evident, no more can we entertain this

view with respect to the import of work. Pascal errs,

and many modern inquirers share this error with him,
when he says, on the occasion of applying the principle

of virtual displacements to fluids: “ Etant clair que c’est

la même chose de faire faire un pouce de chemin à cent

livres d’eau, que de faire faire cent pouces de chemin

à une livre d’eau.” This is correct only on the suppo-

-2
a b c

And all are SOnS
derived
from the
same
source.

is ma~o+ / d e / g
+ 2
4 3with the radii 4 and 3.

We divide the weights
into equal portions of the
definite magnitude P, which
d> /

+ 4
F ig- 41.

we designate by a, h, c,
We then transport a, b, c to the level + 3>

and d, e, f to the level — 3. The weights will, of
themselves, neither enter

> 0

on this displacement nor
will they resist it. We then take simultaneously the
weight g at the level 0 and the weight a at the level
+ 3, push the first upwards to — 1 and the second
downwards to -|- 4, then again, and in the same way,
g to — 2 and b to -f- 4, g to — 3 and c to + 4. To all
these displacements the weights offer no resistance,
nor do they produce them of themselves. Ultimately,
however, a, b, c (or 3P) appear at the level -f- 4 and

sition that we have already come to recognise work as

the decisive factor ; and that it is so is a fact which
alone can disclose.experience

If we have an equal-armed, equally-weighted lever

before us, we recognise the equilibrium of the lever as

the only effect that is uniquely determined, whether we

regard the weights and the distances or the weights

and the vertical displacements as the conditions that
Experimental knowledge of this

Illustration
of the pre-
ceding re-
marks.

determine motion.
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d, ey fy g (or 4P) at the level — 3. Consequently,
with respect also to the last-mentioned total displace-
ment, the weights neither produce it of themselves

do they resist it ; that is to say, given the ratio of
displacement here specified, and the weights will be
in equilibrium. The equation 4.3P — 3 - 4/> = 0 is,
therefore, characteristic of equilibrium in the case as-

The generalisation ( .Ph — P'h' = 0) is ob-
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jections /, /" of these displacements on the direc
tions of the forces. These projections we consider of “ he'pdn"
positive when they fall in
the direction of the force,
and negative when they fall p
in the opposite direction. /
The products Ppy P' p’ ,
P" p" , • - • are called virtual
moments, and in the two
cases just mentioned have
contrary signs. Now, the principle asserts, that for the

of equilibrium Pp -f P' p' -f- P" p" -j- . . . = 0, or
more briefly 2Pp= 0.

The gen-
eralisation. - General

ciple.
.APÆ. PB P•nor

C

sumed. ip"

vious.
If we carefully examine the reasoning of this case,
shall quite readily perceive that the inference in-

ence.einfcr volved cannot be drawn unless we take for granted
that the order of the operations performed and the path
by which the transferences are effected, are indifferent,
that is unless we have previously discerned that work

We should commit, if we accepted

Fig. 42.The condi-
tions and
character we

case

9. Let us now examine a few points more in detail. Detailed
Previous to Newton a force was almost universally tion of the
conceived simply as the pull or the pressure of a heavy pnnciple-
body. The mechanical researches of this period dealt
almost exclusively with heavy bodies. When, now,
in the Newtonian epoch, the generalisation of the idea
of force was effected, all mechanical principles known
to be applicable to heavy bodies could be transferred
at once to any forces whatsoever,

replace every force by the pull of a heavy body
string. In this sense

is determinative,

this inference, the same error that Archimedes com-
mitted in his deduction of the law of the lever ; as has
been set forth at length in a preceding section and
need not in the present case be so exhaustively dis-
cussed.
sented is useful, in the respect that it brings palpably
home to the mind the relationship of the simple and

Nevertheless, the reasoning we have pre-
It was possible to

on a
the complicated cases.

8. The universal applicability of the principle of
may also apply the principle

of virtual displacements, at first discovered only for
heavy bodies, to any forces whatsoever.

Virtual displacements are displacements consistent Definition
with the character of the connections of
with one another.

we
The univer-
bnifyPof,the virtual displacements to all cases of equilibrium, was

perceived by JOHN BERNOULLI ; who communicated his
discovery to Varignon in a letter written in 1717. We
will now enunciate the principle in its most general

At the points A, Bf C . . . (Fig. 42) the forces
P, P\ P" . . . are applied. Impart to the points any
infinitely small displacements v, 7.’’ , 7V . . . compatible
with the character of the connections of the points (so-
called virtual displacements), and construct the pro-

principle
first per-
ceived by
John Ber-
noulli.

of virtuala system and dispi
ments.ace-

If, for example, the two points ofa system, A and B, at which forces act, are connected(Fig. 43, 1) by a rectangularly bent lever, free to re-
volve about C, then, if CB= 2CA, all virtual dis-placements of B and A are elements of the arcs of cir-cles having C as centre ; the displacements of B

form.

are

^ ^ muHmmm
in- "h «I #1"'
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always double the displacements of A, and both
every case at right angles to each other. If the points
A, B (Fig. 43, 2) be connected by a thread of the length

, /, adjusted to slip through
stationary rings at C and D,
then all those displacements

D of A and B are virtual in
which the points referred to

within two spherical surfaces described

are m if all the material points of the system on which forces General re-
act, are independent cf each other. Each point thus
conditioned can be in equilibrium only in the event
that it is not movable in the direction in which the force
acts. The virtual moment of each such point vanishes
separately. If some of the points be independent of
each other, while others in their displacements are de-
pendent on each other, the remark just made holds
good for the former ; and for the latter the fundamental
proposition discovered by Galileo holds, that the sum
of their virtual moments is equal to zero. Hence, the
sum-total of the virtual moments of all jointly is equal
to zero.

10. Let us now endeavor to get some idea of the
significance of the principle, by the consideration of a
few simple examples that cannot be
dealt with by the ordinary method
of the lever, the inclined plane, and
the like.

The differential pulley of Wes-
ton (Fig. 45) consists of two coax-
ial rigidly connected cylinders of
slightly different radii r 1 and r 9

A cord or chain is passed
round the cylinders in the manner
indicated in the figure. If we pull
in the direction of the arrow with
the force T5, and rotation takes place
through the angle cp, the weight Q attached below will
be raised.
between the two virtual moments involved the
tion

marks.

A
A

1

B
Fig- 43-

move upon or
with the radii and r 2 about C and D as centres,
where r 1 + r2 + CD = /.

The use of infinitely small displacements instead ofThe reason

of"infinitely finite displacements, such as Galileo assumed, is justi-
piacemerits, fied by the following consideration. If two weights

are in equilibrium on an inclined plane (Fig. 44), the
equilibrium will not be disturbed if the inclined plane,
at points at which it is not in immediate contact with

the bodies considered, passes into
a surface of a different form. The

Examples.

essential condition is, therefore,
the momentary possibility of dis-
placement in the momentary con-

figuration of the system. To judge of equilibrium
must assume displacements vanishingly small and such
only ; as otherwise the system might be carried over
into an entirely different adjacent configuration, for
which perhaps equilibrium would not exist.

That the displacements themselves are not decisive

but only the extent to which they occur in the direc-
tions of the forces, that is only their projections on the
lines of the forces, was, in the case of the inclined plane,
perceived clearly enough by Galileo himself.

With respect to the expression of the principle, it
will be observed, that no problem whatever is presented

The differ-
ential pul-
ley of Wes-
ton.

Fig. 44 - we

A limita-
tion.

Fig. 45-
In the case of equilibrium there will exist

equa-

(;h — 7' A f -— cp= Prx cp, or P — Q 1 — rQ- 2 2r

' l|||l'-nii mpppp
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fastened. If from these rods we suspend two equal
weights P, equilibrium will subsist independently of
the position of the points
of suspension, because on
displacement the descent
of the one weight is always
equal to the ascent of the
other.

A wheel and axle of weight Q (Fig. 46), which on
the unrolling of a cord to whFh the weight P is at-

1 tached rolls itself up on a second cord
wound round the axle and rises, gives
for the virtual moments in the case of
equilibrium the equation

P { R — r ) <p= Q rep, or P=

A suspend-
ed wheel
and axle.

A

B
Qr

R — r *

At three fixed points A,
B, C (Fig. 49) let pulleys

Discussion
of the case
of equilib-rium of
three knot-
ted strings

In the particular case R — r= 0, we
must also put, for equilibrium, Qr — 0, or,
for finite values of r, Q=0. In reality the
string behaves in this case like a loop in
which the weight Q is placed. The lat-

ter can, if it be different from zero, continue to roll itself
downwards on the string without moving the weight P.
If, however, when R= r, we also put Q= 0, the re-
sult will be P — %, an indeterminate value. As a mat-
ter of fact, every weight P holds the apparatus in equi-
librium, since when R = r none can possibly descend.

A double cylinder (Fig. 47) of the radii r, R lies with
friction on a horizontal surface, and a force Q is brought

to bear on the string at-
tached to it. Calling the re-
sistance due to friction P,
equilibrium exists when
P=(R=?/R) Q. UP
( .R — r/R) Q, the cylinder,

Fig. 48.
be placed, over which three strings are passed loaded
with equal weights and knotted at O. In what posi-
tion of the strings will equilibrium exist ? We will call
the lengths of the three strings AO=s , < BO=

Fig. 46.
S 2 *1’

A(

O BP B
A s, O. a.

C { fi
P

O P SJ
A double
cylinder on
a horizon-
tal surface.

c
Fig. 49. F i g- 50.

CO= s3. To obtain the equation of equilibrium, let
us displace the point O in the directions s 2 and ^ the
infinitely small distances d.f 2 and d.r3, and note that by
so doing every direction of displacement in the plane
ABC (Fig. 50) can be produced. The sum of the vir-
tual moments is

Pds2 — Pâs2 cos a -)- PSs2 cos (a -f- /3 )
+ P^s3 — Pds3 cos ft -f PSs 3 cos ( a + fi )

[1 — cos « + cos (« + /?)] d .r 2 + [1 — cos /3
+ cos (a -f /3)] = 0.

But since each of the displacements âs2 , ôs3 is ar-

<2\r

Fig- 47-
on the application of the force, will roll itself up on
the string.

Roberval’s Balance (Fig. 48) consists of a paral-
lelogram with variable angles, two opposite sides of
which, the upper and lower, are capable of rotation
about their middle points A, B. To the two remaining
sides, which are always vertical, horizontal rods are

= 0,
Roberval's
balance. or
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bitrary, and each independent of the other, and may by

themselves be taken =0, it follows that

1 — cos a -f- cos (o' -j- ft ) — 0

1 — cos ft -|- cos (a + /3)=

THE PRINCIPLES OF STATICS.
62 63

small rotation, in consequence of which B and A move The case of

forward the distances ôs and 6s1 at right angles to OA, vo^abfe'
and we also displace the ring the distance 6r along the of its^6

bar. The variable distance OB we will call r, and we tremitles*

will let OA =s= a. For the case of equilibrium we have
then

0.

Therefore
cos a = cos (3,

and each of the two equations may be replaced by

1 — cos a -{- cos 2a = 0;
or cosa —

wherefore a + /3=120°.

Qôr cos { [3 — A') -f- Q^s sin ( ft — <*) +
Bâs1 sin ( a — y)= 0.

As the displacement âr has no effect whatever
the other displacements, the virtual
involved must, by itself , = 0, and since âr may be of
any magnitude we please, the coefficient of this virtual
moment must also =0. We have, therefore,

on
moment therein

Accordingly, in the case of equilibrium, each of the

strings makes with the others angles of 120° ; which is,

directly obvious, since three equal forces
Remarks on
the preced-
ing case. can

moreover,
be in equilibrium only when such an arrangement ex-

This once known, we may find the position of
to ABC in a number of dif -

Q cos ( ft — a)= 0,
or when Q is different from zero,

ft — a= 90°.
Further, in view of the fact that âs1 =(a/r) âs

also have

ists
the point O with respect
ferent ways. We
We construct on

y proceed for instance as follows.
sides,

ma , we
AB, BC, CA, severally, as

equilateral triangles. If we describe circles about these

triangles, their common point of intersection will be

the point O sought ; a result which easily follows from

the well-known relation of the angles at the centre and

circumference of circles.
A bar OA (Fig. 51) is revolvable about O in the

plane of the paper and makes with a fixed straight line
OX the variable angle

At A there is ap-
plied a force P which
makes with OX the

rQ sin ( ft — a) + a P sin (a — y)= 0,
or since sin ( ft — a) = 1,

rQ -fi aP sin (a — y')= 0 ;
wherewith the relation of the two forces is obtained.

11. An advantage, not to be overlooked, which Every gen-every general principle, and therefore also the prin- cipie^n"ciple of virtual displacements, fur- 1 * economy of
nishes, consists in the fact that it I 1zJ * thoufiht '

The case of
a bar re-
volvable
about one
of its ex-
tremities. p a.

A saves us to a great extent the ne- c=cessity of considering every new par- II l
ticular case presented. In the posses-
sion of this principle we need not, for r
example, trouble ourselves about the details
chine.

B
X angle y, and at B, on

a ring displaceable

along the length of the bar, a force Q, making with

OX the angle ft. We impart to the bar an infinitely

0 a
Fig. 51. Fig. 52.

of a ma-
say were so enclosed in aIf a new machine
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box (Fig. 52), that only two levers projected as points
of application for the force P and the weight P' , and

should find the simultaneous displacements of these
levers to be h and h' , we should know immediately that
in the case of equilibrium Ph — P' h!, whatever the
construction of the machine might be. Every principle
of this character possesses therefore a distinct econom-
ical value.

12. We return to the general expression of the prin-
expresskm

1 c^P^e v^ r ^ ua^ displacements, in order to add a few
of the prin- _ further remarks. Ifciple.

another equal and opposite to it, as is the case for ex-
ample in the simple machines, we may restrict ourselves
to the upper sign, to the equation. For if it were pos-
sible for the centre of gravity to ascend in certain
displacements, it would also have to be possible, in
consequence of the assumed reversibility of all the vir-
tual displacements, for it to descend. Consequently,
in the present case, a possible rise of the centre of
gravity is incompatible with equilibrium.

The question assumes a different aspect, however, Thecondi-
tion is, that

when the displacements are not all reversible. 1wo the sum of

bodies connected together by strings can approach moments

each other but cannot recede from each other beyond equal to or
• * 1 i - . less than

the length of the strings. A body is able to slide or
roll on the surface of another body ; it can move away
from the surface of the second body, but it cannot
penetrate it. In these cases, therefore, there are dis-
placements that cannot be reversed. Consequently,
for certain displacements a rise of the centre of gravity
may take place, while the contrary displacements, to
which the descent of the centre of gravity corresponds,
are impossible. We must therefore hold fast to the
more general condition of equilibrium, and say, the sum
of the virtual moments is equal to or less than zero.

13. LAGRANGE in his Analytical Mechanics attempted The La-
w grangian

a deduction of the principle of virtual displacements, deduction. of the prin-which we will now consider. At the points A, B, ciple.
C . . . . (Fig. 54) the forces P, P\ P" . . . . act. We
imagine rings placed at the points in question, and
other rings A\ B' , C’ . . . . fastened to points lying in
the directions of the forces. We seek some common
measure Q / 2 of the forces P, P\ P" . . . . that enables
us to put :

we

Further re-
marks on

at the points A, B,
C . . . . the forces

C p, p' , p" .

the virtual

. . . act,
1 and A P\ p" . . . .

are the projections
of infinitely small

mutually compatible displacements, we shall have for
the case of equilibrium

zero.

Fig- 53-

Pp + P’p' + P"p" + . . . = 0.
If we replace the forces by strings which pass
pulleys in the directions of the forces and attach thereto
the appropriate weights, this expression simply as-
serts that the centre of gravity of the system of weights
as a whole cannot descend. If , however, in certain dis-
placements it were possible for the centre of gravity
to rise, the system would still be in equilibrium, as the
heavy bodies would not, of themselves, enter on any

Modifies- such motion. In this case the sum above given would
tion of the . .
previous

^
be negative, or less than zero. I he general expression

condition, of the condition of equilibrium is, therefore,
Pp + P'p' + P” p" + . . . < 0.

When for every virtual displacement there exists

over
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and having regard for the number of the turns of the
string in each single pulley, is

2np + 2n/ + 2ri'p" + . . . < 0.
Equivalent to this condition, however, is the ex-

pression

QEffected by
means of a
set of pul-
leys and a
single
weight.

2n .\= P t

2«' f
2n".%= P',

where n, ri, ri’ . . . . are whole numbers. Further, we
make fast to the ring A* a string, carry this string back
and forth n times between A' and A, then through B\

, Q = P>

,Q " f p” + •
0 < 0.2« ^ P + 2 P' + *n

or
Pp + P’ p’ + P" p" + . . . < ().

14. The deduction of Lagrange, if stripped of the The: con-
• vincing fc3-rather odd fiction of the pulleys, really possesses con- tures of La

vincing features, due to the fact that the action of a deduction,

single weight is much more immediate to our expe-
rience and is more easily followed than the action of
several weights. Yet. it is not proved by the Lagrangian
deduction that work is the factor determinative of the

C

Q
2

disturbance of equilibrium, but is, by the employment
of the pulleys, rather assumed by it. As a matter of
fact every pulley involves the fact enunciated and rec-
ognised by the principle of virtual displacements. The
replacement of all the forces by a single weight that
does the same work, presupposes a knowledge of the
import of work, and can be proceeded with on this as-
sumption alone. The fact that some certain cases are it is not,

more familiar to us and more immediate to
rience has as a necessary result that we accept them
without analysis and make them the foundation of
deductions without clearly instructing ourselves as to
their real character.

It often happens in the course of the development
of science that a new principle perceived by some in-
quirer in connection with a fact, is not immediately
recognised and rendered familiar in its entire generality.

nr times back and forth between B' and B, then through
Cf , ri’ times back and forth between C and C, and,
finally, let it drop at C\ attaching to it there the weight
Qj2. As the string has, now, in all its parts the ten-
sion Ç/2, we replace by these ideal pulleys all the
forces present in the system by the single force <2/2.
If then the virtual (possible) displacements in any given
configuration of the system are such that, these dis-
placements occurring, a descent of the weight Q/ 2 can
take place, the weight will actually descend and pro-
duce those displacements, and equilibrium therefore
will not obtain. But on the other hand, no motion
will ensue, if the displacements leave the weight Ç/2

in its original position, or raise it. The expression of
this condition, reckoning the projections of the virtual
displacements in the directions of the forces positive,

however, aour expe- proof .

our
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start from any given initial configuration of the system
and pass to any given final configuration, a certain cfpie? pnn*

amount of work will have to be done. Now Maupertuis
observed that the work done when a final configura-
tion is reached which is a configuration of equilibrium,
is generally a maximum or a minimum ; that is, if we
carry the system through the configuration of equilib-
rium the work done is previously and subsequently
less or previously and subsequently greater than at the
configuration of equilibrium itself. For the config
tion of equilibrium

68 69

The expe- Then, every expedient calculated to promote these
dients em- . . - . .. .. .
ployed to ends, is, as is proper and natural, called into service.

newprin*
11 All manner of facts, in which the principle, although

contained in them, has not yet been recognised by in-

quirers, but which from other points of view are more

familiar, are called in to furnish a support for the

It does not, however, beseem mature

Statement

ciples.

new

conception.
science to allow itself to be deceived by procedures of

this sort. If , throughout all facts, we clearly see and dis-
principle which, though not admitting of proof ,

yet be known to prevail’, we have advanced much

farther in the consistent conception of nature than if

suffered ourselves to be overawed by a specious
If we have reached this point of view,

cern a ura-
can

Pp + Pp' + p' p» + . . . = 0,
we that is, the element of the work or the differential (more

correctly the variation) of the work is equal to zero.
If the differential of a function can be put equal to
zero, the function has generally a maximum or mini-
mum value.

Value of the demonstration.
proof

3"eian we shall, it is true, regard the Lagrangian deduction
with quite different eyes ; yet it will engage neverthe-
less our attention and interest, and excite our satis-
faction from the fact that it makes palpable the simi-
larity of the simple and complicated cases.

15. MAUPERTUIS discovered an interesting proposi-
tion relating to equilibrium, which he communicated
to the Paris Academy in 1740 under the name of the

“ Loi de repos. ” This principle was more fully dis-
cussed by EULER in 1751 in the Proceedings of the

Berlin Academy. If we cause infinitely small displace-
ments in any system, we produce
ments Pp -\- P’p* P” p" + . . . which only reduces

to zero in the case of equilibrium. This sum is the

work corresponding to the displacements, or since for

infinitely small displacements it is itself infinitely small,
If the displace-

16. We can produce a very clear representation to Graphical
the eye of the import of Maupertuis’s principle.

We imagine the forces of a
illustration
of the im-. , , port of thesystem replaced by principle.

Lagrange’s pulleys with the weight Q/ 2. We suppose
that each point of the system is restricted to movement
on a certain curve and that the motion is such that
when one point occupies a definite position on its curve
all the other points assume uniquely determined
sitions on their respective curves,

chines

a sum of virtual mo- po-
Tlie Loi de
repos. The simple ma-

Now, whileare as a rule systems of this kind,

imparting displacements to the system, we may carry
a vertical sheet of white paper horizontally over the
weight (2/2, while this ithe corresponding element of work.

continuously increased till a finite displace-

ment is produced, the elements of the work will, by

summation, produce a finite amount of work. So, if we

scending and descending
on a vertical line, so that a pencil which it carries shall
describe

is a

ments are
upon the paper (Fig. 55). When the

pencil stands at the pointsa, c, d of the curve, there
a curve

are,
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every case of equilibrium is not the correspondent of
a maximum or a minimum of work performed. If the
pencil is at f , at a point of horizontal contrary flexure,
the weight in the case of infinitely small displace-
ments neither rises nor falls. Equilibrium exists, al-
though the work done is neither a maximum nor a
minimum. The equilibrium of this case is the so-
called mixed equilibrium *: for some disturbances it is Mixed equi-librium.

, adjacent positions in the system of points at

which the weight Q/ 2 will stand higher or lower than in
The weight will then, if the

and

Interpréta- we See
tion of the
diagram.

the configuration given.
left to itself , pass into this lower position

system be

stable, for others unstable. Nothing prevents us from
regarding mixed equilibrium as belonging to the un-
stable class. When the pencil stands at g, where the
curve runs along horizontally a finite distance, equi-
librium likewise exists. Any small displacement, in
the configuration in question, is neither continued nor
reversed. This kind of equilibrium, to which likewise
neither a maximum nor a minimum corresponds, is
termed [neutral or] indifferent. If the curve described Neutral
by Q/2 has a cusp pointing upwards, this indicates a
minimum of work done but no equilibrium (not even
unstable equilibrium). To a cusp pointing downwards
a maximum and stable equilibrium correspond. In the
last named case of equilibrium the sum of the virtual
moments is not equal to zero, but is negative.

17. In the reasoning just presented, we have as- jhepreced-
sumed that the motion of a point of a system on. one lionappHed
curve determines the motion of all the other points of tomoredif-the system on their respective curves. The movability
of the system becomes multiplex, however, when each
point is displaceable on a surface, in a manner such
that the position of one point on its surface determines

s
2 Id

Fig- 55 -
displace the system with it. Accordingly, under condi-

of this kind, equilibrium does not subsist. If

the pencil stands at e, then there exist only adjacent

configurations for which the weight Q/ 2 stands higher.

But of itself the system will not pass into the last-
named configurations. On the contrary, every dis-
placement in such a direction, will, by virtue of the

tendency of the weight to move downwards, be re-
versed. Stable equilibrium, therefore, is the condition

Stable equi- that corresponds to the lowest position of the weight or to

a maximum of work done in the system. If the pencil

stands at b, we see that every appreciable displace

ment brings the weight Q/ 2 lower, and that the weight

therefore will continue the displacement begun. But,

assuming infinitely small displacements
moves in the horizontal tangent at b, in which event

the weight cannot descend. Therefore, unstable equi-

Unstabie librium is the state that corresponds to the highest position
equilibrium^ ^ jie Wcight Q/ 2, or to a minimum of work done in the

It will be noted, however, that conversely

tions
equilibrium

librium.
ficult cases.

the pencil

* This term is not used in English, because our writers hold that noequilibrium is conceivable which is not stable or neutral for some possibledisplacements. Hence what is called mixed, equilibrium in the text is calledunstable equilibrium by English writers, who deny the existence of equilibriumunstable in every respect.— Trans.
system.
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uniquely the position of all the other points on their
surfaces. In this case, we are not permitted to consider
the curve described by Q/2, but are obliged to picture
to ourselves a surface described by Q/ 2. If , to go a

step further, each point is movable throughout a space,
longer represent to ourselves in a purely geo-

metrical manner the circumstances of the motion, by
of the locus of (?/2. In a correspondingly higher

and axle (Fig. 56) with a non-circular wheel. It would
not repay the trouble, however, to enter into the de-
tails of the reasoning indicated in this case, since we
perceive at a glance its feasibility.

18. If we know the relation that subsists between The prin-
the work done and the so-called vis viva of a sys- Courtivron.
tern, a relation established in dynamics,
easily at the principle communicated by COURTIV
1749 to the Paris Academy, which is this : For the

stable
unstable

maximum
minimum’

we can no
we arrive

RON 111means
degree is this the case when the position of one of the
points of the system does not determine conjointly all
the other positions, but the character of the system’s

motion is more multiplex still. In all these cases, how-
the curve described by Q/2 (Fig. 55)

configuration of equilibrium, at which the

work done is a the vis viva of the system,

in its transit through
can serveever,

us as a symbol of the phenomena to be considered. In
these cases also we rediscover the Maupertuisian pro-

in motion, is also a nidXlinum
minimum

these configurations.
positions.

We have also supposed, in our considerations up to
this point, that constant forces, forces independent of
the position of the points of the system, are the forces
that act in the system. If we assume that the forces

the position of the points of the system

19. A heavy, homogeneous triaxial ellipsoid resting lustrationhorizontal plane is admirably adapted to illustrate ouskindsof
the various classes of equilibrium. When the ellip-
soid rests on the extremity of its smallest axis, it is in
stable equilibrium, for any displacement it may suffer
elevates its centre of gravity,

axis, it is in unstable equilib
If the ellipsoid stand

its mean axis, its equilibrium is
mixed. A homogeneous sph
or a
der

Further ex-
tension of
the same
idea.

on a

do depend on
(but not on the time), we are no longer able to conduct

operations with simple pulleys, but
If it rest on its longest

our
must devise apparatus the force active in
which, still exerted by Q/2, varies with the
displacement : the ideas we have reached,
however, still obtain,

descent of the weight Qf 2 is in every case
the measure of the work performed, which

num. on
b

ere
homogeneous right cylin-

on a horizontal plane illus-
trates the

Tto The depth of the
Fig. 57.

of indifferent equilibrium. In Fig. 57have represented the paths of the centre of gravity
of a cube rolling on a horizontal plane about one of its
edges. The position a of the centre of gravity is the
position of stable equilibrium, the position b, the posi-
tion of unstable equilibrium.

case
we

is always the same in the same configura-
tion of the system and is independent of

A contrivance which would
Fig. 56.

the path of transference,

develop by means of a constant weight a force varying
with the displacement, would be, for example, a wheel
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20. We will now consider an example which at

first sight appears very complicated but is elucidated
at once by the principle of virtual displacements. John
and James Bernoulli, on the occasion of a conversa-
tion on mathematical topics during a walk in Basel,
lighted on the question of what form a chain would
take that was freely suspended and fastened at both
ends. They soon and easily agreed in the view that
the chain would assume that form of equilibrium at
which its centre of gravity lay in the lowest possible
position. As a matter of fact we really do perceive
that equilibrium subsists when all the links of the chain
have sunk as low as possible, when none can sink lower
without raising in consequence of the connections of
the system an equivalent mass equally high or higher.
When the centre of gravit}’- has sunk as low as it pos-
sibly can sink, when all has happened that can happen,
stable equilibrium exists. The physical part of the
problem is disposed of by this consideration. The de-
termination of the curve that has the lowest centre of

The caten-
ary.

gravity for a given length between the two points A,
H , is simply a mathematical problem. (See Fig. 58.)

21. Collecting all that has been presented, we see,The princi-
ple the rec- that there is contained in the principle of virtual dis-
ognition of
a fact. placements simply the recognition of a fact that was

instinctively familiar to us long previously, only that
we had not apprehended it so precisely and clearly.
This fact consists in the circumstance that heavy
bodies, of themselves, move only downwards. If sev-
eral such bodies be joined together so that they can
suffer no displacement independently of each other,
they will then move only in the event that some heavy
mass is on the 7uhole able to descend, or as the prin-
ciple, with a more perfect adaptation of our ideas to
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teaches, more brains are required for this than is gen-
erally supposed. When the most important facts
once furnished, we are then placed in a position to
work them out deductively and logically by the meth-
ods of mathematical physics; we can then organise the
department of inquiry in question, and show that in the
acceptance of some one fact a whole series of others is
included which were not to be immediately discerned
in the first. The one task is as important as the other.
We should not however confound the one with the

what this the facts, more exactly expresses it, only in the event
fact is. that work can be performed. If, extending the notion

of force, we transfer the principle to forces other than

those due to gravity, the recognition is again con-
tained therein of the fact that the natural occurrences
in question take place, of themselves, only in a definite

and not in the opposite sense. Just as heavy

bodies descend downwards, so differences of tempera-
and electrical potential cannot increase of their

accord but only diminish, and

are

sense

ture
If occur-so on.own

rences of this kind be so connected that they can take
place only in the contrary sense, the principle then es-

tablishes, more precisely than our instinctive appre-
hension could do this, the factor work as determinative

The

other. We cannot prove by mathematics that nature
must be exactly what it is. But we can prove, that
one set of observed properties determines conjointly
another set which often are not directly manifest.

Let it be remarked in conclusion, that the princi- Every gon-
ple of virtual displacements, like every general prin- pie brings*

ciple, brings with it, by the insight which it furnishes
disillusionment as well as elucidation.

and decisive of the direction of the occurrences,

equilibrium equation of the principle may be reduced
to the trivial statement, that when noth- with it dis-, illusion-

T , 1 • . , ment asIt brings with well as elu -. . . cidation.
in every case
ing can happen nothing does happen.

22. It is important to obtain clearly the perception, it disillusionment to the extent that we recognise m it
facts which were long before known and even instinct-
ively perceived, our present recognition being simply
more distinct and more definite ; and elucidation, in
that it enables

The prin-
fight of

1 le that we have to deal, in the case of all principles,
merely with the ascertainment and establishment of a

fact. If we neglect this, we shall always be sensible
of some deficiency and will seek a verification of the

principle, that is not to be found. Jacobi states in his

Lectures on Dynamics that Gauss once remarked that

Lagrange’s equations of motion had not been proved,

but only historically enunciated. And this view really

seems to us to be the correct one in regard to the prin-

Gauss’s
view.

us to see everywhere throughout the
most complicated relations the same simple facts.

v.

RETROSPECT OF THE DEVELOPMENT

i. Having passed successively in review the prin- Review of. . . . , , statics as açiples of statics, we are now in a position to take a whole,brief supplementary survey of the development of the
principles of the science as a whole. This development,falling as it does in the earliest period of mechanics,— the period which begins in Grecian antiquity and

OF STATICS.
ciple of virtual displacements.

The task of the early inquirers, who lay the foun-
f dations of any department of investigation, is entirely

The differ-
ent tasks of
early and o:

fnqufÆrsln different from that of those who follow. It is the busi-
of the former to seek out and to establish the

facts of most cardinal importance only; and, as history
any depart-
ment. ness
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reaches its close at the time when Galileo and his

younger contemporaries were inaugurating modern me-

chanics, — illustrates in an excellent manner the pro-
of the formation of science generally. All con-

on the contrary, it can furnish only a rough outline of
the fact, one-sidedly emphasising the feature that is of
importance for the given technical (or scientific) aim in

What aspects of a fact are taken notice of, will
consequently depend upon circumstances, or even on Their form

the caprice of the observer. Hence there is always op-
portunity for the discovery of new aspects of the fact,
which will lead to the establishment of new rules of
equal validity with, or superior to, the old.
stance, the weights and the lengths of the lever-arms
were regarded at first, by Archimedes, as the conditions

view.
cess
ceptions, all methods are here found in their simplest

form, and as it were in their infancy. These beginnings

The origin point unmistakably to their origin in the experiences of
of science.

__
the manual arts. To the necessity of putting these ex-

periences into communicable form and of disseminating

them beyond the confines of class and craft, science

owes its origin. The collector of experiences of this

kind, who seeks to preserve them in written form, finds

before him many different, or at least supposably differ-
His position is one that enables him

in many as-
pects, acci-
dental.

So, for in-

that determined equilibrium. Afterwards, by Da Vinci
and Ubaldi the weights and the perpendicular distances
from the axis of the lines of force were recognised as
the determinative conditions. Still later, by Galileo,
the weights and the amounts of their displacements,
and finally by Varignon the weights and the directions
of the pulls with respect to the axis were taken as the
elements of equilibrium, and the enunciation of the
rules modified accordingly.

3. Whoever makes a new observation of this kind, ouriiabii-
and establishes such a new rule, knows, of course, our Inth/men-. 11 , , tal recon-error in attempting mentally to represent struction of

the fact, whether by concrete images or in abstract con-
ceptions, which we must do in order to have the mental
model we have constructed always at hand as a substi-
tute for the fact when the latter is partly or wholly in-
accessible.

ent, experiences,

to review these experiences more frequently, more vari-

ously, and more impartially than the individual work-

who is always limited to a narrow province.
ingman,
The facts and their dependent rules are brought into

closer temporal and spatial proximity in his mind and

writings, and thus acquire the opportunity of revealing

their relationship, their connection, and their gradual
The desire to sim-The econo-

my of com- . . . . , . -
munication. transition the one into the other.

plify and abridge the labor of communication suppli

a further impulse in the same direction,

economical reasons, in such circumstances, great num-
bers of facts and the rules that spring from them are

condensed into a system and comprehended in a sbigle

liability toles facts.
Thus, from

The circumstances, indeed, to which
have to attend, are accompanied by so many other,
collateral circumstances, that it is frequently difficult
to single out and consider those that are essential .to the
purpose in view. Just think how the facts of friction,
the rigidity of ropes and cords, and like conditions in
machines, obscure and obliterate the pure outlines of

we
expression.

2. A collector of this character has, moreover, op-
The gene-
terof prin- portunity to take note of some new aspect of the facts
ciples. before him— of some aspect which former observers

had not considered. A rule, reached by the observation
of facts, cannot possibly embrace the entire fact, in all

its infinite wealth, in all its inexhaustible manifoldness;
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Thisliabil- the main facts. No wonder, therefore, that the discov-
ity impels
us to seek

ofïn newfs self, seeks after a proof of the rule whose validity he
The discoverer or verifier

us, enjoy a peculiar authority ; and this is perfectly
warranted by the consideration that it is precisely the
elimination of subjective caprice and of individual er-
ror that is the object aimed at.

erer or verifier of a new rule, urged by mistrust of him-
rules. believes he has discerned,

does not at the outset fully trust in the rule ; or, it may

be, he is confident only of a part of it. So, Archimedes,

for example, doubted whether the effect of the action

of weights on a lever was proportional to the lengths of

the lever-arms, but he accepted without hesitation the
Daniel Bernoulli

In this manner Archimedes proves his law of the illustration
lever, Stevinus his law of inclined pressure, Daniel ^dingue-
Bernoulli the parallelogram of forces, Lagrange the
principle of virtual displacements.

marks.
Galileo alone is

perfectly aware, with respect to the last-mentioned
principle, that his new observation and perception
of equal rank with every former one— that it is derived
from the same source of experience. He attempts no
demonstration.

fact of their influence in some way.

does not question the influence of the direction of a

force generally, but only the form of its influence. As

a matter of fact, it is far easier to observe that a circum-

stance has influence in a given case, than to determine
In the latter inquiry we are in

are

Archimedes, in his proof of the prin-
ciple of the lever, uses facts concerning the centre of
gravity, which he had probably proved by means of the
very principle now in question ; yet

what influence it has.
much greater degree liable to error. The attitude of the

investigators is therefore perfectly natural and defens-
we may suppose

that these facts were otherwise so familiar, as to be un-
questioned, — so familiar indeed, that it may be doubted
whether he remarked that he had employed them in
demonstrating the principle of the lever. The instinc-
tive elements embraced in the views of Archimedes and
Stevinus have been discussed at length in the proper
place.

ible.
a new rule can beThe proof of the correctness of

attained by the repeated application of it, the frequent
of it with experience, the putting of it to

The natural
methods of
proof.

comparison
the test under the most diverse circumstances. This

process would, in the natural course of events, get car-
ried out in time. The discoverer, however, hastens to

reach his goal more quickly. He compares the results

that flow from his rule with all the experiences with

which he is familiar, with all older rules, repeatedly
tested in times gone by, and watches to see if he do

In this procedure, the

4. It is quite in order, on the making of a new dis- Jon&atadcovery, to resort to all proper means to bring the new vanced sci-̂
rule to the test. When, however, after the lapse of a occupy,

reasonable period of time, it has been sufficiently often
subjected to direct testing, it becomes science to recog-
nise that any other proof than that has become quite
needless; that there is no sense in considering a rule
as the better established for being founded on others
that have been reached by the very same method of
observation, only earlier ; that one well-considered and
tested observation is as good as another. To-day, we

not light on contradictions,

greatest credit is, as it should be, conceded to the oldest

and most familiar experiences, the most thoroughly
Our instinctive experiences, those gen-tested rules.

eralisations that are made involuntarily, by the irresist-

ible force of the innumerable facts that press in upon
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6. As already seen, instinctive knowledge enjoys The char-
exceptional confidence. No longer knowing how st?ncdvem

knowledge.

should regard the principles of the lever, of statical
moments, of the inclined plane, of virtual displace-
ments, and of the parallelogram of forces as discovered
by equivalent observations. It is of no importance now,
that some of these discoveries were made directly, while

our
we have acquired it, we cannot criticise the logic by
which it was inferred. We have personally contributed
nothing to its production. It confronts us with a force
and irresistibleness foreign to the products of volun-
tary reflective experience. It appears to us as some-
thing free from subjectivity, and extraneous to us, al-

others were reached by roundabout ways and as de-
pendent upon other observations. It is more in keep-
ing, furthermore, with the economy of thought and with

insight bet- the aesthetics of science, directly to recognise a principle
16F thciD 3r*

tificiaidem- (say that of the statical moments) as the key to the un-
onstration.

though we have it constantly at hand so that it is more
ours than are the individual facts of nature.

All this has often led men to attribute knowledge of its author-
this kind to an entirely different source, namely, to view iuteiy abs°"

it as existing a priori in us (previous to all experience).
That this opinion is untenable was fully explained in
our discussion of the achievements of Stevinus. Yet

derstanding of all the facts of a department, and really
how it pervades all those facts, rather than to hold

ourselves obliged first to make a clumsy and lame de-
duction of it from unobvious propositions that involve
the same principle but that happen to have become
earlier familiar to us. This process science and the in-
dividual (in historical study) may go through once for
all. But having done so both are free to adopt a more
convenient point of view.

5. In fact, this mania for demonstration in science
results in a rigor that is false and mistaken. Some pro-
positions are held to be possessed of more certainty
than others and even regarded as their necessary and
incontestable foundation ; whereas actually no higher,
or perhaps not even so high, a degree of certainty at-
taches to them,

gree of certainty which exact science aims at, is not at-
tained here. Examples of such mistaken rigor are to
be found in almost every text-book. The deductions
of Archimedes, not considering their historical value,
are infected with this erroneous rigor. But the most
conspicuous example of all is furnished by Daniel Ber-
noulli’s deduction of the parallelogram of forces { Com-
ment , Acad. Petrop. T. I.).

see su-
preme.

even the authority of instinctive knowledge, however
important it may be for actual processes of develop-
ment, must ultimately give place to that of a clearly and
deliberately observed principle. Instinctive knowledge
is, after all, only experimental knowledge, and as such
is liable, we have seen, to prove itself utterly insuffi-
cient and powerless, when some new region of expe-
rience is suddenly opened up.

7. The true relation and connection of the different The true re-
principles is the historical one. The one extends farther principlesc
in this domain, the other farther in that,

standing that some

The mis-
take of the
mania for
demonstra-
tion.

XT . , an histori-JNOtWlth- cal one.
one principle, say the principle of

virtual displacements, may control with facility a
greater number of cases than other principles, still
no assurance can be given that it will always maintain
its supremacy and will not be outstripped by
principle. All principles single out, more or less arbi-
trarily, now this aspect now that aspect of the samefacts, and contain an abstract summarised rule for the

Even the rendering clear of the de-

some new

H»*wwmir
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refigurement of the facts in thought. We can never

assert that this process has been definitively completed.

Whosoever holds to this opinion, will not stand in the

of the advancement of science.

resources of our memory, and are also unable to com- The com-

municate our sensations. Since it is possible, how- “«“retail
forces.

to represent every condition that determinesever,
motion by a weight, we arrive at the perception that

way
8. Let us, in conclusion, direct our attention for a

Force is
all circumstances determinative of motion (all forces)

alike in character and may be replaced and meas-

ured by quantities that stand for weight. The meas-
urable weight serves us, as a certain, convenient, and
communicable index, in mechanical researches, just as
the thermometer in thermal researches is an exacter

Conception
of force in
statics. moment to the conception of force in statics,

any circumstance of which the consequence is motion.
Several circumstances of this kind, however, each single

are

of which determines motion, may be so conjoined
one
that in the result there shall be no motion. Now stat-
ics investigates what this mode of conjunction, in gen-
eral terms, is.
about the particular character of the motion condi-
tioned by the forces. The circumstances determinative

of motion that are best known to us, are* our own vo-

substitute for our perceptions of heat. As has pre- The idea of

viously been remarked, statics cannot wholly rid itself auxmary"
of all knowledge of phenomena of motion. This par- suTtic^ m

ticularlv appears in the determination of the direction
of a force by the direction of the motion which it would

Statics does not further concern itself

In the motions which
The origin litional acts— our innervations.

ourselves determine, as well as in those to which
produce if it acted alone. By the point of application
of a force we mean that point of a body whose motion
is still determined by the forcq when the point is freed
from its connections with the other parts of the body.

Force accordingly is any circumstance that de- Thegene-
termines motion ; and its attributes may be stated asbutesof

follows.

of the no-
tion of
pressure. we

forced by external circumstances, we are alwayswe are
sensible of a pressure. Thence arises our habit of rep-
resenting all circumstances determinative of motion as

something akin to volitional acts— as pressures.
attempts we make to set aside this conception, as sub-
jective, animistic, and unscientific, fail invariably. It

cannot profit us, surely, to do violence to our own nat-
ural-born thoughts and to doom ourselves, in that re-

We shall subse-

The
force.

The direction of the force is the direction of
motion which is determined by that force, alone. The
point of application is that point whose motion is de-
termined independently of its connections with the
system. The magnitude of the force is that weight
which, acting (say, on a string) in the direction deter-
mined, and applied at the point in question, determines

motion or maintains the same equilibrium.
The other circumstances that modify the determination
of a motion, but by themselves alone are unable to pro-
duce it, such as virtual displacements, the arms of
levers, and so forth, may be termed collateral condi-
tions determinative of motion and equilibrium.

gard, to voluntary mental penury,

quently have occasion to observe, that the conception

referred to also plays a part in the foundation of dy-
the same

namics.
We are able, in a great many cases, to replace the

circumstances determinative of motion, which occur in

nature, by our innervations, and thus to reach the idea

of a gradation of the intensity of forces. But in the esti-
mation of this intensity we are thrown entirely on the
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“ thus caused had been supplied by silver, Hiero was The ac-

“ indignant at the fraud, and, unacquainted with the truvius.1Vl

“ method by which the theft might be detected, re-
quested Archimedes would undertake to give it his

“ attention. Charged with this commission, he by

“ chance went to a bath, and on jumping into the tub,

“ perceived that, just in the proportion that his body

“ became immersed, in the same proportion the water

“ ran out of the vessel. Whence, catching at the

“ method to be adopted for the solution of the proposi-
tion, he immediately followed it up, leapt out of the

“ vessel in joy, and returning home naked, cried out

“ with a loud voice that he had found that of which he

vi.
PRINCIPLES OF STATICS IN THEIR APPLICATION TO

FLUIDS.
THE

i. The consideration of fluids has not supplied stat-

ics with many essentially new points of view, yet nu-

merous applications and confirmations of the principles
already known have resulted therefrom, and physical

experience has been greatly enriched by the investiga-

tions of this domain. We shall devote, therefore, a few

No essen-
tially new
points of
view in-
volved in
this subject.

pages to this subject.
2. To ARCHIMEDES also belongs the honor of found-

ing the domain of the statics of liquids. To him we
the well-known proposition concerning the buoy-

“ was in search, for he continued exclaiming, in Greek,

“ vp?jxa,svptjKix, (I have found it, I have found it!)”
1. The observation which led Archimedes to his statement.. . . . . _ _ . of the Ar-

proposition, was accordingly this, that a body im- chimedean
. . proposition

mersed in water must raise an equivalent quantity 01

water ; exactly as if the body lay on one pan of a balance
and the water on the other.

owe
ancy, or loss of weight, of bodies immersed in liquids,
of the discovery of which Vitruvius, De Architectura,
Lib. IX, gives the following account :

4 4 Though Archimedes discovered many curious
4 4 matters that evince great intelligence, that which I am
4 4 about to mention is the most extraordinary. Hiero,

This conception, which
at the present day is still the most natural and theVitruvius’s

account of
Archime-
des’s dis-
covery.

most direct, also appears in Archimedes’s treatises On
Floating Bodies, which unfortunately have not been
completely preserved but have in part been restored
by F. Commandinus.

The assumption from which Archimedes starts
reads thus :

4 4 when he obtained the regal power in Syracuse, hav-
the fortunate turn of his affairs, decreed a4 4 ing, on

4 4 votive crown of gold to be placed in a certain temple
4 4 to the immortal gods, commanded it to be made of
4 4 great value, and assigned for this purpose an appr-

opriate weight of the metal to the manufacturer. The
4 4 latter, in due time, presented the work to the king,
4 4 beautifully wrought ; and the weight appeared to cor-
4 4 respond with that of the gold which had been as-
4 4 signed for it.

4 4 But a report having been circulated, that some of
4 4 the gold had been abstracted, and that the deficiency

4 4 It is assumed as the essential property of a liquid The Archi-. . medean as-that in all uniform and continuous positions of its parts sumption,

the portion that suffers the lesser pressure is forced
upwards by that which suffers the greater pressure.
But each part of the liquid suffers pressure from the
portion perpendicularly above it if the latter be sinking
or suffer pressure from another portion.”
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Archimedes now, to present the matter briefly,
conceives the entire spherical earth as fluid in consti-
tution, and cuts out of it pyramids the vertices of
which lie at the centre (Fig. 59). All these pyramids

must, in the case of equilib-
rium, have the same weight,
and the similarly situated

b parts of the same must all
suffer the same pressure.
If we plunge a body a of
the same specific gravity as
water into one of the pyra-
mids, the body will com-
pletely submerge, and, in

the case of equilibrium, will supply by its weight the
pressure of the displaced water. The body b, of less
specific gravity, can sink, without disturbance of equi-
librium, only to the point at which the water beneath
it suffers the same pressure from the weight of the
body as it would if the body were taken out and the
submerged portion replaced by water. The body c,
of a greater specific gravity, sinks as deep as it possibly
can. That its weight is lessened in the water by an
amount equal to the weight of the water displaced,
will be manifest if we imagine the body joined to
another of less specific gravity so that a third body is
formed having the same specific gravity as water,
which just completely submerges.

4. When in the sixteenth century the stud}' of the
works of Archimedes was again taken up, scarcely the
principles of his researches were understood. The
complete comprehension of his deductions was at that
time impossible.

STEVINUS rediscovered by a method of his own the

most important principles of hydrostatics and the de- The discov-
ductions therefrom. It was principally two ideas from vinus.

Analysis of
the princi-
ple.

which Stevinus derived his fruitful conclusions,

one is quite similar to that relating to the endless
chain.
solidification of a fluid in equilibrium does not disturb
its equilibrium.

Stevinus first lays down this principle. Any given The first. . . f undamen-
mass of water A ( Fig. 00), immersed m water, is intaiprinci-

ple,

equilibrium in all its parts. If A „ „

were not supported by the sur-
rounding water but should, let us
say, descend, then the portion of
water taking the place of A and
placed thus in the same circum -
stances, would, on the same as-
sumption, also have to descend.
This assumption leads, therefore, to the establishment
of a perpetual motion, which is contrary to our ex-

perience and to our instinctive knowledge of things.
Water immersed in water loses accordingly its The second

whole weight. If , now, we imagine the surface of the taiprinci-
submerged water solidified, the vessel formed by thisP
surface, the vas superficiarium as Stevinus calls it, will
still be subjected to the same circumstances of pres-

If empty, the vessel so formed will suffer an
upward pressure in the liquid equal to the weight of the
water displaced. If wre fill the solidified surface with

The

The other consists in the assumption that the

>

Fig. 60.

-

sure.

some other substance of any specific gravity we may
choose, it will be plain that the diminution of the
weight of the body will be equal to the weight of the
fluid displaced

The state of
the science
in the six-
teenth cen-
tury.

on immersion.
In a rectangular, vertically placed parallelepipedal

vessel filled with a liquid, the pressure on the horizontal
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Stevinus’s base is equal to the weight of the liquid. The pressure
deductions. . regard the rest of the liquid as not having been moved.

Accordingly, in the case of equilibrium, the centre of
gravity of the liquid lies at its lowest possible point.

6. PASCAL likewise employs the principle of virtual The same. i i - « p r i n c i p l e
displacements, but 111 a more correct manner , leaving made use of

• 1 r 1 1 • • , r 1 . . . b y Pascal.
the weight of the liquid out of account and considering
only the pressure at the surface. If we imagine two
communicating vessels to be closed by pistons (Fig.
62), and these pistons loaded with
weights proportional to their surface-
areas, equilibrium will obtain, because
in consequence of the invariability of
the volume of the liquid the displace-
ments in every disturbance are in-
versely proportional to the weights.
For Pascal, accordingly, it follows, as a necessary con-
sequence, from the principle of virtual displacements,
that in the case of equilibrium every pressure on a su-
perficial portion of a liquid is propagated with undi-
minished effect to every other superficial portion, how-
ever and in whatever position it be placed. No objec-
tion is to be made to discovering the principle in this
way. Yet we shall see later on that the more natural
and satisfactory conception is to regard the principle as
immediately given.

7. We shall now, after this historical sketch, again Detailed
examine the most important cases of liquid equilibrium, tion of the
and from such different points of view as may be con- sub^ect

venient.
The fundamental property of liquids given us by

experience consists in the flexure of their parts on the
slightest application of pressure. Let 11s picture to our-
selves an element of volume of a liquid, the gravity of
which we disregard— say a tiny cube. If the slightest

is equal, also, for all parts of the bottom of the same
When now Stevinus imagines portions of thearea.

liquid to be cut out and replaced by rigid immersed
bodies of the same specific gravity, or, what is the
same thing, imagines parts of the liquid to become so-
lidified, the relations of pressure in the vessel will not
be altered by the procedure. But we easily obtain in
this way a clear view of the law that the pressure on
the base of a vessel is independent of its form, as well
as of the laws of pressure in communicating vessels,
and so forth. v

5. GALILEO treats the equilibrium of liquids in com-
ment of this municating vessels and the problems connected there-
pdoys^he"1

with by the help of the principle of virtual displace-
principle of
virtual dis- _

. IllCntS.
placements

Galileo, in

Fig. 62.
NN (Fig. 61) being the

1 common level of a liquid in equilib-
rium in two communicating vessels,

N Galileo explains the equilibrium
here presented by observing that in
the case of any disturbance the dis-
placements of the columns are to
each other in the inverse proportion
of the areas of the transverse sec-

B A

S 1 5 fN\

\ss£ W
Fig. 61.

tions and of the weights of the columns— that is, as
with machines in equilibrium. But this is not quite cor-
rect. The case does not exactly correspond to the
cases of equilibrium investigated by Galileo in ma-
chines, which present indifferent equilibrium. With
liquids in communicating tubes every disturbance of the
common level of the liquids produces an elevation of
the centre of gravity. In the case represented in Fig.
61, the centre of gravity A of the liquid displaced from
the shaded space in A is elevated to S' , and we may
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of water was demonstrated.
filled with water, boiled, and then sealed. ( Fig. 63.) 5onof the

. . , . compressi-
The liquid reaches to a. But since the space above a is unity of

airless, the liquid supports no atmospheric pres-
If the sealed end be broken off , the liquid

A thermometer glass is The first
demonstra-The funda- excess of pressure be exerted on one of the surfaces of

property of this cube, (which we now conceive, for the moment,
mob^ityof as a fixed geometrical locus, containing the fluid but
their parts‘ not of its substance) the liquid (supposed to have pre-

viously been in equilibrium and at rest) will yield and
pass out in all directions through the other five surfaces
of the cube. A solid cube can stand a pressure on its
upper and lower surfaces different in magnitude from
that on its lateral surfaces ; or vice versa. A fluid cube,

sure.
will sink to b. Only a portion, however, of this I L
displacement is to be placed to the credit of the c~\b
compression of the liquid by atmospheric pres- \
sure. For if we place the glass before breaking
off the top under an air-pump and exhaust the
chamber, the liquid will sink to c. This last phe-
nomenon is due to the fact that the pressure that
bears down on the exterior of the glass and diminishes
its capacity, is now removed. On breaking off the top,
this exterior pressure of the atmosphere is compensated
for by the interior pressure then introduced, and an
enlargement of the capacity of the glass again sets in.
The portion cb, therefore, answers to the actual com-
pression of the liquid by the pressure of the atmos-
phere.

on the other hand, can retain its shape only if the same
perpendicular pressure be exerted on all its sides,

similar train of reasoning is applicable to all polyhe-
drons. In this conception, as thus geometrically eluci-
dated, is contained nothing but the crude experience
that the particles of a liquid yield to the slightest pres-
sure, and that they retain this property also in the in-
terior of the liquid when under a high pressure ; it
being observable, for example, that under the condi-
tions cited minute heavy bodiessink in fluids, and so on.

With the mobility of their parts liquids combine

A Fig. 63.

A second

the cony still another property, which we will now consider. Li-
ofUie^ voï- quids suffer through pressure a diminution of volume
ume.

The first to institute exact experiments on the com- The experi-
pressibility of water, was OERSTED, who employed to oersted

this end a very ingenious method. A this subject.
thermometer glass A (Fig. 64) is filled
with boiled water and is inverted, with
open mouth, into a vessel of mercury.
Near it stands a manometer tube B filled

on

which is proportional to the pressure exerted on unit
of surface. Every alteration of pressure carries along
with it a proportional alteration of volume and density.
If the pressure diminish, the volume becomes greater,
the density less. The volume of a liquid continues to
diminish therefore on the pressure being increased, till
the point is reached at which the elasticity generated
within it equilibrates the increase of the pressure.

8. The earlier inquirers, as for instance those of the
Florentine Academy, were of the opinion that liquids
were incompressible. In 1761, however, JOHN CANTON
performed an experiment by which the compressibility

-----
B

with air and likewise inverted with open
mouth in the mercury. The whole ap-
paratus is then placed in a vessel filled §§|
with water, which is compressed by the
aid of a pump. By this means the water
in A is also compressed, and the filament of quicksilver
which rises in the capillary tube of the thermometer-

Fig. 64.
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The alteration ofglass indicates this compression ,

capacity which the glass A suffers in the present in-
stance, is merely that arising from the pressing to-
gether of its walls by forces which are equal on all sides.

If we endeavor, now, quantitatively to elucidate our The state-
mental conception of these two facts, the easy mobility theseimpii-
and the compressibility of the parts of a liquid, so that
they will fit the most diverse classes of experience,

shall arrive at the following proposition : When
equilibrium subsists in a liquid, in the interior of which
no forces act and the gravity of which we neglect, the
same equal pressure is exerted on each and every equal
surface-element of that liquid however and wherever
situated. The pressure, therefore, is the same at all
points and is independent of direction.

Special experiments in demonstration of this prin-
ciple have, perhaps, never been instituted with the re-
quisite degree of exactitude. But the proposition has
by our experience of liquids been made very familiar,
and readily explains it. •

io. If a liquid be enclosed in a vessel (Fig. 65) Preiimi-
which is supplied with a piston A, the cross-section mark/to
of which is unit in area, and with a piston B which ion ofSPas-s’
for the time being is made station- * tionSdeduc'
ary, and on the piston A a load p
be placed, then the same pressure /

p, gravity neglected, will prevail f|
throughout all the parts of the vessel. Jj
1he piston will penetrate inward and
the walls of the vessel will continue B
to be deformed till the point is reached
at which the elastic forces of the rigid and fluid bodies
perfectly equilibrate one another. If then we imagine
the piston B, which has the cross-section/, to be mov-
able, a force f . p alone will keep it in equilibrium.

Concerning Pascal’s deduction of the proposition
before discussed from the principle of virtual displ
ments, it is to be remarked that the conditions of dis-

The most delicate experiments on this subject have
been conducted by G RASSI with an apparatus con-
structed by Régnault, and computed with the assist-
ance of Lamé’s correction-formulae. To give a tan-
gible idea of the compressibility of water, we will remark
that Grassi observed for boiled water at 0° under an

The experi-
ments of
Grassi.

we

increase of one atmospheric pressure a diminution of
the original volume amounting to 5 in 100,000 parts.
If we imagine, accordingly, the vessel A to have the
capacity of one litre (1000 ccm.), and affix to it a cap-
illary tube of 1 sq. mm. cross-section, the quicksilver
filament will ascend in it 5 cm. under a pressure of
one atmosphere.

9. Surface-pressure, accordingly, induces a physical
alteration in a liquid (an alteration in density), which
can be detected by sufficiently delicate means— even
optical. We are always at liberty to think that por-
tions of a liquid under a higher pressure are more dense,
though it may be very slightly so, than parts under a
less pressure.

Let us imagine now, we have in a liquid (in the in-
terior of which no forces act and the gravity of which
we accordingly neglect) two portions subjected to un-

equal pressures and contiguous to one another,

portion under the greater pressure, being denser, will
expand, and press against the portion under the less
pressure, until the forces of elasticity as lessened on the
one side and increased on the other establish equilib-
rium at the bounding surface and both portions are
equally compressed.

Surface-
pressure in-
duces in
liquids an
alteration
of density. A

\

The impli-
cations of
this fact.

Fig- 65-
The

ace-
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(Fig. 67) a small rectangular parallelepipedon in the The con-
interior. The area of its horizontal base, we will say, is equilibrium

a, and the length of its vertical edges dh. The weight subjected

of this parallelepipedon is therefore ad/is, where s is tionofgrav-
its specific gravity. If the paral-
lelepipedon do not sink, this is
possible only on the condition that
a greater pressure is exerted on the
lower surface by the fluid than on
the upper. The pressures on the
upper and lower surfaces we will
respectively designate as and a (/ -f - dp). Equi-
librium obtains when adh .s — adp or dp/dh= s,
where /1 in the downward direction is reckoned as posi-
tive. We see from this that for equal increments of //
vertically downwards the pressure p must, correspond-
ingly, also receive equal increments. So that p=
/is -j- y ; and if q, the pressure at the upper surface,
which is usually the pressure of the atmosphere, be-
comes = 0, we have, more simply, p= /is, that is, the
pressure is proportional to the depth beneath the sur-
face. If we imagine the liquid to be pouring into a ves-
sel, and this condition of affairs not yet attained, every
liquid particle will then sink until the compressed par-
ticle beneath balances by the elasticity developed in it
the weight of the particle above.

From the view we have here presented it will be fur- Different
ther apparent, that the increase of pressure in a liquid tfons exist
takes place solely in the direction in which gravity fineyof the
acts. Only at the lower surface, at the base, of the grav°ity°f

parallelepipedon, is an excess of elastic pressure on the
part of the liquid beneath required to balance the
weight of the parallelepipedon. Along the two sides of
the vertical containing surfaces of the parallelepipedon,

Criticism of placement which he perceived hinge wholly upon the
Pascal’s de-
duction. fact of the ready mobility of the parts and on the

equality of the pressure throughout every portion of
the liquid. If it were possible for a greater compression
to take place in one part of a liquid than in another,
the ratio of the displacements would be disturbed and
Pascal’s deduction would no longer be admissible.
That the property of the equality of the pressure is a
property given in experience, is a fact that cannot be
escaped ; as we shall readily admit if we recall to mind
that the same law that Pascal deduced for liquids also
holds good for gases, where even approximately there
can be no question of a constant volume. This latter
fact does not afford any difficulty to our view ; but to
that of Pascal it does. In the case of the lever also, be

ity.

P
M

p+ dfi

Fig. 67.

it incidentally remarked, the ratios of the virtual dis-
placements are assured by the elastic forces of the
lever-body, which do not permit of any great devia-
tion from these relations.

We shall now consider the action of liquids un-The behav-
iour of li-
quids under cler the influence of gravity. The upper surface of a
the action
of gravity.

II.

liquid in equilibrium is horizontal,
S } f,, -AW(Fig. 66). This fact is at once

rendered intelligible when we re-
flect that every alteration of the sur-
face in question elevates the centre
of gravity of the liquid, and pushes
the liquid mass resting in the shaded

space beneath AW and having the centre of gravity A
into the shaded space above AW having the centre of
gravity S'. Which alteration, of course, is at once re-
versed by gravity.

Let there be in equilibrium in a vessel a heavy
liquid with a horizontal upper surface. We consider

SN N

Fig. 66.

1 '
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supported by the pressure of the liquid, falling. In 2, Pascal’s ex-
tlie metal disc is replaced by a tiny column of mer- on tiufnts
cury. If (3) we dip an open siphon tube filled with HquYds1.6 °f

quicksilver into the water, we
shall see the quicksilver, in conse-
quence of the pressure at a, rise
into the longer arm. In 4, we see
a tube, at the lower extremity of
which a leather bag filled with
quicksilver is tied : continued
immersion forces the quicksilver
higher and higher into tube. In
5, a piece of wood h is driven by
the pressure of the water into the
small arm of an empty siphon
tube. A piece of wood I I (6) im-
mersed in mercury adheres to the
bottom of the vessel, * and is
pressed firmly against it for as
long a time as the mercury is
kept from working its way be-
neath it.

13. Once we have made quite
clear to ourselves that the pres-
sure in the interior of a heavy
liquid increases proportionally to
the depth below the surface, the
law that the pressure at the base
of a vessel is independent of its
form will be readily perceived.
The pressure increases as we de-
scend at an equal rate, whether the vessel (Fig. 69)
has the form abed or ebe f. In both cases the walls
of the vessel where they meet the liquid,go on deforming

the liquid is in a state of equal compression, since no
force acts in the vertical containing surfaces that would
determine a greater compression on the one side than
on the other.

If we picture to ourselves the totality of all the
points of the liquid at which the same pressure p acts,
we shall obtain a surface— a so-called level surface. If

displace a particle in the direction of the action of
gravity, it undergoes a change of pressure. If we dis-
place it at right angles to the direction of the action of
gravity, no alteration of pressure takes place. In the
latter case it remains on the same level surface, and
the element of the level surface, accordingly, stands at
right angles to the direction of the force of gravity.

Imagining the earth to be fluid and spherical, the
level surfaces are concentric spheres, and the directions
of the forces of gravity (the radii) stand at right angles
to the elements of the spherical surfaces. Similar ob-
servations are admissible if the liquid particles be acted
on by other forces than gravity, magnetic forces, for
example.

The level surfaces afford, in a certain sense, a dia-
gram of the force-relations to which a fluid is subjected;
a view further elaborated by analytical hydrostatics.

12. The increase of the pressure with the depth be-
low the surface of a heavy liquid may be illustrated by
a series of experiments which we chiefly owe to Pas-
cal. These experiments also well illustrate the fact,
that the pressure is independent of the direction. In
Fig. 68, 1, is an empty glass tube g ground off at the
bottom and closed by a metal disc pp, to which a
string is attached, and the whole plunged into a vessel
of water. When immersed to a sufficient depth we
may let the string go, without the metal disc, which is
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till the point is reached at which they equilibrate by the
elasticity developed in them the pressure exerted by the
fluid, that is, take the place as regards pressure of the

fluid adjoining. This fact is
jfV a direct justification of Ste-

vinus’s fiction of the solidi-
fied fluid supplying the place
of the walls of the vessel.

2 to 3, the work performed in this operation is qhY -\- preli ,ni-
qh2 — q (/i 1 -f- // 2), the same, that is, as if the weightmarks-
q passed directly from i to 3 and the weight at
mained in its original position. The observation is
easily generalised.

2 re'

T
AI '/////,

Sh, hiThe pressure on the base
always remains P= Ahs,

where A denotes the area of the base, h the depth of
the horizontal plane base below the level, and s the
specific gravity of the liquid.

The fact that, the walls of the vessel being neg-
lected, the vessels 1, 2, 3 of Fig. 70 of equal base-
area and equal pressure-height weigh differently in the

[ dh
Fig. 69.

7
Fig. 71. Fig. 72.

Let us consider a heavy homogeneous rectangular
parallelepipedon, with vertical edges of the length /1,
base A, and the specific gravity (Fig. 72). Let this
parallelepipedon (or, what is the same thing, its centre
of gravity) descend a distance dh. The work done is
then A hs .dh, or, also,' A dhs .h. In the first expres-
sion we conceive the whole weight Ahs displaced the
vertical distance dh ; in the second we conceive the
weight Adhs as having descended from the upper
shaded space to the lower shaded space the distance h,
and leave out of account
the rest of the body.
Both methods of concep-
tion are admissible and
equivalent.

15. With the aid of
this observation we shall [
obtain a clear insight into
the paradox of Pascal, which consists of the following.
The vessel g (Fig. 73), fixed to a separate support and
consisting of a narrow upper and a very broad lower
cylinder, is closed at the bottom by a movable piston,

Elucida-
tion of this
fact.

balance, of course?

m no wise con-

tradicts the laws
of pressure men-
tioned. If we take
into account the

i
Fig. 70.

lateral pressure, we shall see that in the case of 1 we
have left an extra component downwards, and in the-case of 3 an extra component upwards, so that on the
whole the resultant superficial pressure is always equal
to the weight.

14. The principle of virtual displacements is ad-
mirably adapted to the acquisition of clearness and
comprehensiveness in cases of this character, and we
shall accordingly make use of it. To begin with, how-
ever, let the following be noted. If the weight q (Fig.
71) descend from position 1 to position 2, and a weight
of exactly the same size move at the same time from

1a
s fi

The princi-
ple of vir-
tual dis-
placements
applied to
the consid-
eration of
problems of
this class.

Pascal’s
paradox.

Fig . 73-

*
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If wo have, for example, a cubical vessel The laws of
lateral

ressure.
which, by means of a string passing through the axis
of the cylinders, is independently suspended from the
extremity of one arm of a balance,

water, then, despite the smallness of the quantity of
water used, there will have to be placed on the other
scale- pan, to balance it, several considerable weights,
the sum of which will be Ahs, where A is the piston-
area, /1 the height of the liquid, and ^ its specific grav-
ity. But if the liquid be frozen and the mass loosened
from the walls of the vessel, a very small weight will be
sufficient to preserve equilibrium.

Let us look to the virtual displacements of the two
In the first case, supposing the pis-

ton to be lifted a distance dh, the virtual moment is
Adhs Ji or Ahs.d/i. It thus
comes to the same thing,
whether we consider the mass

pressure.
of 1 decimetre on the side, which is a vessel of litre p

capacity, the pressure on any one of the vertical lateral
walls ABCD, when the vessel is filled with water, is
easily determinable. The deeper the migratory element
considered descends beneath the surface, the greater
the pressure will be to which it is subjected. We easily
perceive, thus, that the pressure on a lateral wall is rep-
resented by a wedge of water ABCD ITI resting upon
the wall horizontally
placed, where ID is at
right angles to BD and
ID= IIC= AC. The

If g be filled with

- E

The expla-
nation of .
the paradox Cases ( b i g. 74)' K

lateral pressure accor -
dingly is equal to half
a kilogramme.

To determine the
point of application of the resultant pressure, conceive
ABCD again horizontal with the water-wedge resting
upon it. We cut off AK= BL=\AC, draw the
straight line KL and bisect it at iVI ; M is the point of
application sought, for through this point the vertical
line cutting the centre of gravity of the wedge passes.

A plane inclined figure forming the base of a vessel Th
filled with a liquid, is divided into the elements a, a ,, plane ?n*

a" . . . with the depths h, Zi , h" . . . below the level of
the liquid. The pressure on the base is

( ah -|- a JT -f- a" s.
If we call the total base-area A, and the depth of its
centre of gravity below the surface II, then

ah -|- a'h’ + . . .

L
D G

Fig. 75-dh
1 2 that the motion of the piston

displaces to be lifted to the
surface of the fluidt upper

through the entire pressure-Fig. 74.

height, or consider the entire weight AJis l ifted the
distance of the piston-displacement dh. In the second
case, the mass that the piston displaces is not lifted to
the upper surface of the fluid, but suffers a displace-
ment which is much smaller— the displacement, namely,
of the piston. If A, a are the sectional areas respect-
ively of the greater and the less cylinder, and k and l
their respective heights, then the virtual moment of the
present case is Adhs . k -f- a dhs . I= ( A k + a! ) s .dh ;
which is equivalent to the lifting of a much smaller
weight ( Ah -f- al ) s, the distance dh.

16. The laws relating to the lateral pressure of
liquids are but slight modifications of the laws of basal

>

e pres-

clined base.

ah+ ah' + a” h" + . . . =11,A
whence the pressure on the base is Alls.
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this is clone, the liquid rises from the lower into the up-
per space, and its moment is adhsh. The total vir-
tual moment is therefore ah ( a — s) dh= (/ — q) dh,
where p denotes the weight of the hotly and q the weight
of the displaced liquid.

17. The principle of Archimedes can be deduced in
After the manner of Stevinus, let us

desmaybe conceive in the interior of the liquid a portion of iteffected in
various Solidified,
ways.

The deduc-tion of the
principle of various ways.
Archime-

This portion now, as before, will be sup-
ported by the circumnatant liquid. The resultant of
the forces of pressure acting on the surfaces is accor-
dingly applied at the centre of gravity of the liquid dis-
placed by the solidified body, and is equal and opposite
to its weight. If now we put in the place of the solid-
ified liquid another different body of the same form, but
of a different specific gravity, the forces of pressure at
the surfaces will remain the same. Accordingly, there
now act on the body two forces, the weight of the body,
applied at the centre of gravity of the body, and the up-
ward buoyancy, the resultant of the surface-pressures,
applied at the centre of gravity of the displaced liquid.
The two centres of gravity in question coincide only in
the case of homogeneous solid bodies.

If we immerse a rectangular parallelepipedon of al-
titude h and base a, with edges vertically placed, in a
liquid of specific gravity s, then the pressure on the
upper basal surface, when at a depth k below the level
of the liquid is aks, while the pressure on the lower
surface is a ( k -f - /1 ) s. As the lateral pressures destroy
each other, an excess of pressure ahs upwards re-
mains ; or, where v denotes the volume of the paral-
lelepipedon, an excess v . s.

We shall approach nearest the fundamental con-

B

Fig. 77-Fig. 76-
18. The question might occur to us, whether the is the buoy-^ anCy QJ a

upward pressure of a body in a liquid is affected by the body in a

immersion of the latter in another liquid. As a fact, fected by
the iininer-tliis very question has been proposed. Let therefore sion of that

. . liquid in a
(Fig. 77) a body K be submerged in a liquid A and the second

liquid with the containing vessel in turn submerged in
another liquid B. If in the determination of the loss
of weight in A it were proper to take account of the
loss of weight of A in B, then K's loss of weight would
necessarily vanish when the fluid B became identical
with A. Therefore, K immersed in A would suffer a
loss of weight and it would suffer none. Such a rule
would be nonsensical.

One metk-
od.

With the aid of the principle of virtual displace- The eluci-
dation of
more com-

If a body be first gradually casesofthis
class.

ments, we easily comprehend the more complicated
cases of this character,

immersed in B, then partly in B and partly in A,
finally in A wholly ; then, in the second case, consider-
ing the virtual moments, both liquids are to be taken
into account in the proportion of the volume of the
body immersed in them. But as soon as the body is
wholly immersed in A, the level of A on further dis-

Another
method in- .
voivingUie

^
ceptjon from which Archimedes started, by recourse to

virtual dis- the principle of virtual displacements,
placements. Let a paral-

lelepipedon (Fig. 76) of the specific gravity a, base a,
and height h sink the distance dh. The virtual mo-
ment of the transference from the upper into the lower
shaded space of the figure will be a dh . ah. But while
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placement no longer rises, and therefore B is no longer
of consequence.

19. Archimedes’s principle maybe illustrated by a

20. The most important statical principles have The gene-
been reached in the investigation of solid bodies. This pies of stat-

• 7 1 - • i ics
course is accidentally the historical one, but it is by nohave

^
been

means the only possible and necessary one. The dif - the investi-
ferent methods that Archimedes, Stevinus, Galileo, and fluid bodies

the rest, pursued, place this idea clearly enough before
the mind. As a matter of fact, general statical princi-
ples, might, with the assistance of some very simple
propositions from the statics of rigid bodies, have been
reached in the investigation of liquids. Stevinus cer-
tainly came very near such a discovery. We shall stop
a moment to discuss the question.

Let us imagine a liquid, the weight of which we neg- The dis-
^lect. Let this liquid be enclosed in a vessel and sub- illustration

jected to a definite pressure. A portion of the liquid, statement,

let us suppose, solidifies. On the closed surface nor-
mal forces act proportional to the elements of the area,
and we see without difficulty that their resultant will
always be = 0.

If we mark off by a closed curve a portion of the
closed surface, we obtain, on either side of it, a non-
closed surface. All surfaces which are bounded by the
same curve (of double curvature) and on which forces
act normally (in the same sense) pro-
portional to the elements of the area,
have lines coincident in position for
the resultants of these forces.

Let us suppose, now, that a fluid
cylinder, determined by any closed
plane curve as the perimeter of its
base, solidifies. We may neglect the two basal sur-

faces, perpendicular to the axis. And instead of the
cylindrical surface the closed curve simply may be con-
sidered. From this method follow quite analogous

The Archi-
medean . .
principle ii- pretty experiment. From the one extremity of a scale-
lnstrated by

experi- beam (Fig. 78) we hang a hollow cube H, and beneath
ment. ' y
an

it a solid cube M, which exactly fits into
the first cube. We put weights into the
opposite pan, until the scales are in
equilibrium. If now M be submerged
in water by lifting a vessel which stands
beneath it, the equilibrium will be dis-

turbed ; but it will be immediately re-
stored if H, the hollow cube, be filled
with water.

H

/ ~

A counter-experiment is the follow-
er is left suspended alone at the

The coun-
ter-experi-
ment. mg.

one extremity of the balance, and into
the opposite pan is placed a vessel of
water, above which on an independent

M -

Fig- 78.
support Mhangs by a thin wire. The scales are brought
to equilibrium. If now M be lowered until it is im-
mersed in the water, the equilibrium of the scales will
be disturbed ; but on filling H with water, it will be
restored.

At first glance this experiment appears a little para-
doxical. We feel, however, instinctively, that M can-
not be immersed in the water without exerting a pres-
sure that affects the scales. When we reflect, that the
level of the water in the vessel rises, and that the solid
body M equilibrates the surface-pressure of the water
surrounding it, that is to say represents and takes the
place of an equal volume of water, it will be found
that the paradoxical character of the experiment van-
ishes.

Remarks on
the experi-
ment.
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resultant acts at the centre of gravity of the volume,
is perpendicular to the plane mentioned, and is directed

propositions for normal forces proportional to the ele-The dis-
cussion and
illustration ments of a plane curve,

of this
statement. towards this plane.

Under the same conditions let a rigid curved surface The pr0po-
sition here

be bounded by a plane curve, which encloses on the deduced, a
sDecicU case

The resultant of the forces acting of Green’s
Theorem.

If the closed curve pass into a triangle, the con-
sideration will shape itself thus. The resultant normal
forces applied at the middle points of the sides of the
triangle, we represent in direction, sense, and magni-

tude by straight lines (Fig. 80). The
lines mentioned intersect at a point—
the centre of the circle described about

plane the area A.
on the curved surface is R, where

V R 2
_ ç/IZH ) 2 + (VKY — AZVK 2 cos V ,

in which expression Z denotes the distance of the
centre of gravity of the surface A from E, and v the
normal angle of E and A.

In the proposition of the last paragraph mathe-
matically practised readers will have recognised a par-
ticular case of Green’ s Theorem, which consists in the
reduction of surface-integrations to volume-integra-
tions or vice versa.

We may, accordingly, see into the force-system of aTheimpii-
fluid in equilibrium, or, if you please, see out of it, sys- the view

^ . discussed.
terns of forces of greater or less complexity, and thus
reach by a short path propositions a posteriori. It is a
mere accident that Stevinus did not light on these
propositions. The method here pursued corresponds
exactly to his. In this manner new discoveries can
still be made.

21. The paradoxical results that were reached in Fruitful re-. . r suits of the
the investigation of liquids, supplied a stimulus to fur- investiga-

7 iir f *ons ot this
ther reflection and research. It should also not be left domain.
unnoticed, that the conception of a physico-mechanical
continuum was first formed on the occasion of the in-
vestigation of liquids. A much freer and much more
fruitful mathematical mode of view was developed
thereby, than was possible through the study even of

Î -the triangle.
that by the simple parallel displace-

ment of the lines representing the forces a triangle is
constructible which is similar and congruent to the
original triangle.

Thededuc- Thence follows this proposition :
tion of the . . . . .
triangle of Any three forces, which, acting at a point, are pro-
forces by . .
this method portional and parallel in direction to the sides of a tri-

angle, and which on meeting by parallel displacement
form a congruent triangle, are in equilibrium. We see
at once that this proposition is simply a different form
of the principle of the parallelogram of forces.

If instead of a triangle we imagine a polygon, we
shall arrive at the familiar proposition of the polygon
of forces.

It will further be noted,
Fig. 8o.

We conceive now in a heavy liquid of specific gravity
K a portion solidified. On the element a of the closed
encompassing surface there acts a normal force a x z,
where sis the distance of the element from the level of
the liquid. We know from the outset the result.

If normal forces which are determined by a x z,Similar de-
duction of .
another im- where a denotes an element of area and s its perpen
portant pro- L

position. dicular distance from a given plane E, act on a closed
surface inwards, the resultant will be V. x, in which ex-
pression V represents the enclosed volume. The
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systems of several solid bodies. The origin, in fact,
of important modern mechanical ideas, as for instance
that of the potential, is traceable to this source.

VII.
THE PRINCIPLES OF STATICS IN THEIR APPLICATION TO

GASEOUS BODIES.

i. The same views that subserve the ends of scienceCharacter
of this de-
partment in the investigation of liquids are applicable with but
inquiry.

slight modifications to the investigation of gaseous
bodies. To this extent, therefore, the investigation of
gases does not afford mechanics any very rich returns.
Nevertheless, the first steps that were taken in this
province possess considerable significance from the
point of view of the progress of civilisation and high
import for science generally.

The eius- Although the ordinary man has abundant oppor-
its subject- tunity, by his experience of the resistance of the air, by
matter. the action of the wind, and the confinement of air in

bladders, to perceive that air is of the nature of a body,
yet this fact manifests itself infrequently, and never in
the obvious and unmistakable way that it does in the
case of solid bodies and fluids. It is known, to be sure,
but is not sufficiently familiar to be prominent in popu-
lar thought. In ordinary life the presence of the air is
scarcely ever thought of.

Although the ancients, as we may learn from theThe effect

disclosures accounts of Vitruvius, possessed instruments which,
in this prov-
ince. like the so-called hydraulic organs, were based on the

condensation of air, although the invention of the air-
gun is traced back to Ctesibius, and this instrument
was also known to Guericke, the notions which people
held with regard to the nature of the air as late even
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as the seventeenth century were exceedingly curious
and loose. We must not be surprised, therefore, at the
intellectual commotion which the first more important
experiments in this direction evoked. The enthusiastic
description which Pascal gives of Boyle’s air-pump ex-
periments is readily comprehended, if we transport our-
selves back into the epoch of these discoveries. What
indeed could be more wonderful than the sudden dis-
covery that a thing which we do not see, hardly feel,
and take scarcely any notice of , constantly envelopes
us on all sides, penetrates all things ; that it is the most
important condition of life, of combustion, and of gi-
gantic mechanical phenomena. It was on this occa-
sion, perhaps, first made manifest by a great and strik-
ing disclosure, that physical science is not restricted
to the investigation of palpable and grossly sensible
processes.

The views 2. In Galileo’s time philosophers explained the
enlfhis sifb- phenomenon of suction, the action of syringes and
î eo’s üme!1 pumps by the so-called horror vacui— nature’ s abhor-

rence of a vacuum. Nature was thought to possess
the power of preventing the formation of a vacuum by
laying hold of the first adjacent thing, whatsoever it
was, and immediately filling up with it any empty space
that arose. Apart from the ungrounded speculative
element which this view contains, it must be conceded,
that to a certain extent it really represents the phe-
nomenon. The person competent to enunciate it must
actually have discerned some principle in the phenom-
enon. This principle, however, does not fit all cases.
Galileo is said to have been greatly surprised at hearing
of a newly constructed pump accidentally supplied
with a very long suction-pipe which was not able to
raise water to a height of more than eighteen Italian

ells. His first thought was that the horror vacui (or the
resistenza del vacuo') possessed a measurable power. The
greatest height to which water could be raised by suc-
tion he called altczza limitatissima. He sought, more-
over, to determine directly the weight able to draw out
of a closed pump-barrel a tightly fitting piston resting
on the bottom.

3. TORRICELLI hit upon the idea of measuring the Torricelli's
resistance to a vacuum by a column of mercury instead
of a column of water, and he expected to obtain a col-
umn of about ytj of the length of the water column.
His expectation was confirmed by the experiment per-
formed in 1643 by Viviani in the well-known manner,
and which bears to-day the name of the Torricellian
experiment. A glass tube somewhat over a metre in
length, sealed at one end and filled with mercury, is
stopped at the open end with the finger, inverted in a
dish of mercury, and placed in a vertical position. Re-
moving the finger, the column of mercury falls and re-
mains stationary at a height of about 76 cm. By this
experiment it was rendered quite probable, that some
very definite pressure forced the fluids into the vacuum.
What pressure this was, Torricelli very soon divined.

Galileo had endeavored, some time before this, to Galileo’s
determine the weight of the air, by first weighing a wefghPair?
glass bottle containing nothing but air and then again
weighing the bottle after the air had been partly ex-
pelled by heat. It was known, accordingly, that the
air was heavy. But to the majority of men the horror
vacui and the weight of the air were very distantly
connected notions. It is possible that in Torricelli’s
case the two ideas came into sufficient proximity to
lead him to the conviction that all phenomena ascribed
to the horror vacui were explicable in a simple and

on

!
>

I
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Atmospher- logical manner by the pressure exerted by the weight
discovered of a fluid column— a column of air. Torricelli discov-
by Torri-
celli .

at once to the case of fishes and of animals that live inTheanai-
the air. Pascal's chief merit, indeed, is to have estab- Squid and"
lished a complete analogy between the phenomena con-
ditioned by liquid pressure (water-pressure) and those
conditioned by atmospheric pressure.

5. By a series of experiments Pascal shows that
mercury in consequence of atmospheric pressure rises
into a space containing no air in the same way that,
in consequence of water-pressure, it rises into a space

ves- n

atmospher-
ic pressure.ered, therefore, the pressure of the atmosphere ; he also

first observed by means of his column of mercury the
variations of the pressure of the atmosphere.

4. The news of Torricelli’s experiment was circu-
lated in France by Mersenne, and came to the knowl-
edge of Pascal in the year 1644. The accounts of the
theory of the experiment were presumably so imper-
fect that PASCAL found it necessary to reflect indepen-
dently thereon. ( .Pesanteur de Eair. Paris, 1663.)

He repeated the experiment with mercury and with
a tube of water, or rather of red wine, 40 feet in length.
He soon convinced himself by inclining the tube that
the space above the column of fluid was really empty ;
and he found himself obliged to defend this view against
the violent attacks of his countrymen. Pascal pointed
out an easy way of producing the vacuum which they
regarded as impossible, by the use of a glass s}'ringe,
the nozzle of which was closed with the finger under
water and the piston then drawn back without much
difficulty. Pascal showed, in addition, that a curved
siphon 40 feet high filled with water does not flow, but
can be made to do so by a sufficient inclination to the
perpendicular. The same experiment was made on a
smaller scale with mercury. The same siphon flows
or does not flow according as it is placed in an inclined
or a vertical position.

In a later performance, Pascal refers expressly to
the fact of the weight of the atmosphere and to the
pressure due to this weight. He shows, that minute
animals, like flies, are able, without injury to them-
selves, to stand a high pressure in fluids, provided only
the pressure is equal on all sides ; and he applies this

containing no water. If into a deep
sel filled with water (Fig. 81) a tube be «=r

sunk at the lower end of which a bag of
mercury is tied, but so inserted that the

Pascal’s ex-
periments.

upper end of the tube projects out of the
water and thus contains only air, then
the deeper the tube is sunk into the water
the higher will the mercury, subjected
to the constantly increasing pressure of the water, as-
cend into the tube. The experiment can also be made,
with a siphon-tube, or with a tube open at its lower end.

Undoubtedly it was the attentive consideration of The height. . . * of monn~this very phenomenon that led Pascal to the idea that tains deter-
the barometer-column must necessarily stand lower at thebarom-
the summit of a mountain than at its base, and that
it could accordingly be employed to determine the
height of mountains.

Ms
Fig. 81.

eter.

He communicated this idea to
his brother-in-law, Perier, who forthwith successfully
performed the experiment on the summit of the Puy
de Dôme. (Sept. 19, 1648.)

Pascal referred the phenomena connected with ad-
hesion-plates to the pressure of the atmosphere, and
gave as an illustration of the principle involved the re-
sistance experienced when a large hat lying flat
table is suddenly lifted. The cleaving of wood to the

Adhesion
plates.

cn a
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atmosphere, will rise in c d to the height of the barom-
eter-column. Without an air-pump it was hardly pos-
sible to combine the experiment and the counter-
experiment in a simpler and more ingenious manner
than Pascal thus did.

6. With regard to Pascal’s mountain-experiment, Suppie-
we shall add the following brief supplementary remarks, marks^n

6

J Pascal’sLet b0 be the height of the barometer at the level of mountain-
the sea, and let it fall, say, at. an elevation of m metres, expenment

to kb0, where k is a proper fraction. At a further eleva-
tion of m metres, we must expect to obtain the barom-
eter-height k . k b0 , since we here pass through a stratum
of air the density of which bears to that of the first the
proportion of k : 1. If we pass upwards to the altitude
h= n . m metres, the barometer-height corresponding
thereto will be

bottom of a vessel of quicksilver is a phenomenon of
the same kind.

Pascal imitated the flow produced in a siphon by
atmospheric pressure, by the use of water-pressure.

n The two open unequal arms a and
b of a three-armed tube ab c (Fig.

r 82) are dipped into the vessels of
mercury e and d.
arrangement then be immersed in
a deep vessel of water, yet so that
the long open branch shall always
project above the upper surface,
the mercury will gradually rise in
the branches a and b, the columns

finally unite, and a stream begin to flow from the vessel
d to the vessel through the siphon-tube open above
to the air.

A siphon
which acts
by water-
pressure.

If the whole

w1 -ir=a1'm
e

Fig. 82.

log b.bh= k” . bQ or n =The Torricellian experiment was modi- \ogkPascal’s
modifica-
tion of the
Torricelli-
an experi-
ment.

d
fied by Pascal in a very ingenious manner.
A tube of the form abed (Fig. 83), of
double the length of an ordinary barom-
eter-tube, is filled with mercury. The
openings a and b are closed with the fin-
gers and the tube placed in a dish of

with the end a downwards. If

h =\«Ck { Xo% K

The principle of the method is, we see, a very simple
one ; its difficulty arises solely from the multifarious
collateral conditions and corrections that have to be
looked to.

7. The most original and fruitful achievements inTheexperi-
the domain of aerostatics we owe to OTTO VON GUE-
RICKE. His experiments appear to have been suggested
in the main by philosophical speculations. He pro-
ceeded entirely in his own way ; for he first heard of
the Torricellian experiment from Valerianus Magnus
at the Imperial Diet of Ratisbon in 1654, where he dem -
onstrated the experimental discoveries made by him
about 1650. This statement is confirmed by his method

mercury
now a be opened, the mercury in cd will
all fall into the expanded portion at c, and
the mercury in ab will sink to the height
of the ordinary barometer -column. A vac-

ments of
Otto von
Guericke.

— p uura is produced at b which presses the
fj finger closing the hole painfully inwards.

If b also be opened the column in a b will
sink completely, while the mercury in the expanded

exposed to the pressure of the

Fig. 83.

portion c, being now
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of constructing a water-barometer which was entirely
different from that of Torricelli.

Guericke’s book ( Expérimenta nova, ut vocantur,The histori-
cal value of
Guericke’s Magdeburgica. Amsterdam. 1672) makes us realise

the narrow views men took in his time. The fact that
he was able gradually to abandon these views and to
acquire broader ones by his individual endeavor speaks
favorably for his intellectual powers. We perceive
with astonishment how short a space of time separates
us from the era of scientific barbarism, and can no lon-
ger marvel that the barbarism of the social order still
so oppresses us.

In the introduction to this book and in various other
places, Guericke, in the midst of his experimental in-
vestigations, speaks of the various objections to the
Copernican system which had been drawn from the
Bible, (objections which he seeks to invalidate, ) and
discusses such subjects as the locality of heaven, the
locality of hell, and the day of judgment. Philoso-
phemes on empty space occupy a considerable portion
of the work.

Guericke regards the air as the exhalation or odor
of bodies, which we do not perceive because we have
been accustomed to it from childhood. Air, to him,
is not an element. He knows that through the effects of
heat and cold it changes its volume, and that it is
compressible in Hero’s Ball, or Pila Heronis ; on the
basis of his own experiments he gives its pressure at
20 ells of water, and expressly speaks of its weight, by
which flames are forced upwards.

8. To produce a vacuum, Guericke first employed
a wooden cask filled with water. The pump of a fire-
engine was fastened to its lower end. The water, it
was thought, in following the piston and the action of

*

Its specula-
tive charac-
ter.

Guericke’s
notion of
the air.

Guericke’s First Experiments. (Experim. Magdeb,)
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gravity, would fall and be pumped out. Guericke ex- in the receiver,

receiver was made to stand, with its stop-cock under
water, on a tripod, beneath which the pump proper was

To secure more perfect closure the Guericke’s
air-pump.

His at-
tempts to
produce a pected that empty space would remain. The fasteningsvacuum.

of the pump repeatedly proved to be too weak, since in
consequence of the atmospheric pressure that weighed
on the piston considerable force had to be applied to
move it. On strengthening the fastenings three power-
ful men finally accomplished the exhaustion. But,
meantime the air poured in through the joints of the
cask with a loud blast, and no vacuum was obtained.
In a subsequent experiment the small cask from which
the water was to be exhausted was immersed in a larger
one, likewise filled with water. But in this case, too, the
water gradually forced its way into the smaller cask.

Wood having proved in this way to be an unsuit-
able material for the purpose, and Guericke having re-
marked in the last experiment indications of success,
the philosopher now took a large hollow sphere of
copper and ventured to exhaust the air directly. At
the start the exhaustion was successfully and easily
conducted. But after a few strokes of the piston, the
pumping became so difficult that four stalwart men
(viri quadrati), putting forth their utmost efforts, could
hardly budge the piston. And when the exhaustion
had gone still further, the sphere suddenly collapsed,
with a violent report. Finally by the aid of a copper
vessel of perfect spherical form, the production of the
vacuum was successfully accomplished. Guericke de-
scribes the great force with which the air rushed in on
the opening of the cock.

9. After these experiments Guericke constructed
an independent air-pump. A great glass globular re-
ceiver was mounted and closed by a large detachable
tap in which was a stop-cock. Through this opening
the objects to be subjected to experiment were placed
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placed. Subsequently, separate receivers, connected
with the exhausted sphere, were also employed in the
experiments.
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Tlie phenomena which Guericke observed with this
The noise which

water in a vacuum makes on striking the sides of the
glass receiver, the violent rush of air and water into
exhausted vessels suddenly opened, the escape on ex-
haustion of gases absorbed in liquids, the liberation of
their fragrance, as Guericke expresses it, were imme-

diately remarked. A lighted candle is extinguished
on exhaustion, because, as Guericke conjectures, it
derives its nourishment from the air. Combustion, as
his striking remark is, is not an annihilation, but a
transformation of the air.

A bell does not ring in a vacuum. Birds die in it.
Many fishes swell up, and finally burst. A grape is kept
fresh in vacuo for over half a year.

By connecting with an exhausted cylinder a long
tube dipped in water, a water- barometer is constructed.
The column raised is 19-20 ells high ; and Von Guericke
explained all the effects that had been ascribed to the
horror vacui by the principle of atmospheric pressure.

An important experiment consisted in the weighing
of a receiver, first when filled with air and then when
exhausted. The weight of the air was found to vary
with the circumstances ; namely, with the temperature
and the height of the barometer. According to Gue-
ricke a definite ratio of weight between air and water
does not exist.

But the deepest impression on the contemporary
world was made by the experiments relating to atmos-
pheric pressure. An exhausted sphere formed of two
hemispheres tightly adjusted to one another was rent
asunder with a violent report only by the traction of
sixteen horses. The same sphere was suspended from

The curious
phenomena
observed by apparatus are manifold and various.
means of
the air-
1 ump.

a beam, and a heavily laden scale-pan was attached to
the lower half .

The cylinder of a large pump is closed by a piston.
To the piston a rope is tied which leads over a pulley
and is divided into numerous branches on which a
great number of men pull. The moment the cylinder is
connected with an exhausted receiver, the men at the
ropes are thrown to the ground. In a similar manner
a huge weight is lifted.

Guericke mentions the compressed-air gun as some- Guericke’s
air-gun.

thing already known, and constructs independently an
instrument that might appropriately be called a rari-
fied-air gun. A bullet is driven by the external atmos-
pheric pressure through a suddenly exhausted tube,
forces aside at the end of the tube a leather valve which
closes it, and then continues its flight with a consider-
able velocity.

Closed vessels carried to the summit of a mountain
and opened, blow out air ; carried down again in the
same manner, they suck in air. From these and other
experiments Guericke discovers that the air is elastic.

10. The investigations of Guericke were continued The investi-
by an Englishman, ROBERT BOYLE.* The new experi- Robert

Boyle.ments which Boyle had to supply were few. He ob-
serves the propagation of light in a vacuum and the
action of a magnet through it ; lights tinder by means
of a burning glass ; brings the barometer under the re-

ceiver of the air-pump, and was the first to construct
a balance-manometer [“ the statical manometer ” ].
The ebullition of heated fluids and the freezing of water
on exhaustion were first observed by him.

Of the air- pump experiments common at the present
day may also be mentioned that with falling bodies,

The experi-
ments relat-
ing to at-
mospheric
pressure.

And published by him in 1660, before the work of Von Guericke.— Trans.
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above into the one and light hydrogen from beneath
into the other. In both instances the balance turns in
the direction of the arrow. To-day, as we know, the
decanting of gases can be made directly visible by the
optical method of Foucault and Toeppler.

12. Soon after Torricelli’s discovery, attempts were The mercu-
. rial air-

made to employ practically the vacuum thus produced, pump.
The so-called mercurial air-pumps were tried. But no
such instrument was successful until the present cen-
tury. The mercurial air - pumps now in common use
are really barometers of which the extremities are sup-

plied with large expansions and so connected that their
difference of level may be easily varied. The mercury
takes the place of the piston of the ordinary air-pump.

13. The expansive force of the air, a property ob- Boyle’s law.

served by Guericke, was more accurately investigated
by BOYLE, and, later, by MARIOTTE. The law which
both found is as follows. If V be called the volume of
a given quantity of air and P its pressure on unit area
of the containing vessel, then the product V. P is
always = a constant quantity. If the volume of the
enclosed air be reduced one-half , the air will exert
double the pressure on unit of area ; if the volume of
the enclosed quantity be doubled, the pressure will
sink to one-half ; and so on. It is quite correct— as a
number of English writers have maintained in recent
times— that Boyle and not Mariotte is to be regarded
as the discoverer of the law that usually goes by
Mariotte’s name. Not only is this true, but it must
also be added that Boyle knew that the law did not
hold exactly, whereas this fact appears to have escaped
Mariotte.

The method pursued by Mariotte in the ascertain-
ment of the law was very simple. He partially filled

The fail of which confirms in a simple manner the view of Galileo
bodies in a
vacuum. that when the resistance of the air has been eliminated

light and heavy bodies both fall with the same velo-
city. In an exhausted glass tube a leaden bullet and a
piece of paper are placed. Putting the tube in a ver-
tical position and quickly turning it about a horizontal
axis through an angle of 1800, both bodies will be seen
to arrive simultaneously at the bottom of the tube.

Of the quantitative data we will mention the fol-
lowing. The atmospheric pressure that supports a
column of mercury of 76 cm. is easily calculated from
the specific gravity 13 -60 of mercury to be 1 -0336 kg.
to 1 sq.cm. The weight of 1000 cu.cm, of pure, dry
air at 0° C. and 760 mm. of pressure at Paris at an ele-
vation of 6 metres will be found to be 1 -293 grams,
and the corresponding specific gravity, referred to
water, to be 0 -001293.

11. Guericke knew of only one kind of air. We
may imagine therefore the excitement it created when
in 1755 BLACK discovered carbonic acid gas (fixed air)
and CAVENDISH in 1766 hydrogen (inflammable air),
discoveries which were soon followed by other similar

ones. The dissimilar

Quantita-
tive data.

The discov-
ery of other
gaseous
substances.

I physical properties of
gases are very strik-

Faraday has il-co) mg.
lustrated their great
inequality of weight

A F
c.

by a beautiful lecture-
experiment. If from
a balance in equilib-

rium, we suspend (Fig. 84) two beakers A, P, the one
in an upright position and the other with its opening
downwards, we may pour heavy carbonic acid gas from

Py
Fig. s4.
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from the rest of the atmosphere and therefore notTheexpan-
directly affected by the latter’s weight, also supported isolated
, , . . . portions of

the barometer-column ; as where, to give an instance, the atmos-
the open arm of a barometer-tube is closed. The simple

phere'

explanation of this phenomenon, which, of course,
Mariotte immediately found, is this, that the air before
enclosure must have been compressed to a point at
which its tension balanced the gravitational pressure
of the atmosphere ; that is to say, to a point at which
it exerted an equivalent elastic pressure.

We shall not enter here into the details of the ar-
rangement and use of air-pumps, which are readily
understood from the law of Boyle and Mariotte.

14. It simply remains for us to remark, that the dis-
coveries of aerostatics furnished so much that was new
and wonderful that a valuable intellectual stimulus pro-
ceeded from the science.

Torricellian tubes with mercury, measured the volume

of the air remaining, and then performed the Torricel-
lian experiment. The new volume of

air was thus obtained, and by subtract-
ing the height of the column of mer-
cury from the barometer-height, also
the new pressure to which the same
quantity of air was now subjected.

To condense the air Mariotte em-
ployed a siphon-tube with vertical

The smaller arm in which the
contained was sealed at the

Mariotte’s
experi-
ments.

in :

71

Fig. 85. arms.
air was
upper end ; the longer, into which the
mercury was poured, was open at the
upper end. The volume of the air
was read off on the graduated tube,
and to the difference of level of the

r*

His appa-
ratus.

mercury in the two arms the barometer-
height was added. At the present day
both sets of experiments are performed
in the simplest manner by fastening a

cylindrical glass tube (Fig. 86) r r,
closed at the top, to a vertical scale
and connecting it by a caoutchouc
tube k k with a second open glass tube

^ rV, which is movable up and down
V\ the scale. If the tubes be partly filled
/ 1 with mercury, any difference of level

whatsoever of the two surfaces of mer-

r
>

r*

4

cury may be produced by displacingFig. 86.

r / and the corresponding variations of volume of the

air enclosed in r r observed.
It struck Mariotte on the occasion of his investiga-

tions that any small quantity of air cut off completely
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times to lay the true foundations of this department of
inquiry.

I 2Q

CHAPTER IL

THE DEVELOPMENT OF THE PRINCIPLES OF

DYNAMICS.

GALILEO S ACHIEVEMENTS.

i . We now pass to the discussion of the funda-

mental principles of dynamics. This is entirely a mod-

ern science. The mechanical speculations of the an-
cients, particularly of the Greeks, related wholly to

statics. Dynamics was founded by GALILEO. We shall
readily recognise the correctness of this assertion if we
but consider a moment a few propositions held by the
Aristotelians of Galileo’s time. To explain the descent
of heavy bodies and the rising of light bodies, (in li-

quids for instance,) it was assumed that every thing and
object sought its place : the place of heavy bodies was

below, the place of light bodies was above. Motions
were divided into natural motions, as that of descent,
and violent motions, as, for example, that of a pro-

jectile. From some few superficial experiments and
observations, philosophers had concluded that heavy
bodies fall more quickly and lighter bodies more slowly,
or, more precisely, that bodies of greater weight fall
more quickly and those of less weight more slowly. It

is sufficiently obvious from this that the dynamical
knowledge of the ancients, particularly of the Greeks,

very insignificant, and that it was left to modern

Dynamics
wholly a
modern
science.

2. The treatise Discorsi c dimostrazioni matematiche
in which Galileo communicated to the world the FYQ

9was

l
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& Galileo’s dynamical investigation of the laws of falling bodies,
tionoMhe

^
appeared in 1638. The modern spirit that Galileo dis-

ing bodies, covers is evidenced here, at the very outset, by the fact
that he does not ask why heavy bodies fall, but pro-

pounds the question, How do heavy bodies fall ? in
agreement with what law do freely falling bodies move?

The method he employs to ascertain this law is this.
He makes certain assumptions. He does not, however,
like Aristotle, rest there, but endeavors to ascertain by

trial whether they are correct or not.
The first theory on which he lights is the following.

It seems in his eyes plausible that a freely falling body,
inasmuch as it is plain that its velocity is constantly

that its velocity is double

3. After Galileo fancied he had discovered this
sumption to be untenable, he made a second one,
cording to which the velocity acquired is proportional
to the time of the descent. That is, if a body fall once,
and then fall again during twice as long an interval of
time as it first fell, it will attain in the second instance
double the velocity it acquired in the first,
no self -contradiction in this theory, and he accordingly
proceeded to investigate by experiment whether the
assumption accorded with observed facts,

ficult to prove by any direct means that the velocity
acquired was proportional to the time of descent. It
was easier, however, to investigate by what law the
distance increased with the time ; and he consequently
deduced from his assumption the relation that obtained
between the distance and the time, and tested this by
experiment. The deduction
is simple, distinct, and
fectly correct.

as- His second,
correct, as-ac- sumption.

He found

It was dif -
His iirst,
erroneous,
theory.

on the increase, so moves
after traversing double the distance, and triple after
traversing triple the distance ; in short, that the veloci-
ties acquired in the descent increase proportionally
to the distances descended through. Before he pro-
ceeds to test experimentally this hypothesis, he reasons
on it logically, implicates himself , however, in so doing,
in a fallacy. He says, if a body has acquired a certain
velocity in the first distance descended through, double
the velocity in double such distance descended through,
and so on ; that is to say, if the velocity in the second
instance is double what it is in the first, then the double
distance will be traversed in the same time as the origi-

If , accordingly, in the case of
the first half trav-

Discussion
and eluci-
dation of
the true
theory.

per-
He draws

(Fig. 87) a straight line, and
on it cuts off successive por- O
tions that represent to him
the times elapsed. At the extremities of these por-tions he erects perpendiculars (ordinates), and these
represent the velocities acquired. Any portion OG ofthe line OA denotes, therefore, the time of descentelapsed, and the corresponding perpendicular GIF thevelocity acquired in such time.

If, now, we fix our attention
velocities,
fact :

Fig. 87.

nal simple distance.
the double distance we conceive

ersed, no time will, it would seem, fall to the account
The motion of a falling body ap- the progress of the

shall observe with Galileo the following
namely, that at the instant C, at which one-halfOC of the time of descent

f on
of the second half ,

peapiicifierefore, to take place instantaneously ; which
is sufficientlyntradicts the hypothesis but also ocular evi-
knowledge of ti. shall revert to this peculiar fallacy of

was very insignifipn.

we

OA haselapsed, the velocity
half of the final velocity AB.

If now we examine two instants of time, E and G}

CD is also one-

I



THE SCIENCE OF MECHANICS. T1IE PRINCIPLES OF DYNAMICS. 133
132

Uniformly equally distant in opposite directions from the instant
motion. C, we shall observe that the velocity IIG exceeds the

velocity CD by the same amount that EF falls
For every instant antecedent to C there

exists a corresponding one equally distant from it sub-
Whatever loss, therefore, as compared

4. The relation obtaining between t and s admits Experimen-
of experimental proof ; and this Galileo accomplished tion of the

in the manner which we shall now describe.
We must first remark that no part of the knowledge

and ideas on this subject with which
familiar, existed in Galileo’s time, but that Galileo had
to create these ideas and means for us. Accordingly,
it was impossible for him to proceed as we should do
to-day, and he was obliged, therefore, to pursue a dif -
ferent method. He first sought to retard the motion
of descent, that it might be more accurately observed.
He made observations on balls, which he caused to
roll down inclined planes (grooves); assuming that only
the velocity of the motion would be lessened here, but
that the form of the law of descent would remain un-
modified. If, beginning from the upper extremity, theThearti-
distances 1, 4, 9, 16 . . . be notched off on the groove, ployed,

the respective times of descent will be representable,
it was assumed, by the numbers 1, 2, 3, 4 . . . ; a result
which was, be it added, confirmed. The observation of
the times involved, Galileo accomplished in a very in-
genious manner. There were no clocks of the modern
kind in his day: such were first rendered possible by
the dynamical knowledge of which Galileo laid the
foundations. The mechanical clocks which were used
were very inaccurate, and were available only for the
measurement of great spaces of time. Moreover, it
was chiefly water-clocks and sand-glasses that were in
use— in the form in which they had been handed down
from the ancients. Galileo, now, constructed a very
simple clock of this kind, which he especially adjusted
to the measurement of small spaces of time ; a thing
not customary in those days. It consisted of a vessel of
water of very large transverse dimensions, having in

mean
short of it.

we are now so

sequent to C.
with uniform motion with half the final velocity, is suf-

fered in the first half of the motion, such loss is made
up in the second half . The distance fallen through we
may consequently regard as having been uniformly de-

scribed with half the final velocity. If , accordingly,
make the final velocity v proportional to the time

of descent t, we shall obtain v=gl, where g denotes

the final velocity acquired in unit of time— the so-called
The space s descended through is there-

fore given by the equation s= ( g l / 2) l or s=gt 2 /2.
Motion of this sort, in which, agreeably to the assump-
tion, equal velocities constantly accrue in equal inter-

vals of time, we call uniformly accelerated motion.

If we collect the times of descent, the final veloci-

lodtfès^and ties, and the distances traversed, we shall obtain the
distances of
descent.

I

ti we

acceleration.

Table of the

following table :
s.t. v.
g

' x i .;
mà

2 X 2

3 X 3 . j
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g
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the bottom a minute orifice which was closed with the
As soon as the ball began to roll down the in-

zero. We perceive, therefore, that a body will rise, justifica-
in virtue of the velocity acquired in its descent, just as assumption
high as it has fallen. If , accordingly, a body falling final veioc-
down an inclined plane could acquire a velocity which motions are
would enable it, when placed on a differently inclined lesamc‘

plane, to rise higher than the point from which it had
fallen, we should be able to effect the elevation of
bodies by gravity alone.
ingly, in this assumption, that the velocity acquired by
a body in descent depends solely

Galileo’s
clock. finger.

dined plane Galileo removed his finger and allowed the

water to flow out on a balance ; when the ball had ar-

rived at the terminus of its path he closed the orifice.
As the pressure-height of the fluid did not, owing to

dimensions of the vessel, percept-the great transverse
ibly change, the weights of the water discharged from

the orifice were proportional to the times. It was in

this way actually shown that the times increased simply,

while the spaces fallen through increased quadratically.

The inference from Galileo’s assumption wTas thus con-

firmed by experiment, and with it the assumption itself .
notion of the relation which sub-

There is contained, accord-

on the vertical height
fallen through and is independent of the inclination of
the path, nothing more than the uncontradictory ap-
prehension and recognition of the fact that heavy bodies
do not possess the tendency to rise, but only the ten-
dency to fall.5. To form some

sists between motion on an inclined plane and that of

free descent, Galileo made the assumption, that a body
an inclined plane

The rela-
tion of mo-
tion on an
inclined
plane to
that of free
descent.

If we should
ing down the length of
or other attained

assume that a body fall-
inclined plane in some way

a greater velocity than a body that
fell through its height, we should only have to let the
body pass with the acquired velocity to another in-
clined or vertical plane to make it rise to
tical height than it had fallen from,

city attained on the inclined plane were less, .
only have to reverse the process to obtain the
suit. In both instances

an

which falls through the height of
attains the same final velocity as a body which falls

assumption that wilithrough its length. This is an
strike us as rather a bold one ; but in the manner in

which it was enunciated and employed by Galileo, it is

quite natural. We shall endeavor to explain the way by

which he was led to it. He says : If a body fall freely

downwards, its velocity increases proportionally to the

time. When, then, the body has arrived at a point be-
low, let us imagine its velocity reversed and directed
upwards ; the body then, it is clear, will rise. We make

the observation that its motion in this case is a reflection,
so to speak, of its motion in the first case. As then its

velocity increased proportionally to the time of descent,
it will now, conversely, diminish in that proportion.
When the body has continued to rise for as long a

time as it descended, and has reached the height from

which it originally fell, its velocity will be reduced to

a greater ver-

And if the velo-
we should

same re-
a heavy body could, by an ap-

propriate arrangement of inclined planes, be forced
continually upwards solely by its own weight— a state
of things which wholly contradicts our instinctive
knowledge of the nature of heavy bodies.

6. Galileo, in this case, again, did not stop with
the mere philosophical and logical discussion of
assumption, but tested it by comparison with
rience.

his
expe-

\
I

He took a simple filar pendulum (Fig. 88) with aheavy ball attached. Lifting' the pendulum, whileP
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the level of a given
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elongated its full length, to ttie lev.» -, - *
, ,U „„icttinsr it fall, it ascended to the same

If it does not do so

136 the velocity of descent, the body could not rise to
the same horizontal level from which it had fallen.
But it does. By driving the nail sufficiently low down,

may shorten the pendulum for half of an oscillation
as much as we please ; the phenomenon, however, al-

remains the same. If the nail h be driven so low

altitude,
level

exactly,

on

Galileo's
experiinen- .
tai verifica- and then letting
tion of this . . . ,

assumption on the opposite side. It it uucs nw ~ ~ _

Galileo said, the resistance of the air must be the cause

of the deficit. This is inferrible from the fact that the

deficiency is greater in the case of a cork ball than it is

we

ways
down that the remainder of the string cannot reach to
the plane E, the ball will turn completely over and
wind the thread round the nail ; because when it has
attained the greatest height it can reach it still has a
residual velocity left.

7. If we assume thus, that the same final velocity isTheas-. sumption
attained on an inclined plane whether the body fall leads to the

. , law of rela-through the height or the length of the plane,— in which tive accei-
assumption nothing more is contained than that a body sought,

rises by virtue of the velocity it has acquired in falling
just as high as it has fallen, — we shall easily arrive,
with Galileo, at the perception that the times of the de-
scent along the height and the length of an inclined
plane are in the simple proportion of the height and
the length ; or, what is the same, that the accelerations
are inversely proportional to the times of descent.
The acceleration along the height will consequently
bear to the acceleration along ^the length the proportion of the
length to the height. Let AB
(Fig. 89) be the height and AC &
the length of the inclined plane.
Both will be descended through in uniformly accel-
erated motion in the times t and t 1 with the final ve-
locity v.

However, this neg-

a seriesof descent along

inclinations. This seen, we can,

cause the body to rise on a different arc— on a

series of inclined planes. This we accomplish by driv-

ing in at one side of the thread, as it vertically hangs,

a nail f or g, which will prevent any given portion

the thread from taking part in the second half of the

motion. The moment the thread arrives at the line of

equilibrium and strikes the nail, the ball, which has

fallen through ba, will begin to ascend by a different

series of inclined planes, and describe the arc am or an.
Now if the inclination of the planes had any influence

with Galileo, easily
different

a
Fig. 89.of

Therefore,

A B _ t
2 / l ’ A C ~

V v
çi-t and ACz=V. ' )

AB= '1
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accelerations along the height and the length be
we also have

o- t AB- — sin a.

case the chords AG, AM drawn in this circle from theupper extremity of the diameter will be traversed inthe same time by a falling body as the vertical diame-ter itself . Since, obviously, only the lengths
clinations are essential here,
chords in question from the lower
diameter, and

If the
called respectively g and g1

v= gt and v = g1 tv whence
S

In this way we are able to
inclined plane the acceleration of free

ACt and in-
may also draw thededuce from the accel- we

extremity of thesay generally : The vertical diameterof a circle is described by a falling particle in thetime that any chord through either
described.

eration on an
descent.

From this proposition
of which have passed into our elementary

text-books. The accelerations along the height and

length are in the inverse proportion of the height and

length. If now we cause one body to fall along the

length of an inclined plane and simultaneously another

to fall freely along its height, and ask what the dis-

tances are that are traversed by the two in equal inter-

vals of time, the solution of the problem will be readily

found (Fig. 90) by simply letting fall from B a perpen-
dicular on the length. The part AD, thus cut off, will

be the distance traversed by the one body on the in-

clined plane, while the second body is freely falling

through the height of the plane.

Galileo deduces several cor-
same

extremity is so
A corollary
of the pre-
ceding law. ollaries, some

We shall present another corollary, which, in the The figurespretty form in which Galileo gave it, is usually no bodies fail-longer incorporated in elementary expositions. We chords1ofimagine gutters radiating in a vertical plane from acircle£'common point A at a
number of different
degrees of inclination
to the horizon (Fig.
92). We place at their
common extremity A

bodies and cause them
to begin simultaneous-
ly their motion of des-
cent. The bodies will
alwaysform at any
instant of time a circle. After the lapse ofthey will be found i
radii increase
times.

A
one

a longer time
circle of larger radius, and the

proportionally to the squares of theIf we imagine the gutters to radiate in a spaceinstead of a plane, the falling bodies will always forma sphere, and the radii of the spheres will increase pro-portionally to the squares of the times.

m a

circle on AB as diame-
through D, because D is a

thus, that we can imagine

If we describe (Fig. 91) a
the circle will pass

It will be seen

Relative
times of de-
scription of ter,
the chords
and diame-
ters of cir-
cles.

right angle.
any number of inclined planes, AB, AB, of any degree

of inclination, passing through A, and that in every This will be
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perceived by imagining the figure revolved about its

perpendicular AV.
8. We see thus,— as deserves again to be briefly

noticed,— that Galileo did not supply us with a theory

of the falling of bodies, but investigated and estab-

lished, wholly without preformed opinions, the actual

velocity thus acquired second plane BC, for ex- Galileo’s
ample, ascends this second plane. On all planes BC, ofulelo-
BD, and so forth, it ascends to the horizontal
that passes through A.

on a

, called law
plane of inertia.

Character
of Galileo's
inquiries.

But, just as it falls on BD
with less acceleration than it does on BC, so similarly
it will ascend on BD with less retardation than it will
on BC. The nearer the planes BC, BD, BE, BE
proach to the horizontal plane BIT, the less will
retardation of the body

facts of falling.
Gradually adapting,

to the facts, and everywhere logically abiding by the

ideas he had reached, he hit on a conception, which to

less than to his successors, appeared
law. In all his reasonings, Galileo

ap-
on this occasion, his thoughts the

those planes be, and the
longer and further will it move on them. On the hori-
zontal plane BH the retardation vanishes entirely (that
is, of course, neglecting friction and the resistance of
the air), and the body will continue to move infinitely
long and infinitely far with constant velocity. Thus ad-
vancing to the limiting case of the problem presented,
Galileo discovers the so-called law of inertia, according
to which a body not under the influence of forces, i. e.
of special circumstances that change motion , will re-tain forever its velocity (and direction),

presently revert to this subject.
9. The motion of falling that Galileo found actually The deduc-to exist, is, accordingly, a motion of which the velocity idea of uni-. . .

1 , 1 • form1 y ac-mcreases proportionally to the time— a so-called uni- ceieratedformly accelerated motion.
It would be

on

himself , perhaps
in tne light of a new
followed, to the greatest advantage of science, a prin-

ciple which might appropriately be called the principle

of continuity. Once we have reached a theory that ap-

ciple of . i i 11

continuity, plies to a particular case, we proceed gradually to

modify in thought the conditions of that case, as far

as it is at all possible, and endeavor in so doing to

adhere throughout as closely as we can to the concep-

There is no method of pro-

The prm-

We shall

tidn originally reached,

cedure more surely calculated to lead to that compre-

hension of all natural phenomena which is the simplest

and also attainable with the least expenditure of men-

(Compare Appendix, I.)
will show more clearly thantality and feeling.

A particular instance
general remarks what we

an anachronism and ut'toattempt, as is sometimesdone,
accelerated

.ly unhistorical
to derive the uniformly

motion of falling bodies from the constantaction of the force of gravity. “ Gravity is a constantforce ; consequently it generates in equal elements oftime equal increments of

Galileo con-mean.
any

EC DA

velocity ; thus, the motionproduced iis uniformly accelerated. ” Any expositionsuch as this would be unhistorical, and would put thewhole discovery in a false light, for the reason that thenotion of force as we hold it to-day was first created

7/
B

Fig- 93-
siders (Fig. 93) a body which is falling down the in-
clined plane AB, and which, being placed with the
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known solely as preserves its direction and velocity unchanged,

fortunes of this law of inertia have been strange,appears never to have played a prominent part in Gali-leo's thought. But Galileo’s successors, particularlyHuygens and Newton, formulated it as an independentlaw. Nay, some have even made of inertia a generalproperty of matter. We shall readily perceive, how-ever, that the law of inertia is not at all an indepen-dent law, but is contained implicitly in Galileo’s per-ception that all circumstances determinative of motion,or forces, produce accelerations.
In fact, if a force determine, not position, not velo- Thciawacity, but acceleration, change of velocity, it stands to fennec "’reason that where there is no force there will be no leo £n<iachange of velocity. It is not necessary to enunciate servationTthis in independent form. The embarrassment of theneophyte, which also overcame the great investigatorsin the face of the great mass of new material presented,alone could have led them to conceive thetwo different facts and

In any event, to represent inertia as self -evident,to derive it from the general proposition that “ the effeet of ^

Before Galileo force

pressure. Now, no one can know, who has not learned

it from experience, that generally pressure produces

motion, much less in what manner pressure passes into

motion ; that not position, nor velocity, but accéléra-
is determined by it. This cannot be philosophi-

, itself. Conjectures
alone can

was
Forces and by Galileo. The History of

T the so-i t called law
of inertia.

accelera-
tions.

tion, IS .

cally deduced from the conception

may be set up concerning it. But experience

definitively inform us with regard to it.

10. It is not by any means self -evident, therefore,
which determine motion, that

accelerations. A glance
make this

that the circumstances
is, forces, immediately produce
at other departments of physics will

clear. The differences of temperature

determine alterations. However, by differences
accelerations are

at once
of bodies also

of tem-
deter-

1
not compensatoryperature

mined, but compensatory velocities.
The fact That it is accelerations which are the immediate ef -

determine fects of the circumstances that determine motion,

donsls an is, of the forces, is a fact which Galileo perceived in the

taiPfacten" natural phenomena. Others before him had also per-
ceived manythings. The assertion that everything seeks

also involves a correct observation. The ob-
hold good in all cases,

stone into the

that
same fact as

to formulate it twice.
Or Erroneous

methods of
" deducing ita cause persists,” is totally w mg. Only amistaken straining after rigid logic can lead us so outof the way. Nothing is to be accomplished in theent domain with scholastic propositions like the onejust cited. We may easily convince ourselves that thecontrary proposition, “ cessante causa cessât effectus,”is as well supported by reason. If we call the acquiredvelocity “ the effect,” then the first proposition isrect ; if we call the acceleration “ effect, ” then theond proposition holds.

12. We shall
another side.

its place
servation, however, does not

and it is not exhaustive. 7

air, for example, it no longer seeks its place

place is below. But the acceleration towards the earth,

the retardation of the upward motion, the fact that Ga-

lileo perceived, is still present. His observation always

remains correct ; it holds true more generally ; it em-

braces in one mental effort much more.
11. We have already remarked that Galileo dis-

covered the so-called law of inertia quite incidentally.
which, as we are wont to say, a force acts,

If we cast a
pres-; since its

v-Li-XV
cor-
sec-

now examine Galileo’s researches fromHe began his investigations with theA body on



THE PRINCIPLES OF DYNAMICS. 145MECHANICS.
THE SCIENCE OF

Notion of notions familiar to his time— notions

it existed in in the practical arts. One notion of this kind was

time. of velocity, which is very readily obtained from the con-

sideration of a uniform motion. If a body traverse in

every second of time the same distance c, the distance

traversed at the end of t seconds will be s — ct. The

distance c traversed in a second of time we call the ve-

d obtain it from the examination of any por-

and the corresponding
=s/t, that Is, by dividing

of the distance trave

small element of time, where the element of the curve Galileo’s
in 2 approaches to a straight line, we may regard thedon^fthis
increase as uniform. The velocity in this element of notlon‘

the motion we may then define as the quotient, A s/ A /,
of the element of the time into the corresponding ele-
ment of the distance. Still more precisely, the velocity
at any instant is defined as the limiting value which
the ratio A s/ A t assumes as the elements become in-
finitely small— a value designated by ds/dt. This new
notion includes th . old one as a particular case, and is,
moreover, immediately applicable to uniform motion.
Although the express formulation of this idea, as thus
extended, did not take place till long after Galileo, we
see none the less that he made use of it in his reason-
ings.

developed mainly
that

144

time by thelocity, an
theof the distance

help of the equation c

number which is the measure
by the number which is the measure of the time

Now, Galileo could not complete his investigations

without tacitly modifying and extending the traditional

idea of velocity. Let us represent for distinctness sake

tion
rsed

elapsed.

13. An entirely new notion to which Galileo was The notion
of acrelnra-he idea of acceleration. In uniformly acceler- tion .

atea *ution the velocities increase with the time

R>/

2
agreeably to the same law as in uniform motion the
spaces increase with the times. If we call v the velo-
city acquired in time /, then v=gt. Here g denotes
the increment of the velocity in unit of time or the ac-
celeration, which we also obtain from the equation
g= v/t. When the investigation of variably accel-
erated motions was begun, this notion of accelera-
tion had to experience an extension similar to that of
the notion of velocity. If i
drawn as abscissae, but now the velocities as ordinates,

A s

A t A

uniform motion, in 2 a variable motion,

in thedirection OA the elapsed

ordinates in the direction AB the

Now, in 1, whatever
divide by the corresponding in- u

obtain for the ve- j

thus to proceed £
and jj

(Fig. 94) a

bylaying off as
and erecting as

traversed.

m i
abscissae m

and 2 the times be againin 1increment (times,
distances we may go through anew the whole train of the pre-

ceding reasoning and define the acceleration as dv /dt,where dv denotes an infinitely small increment of thevelocity and dt the corresponding increment of thetime.

of the distance we may

crement of the time, in

locity c the same value. But if we were
should obtain widely differing values

the word “ velocity” asordinarily understood,

in this case to be unequivocal. If, however, we

of the distance in a sufficiently

wein all cases

in 2, we
therefore
ceases L

In the notation of the differential calculus we

ider t-hrincreaseconsu-

v
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have for the acceleration of a rectilinear motion, (p — front of it during its motion a piece of paper to be uni-
formly drawn along from right to left and the pencil to
thus execute the drawing in Fig. 96, we shall be able to
read off from the drawing the peculiarities

the velocity of the pencil was directed
wards, at b it was greater, at c it was
directed downwards, at c it was again
d, e, the acceleration

dv jdt = d2 s/di2.
The ideas here developed are susceptible, moreover,

of graphic representation. If we lay off the times as

abscissae and the distances as ordinates, we shall per-
ceive, that the velocity at each instant is measured by

the slope of the curve of the distance,

manner we put times and velocities together, we

see that the acceleration of the instant is measured by

the slope of the curve of the velocity,

the latter slope is, indeed, also capable of being traced
will be perceived from

Let us imagine, in the

Graphic
representa-
tion of
these ideas.

of the mo-
tion. At a up-

= 0, at d it
= 0.

directed upwards, at c down-
wards j at c and c it was greatest.

14. The summary representation

was
If in a similar

shall
At a, b,

was

The course of Of what Galileo Tabular
discovered is best made by a table of times, acquired mem of Ga

lileo’s dis-
covery.

in the curve of distances, as

the following considerations.
/ . v . s .
1 14-g

2
E 2 4-CD 2

/F 3 g% 9 ».
Td\Aa B 0

Fig. ç)G.
Fig. 95- gt *g t2

usual manner (Fig. 95), a uniform motion represented

by a straight line OCD. Let us compare with this a

motion OCE the velocity of which in the second half

of the time is greater, and another motion OCE of

which the velocity is in the same proportion smaller.

In the first case, accordingly, we shall have to erect for

the time OB= 2 OA, an ordinate greater than BD =.-

2 AC ; in the second case, an ordinate less than BD.

We see thus, without difficulty, that a curve of dis-

tance convex to the axis of the time-abscissæ corre-

sponds to accelerated motion, and a

retarded motion. If we imagine a lead-pen-
kind and in

2

The curve
of distance.

velocities, and traversed distances. But the numbersThfollow so simple a law,— one immediately recognisable,— that there is nothing to prevent our replacing thetable by a rule for its construction. If we examine therelation that connects the first and second columnsshall find that it is expressed by the equation vwhich, in its last analysis, i
ated direction for constructing the first two columnsof the table. The relation connecting the first and thirdcolumns is given by the equation s = g t 2 /2. The con-nection of the second and third columns is representedby s Z=L v 2 / 2 g.

e table
may be re-
placed by
rules for its
construc-
tion.

, we
=gl,

is nothing but an abbrevi-

curve concave

thereto to

cil to perform a vertical motion of any
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time, but through four tunes the distance. With re-spect to time, therefore, its efficacy is proportional to
the velocity ; with respect to distance, to the square of
the velocity. D’Alembert drew attention to this mis-
understanding, although in not very distinct terms. It
is to be especially remarked, however,

thoughts on this question
16. The

Of the three relations
The rules.

V = gt
gt*

s= ->
V 2

2£ that Huygens’s
strictly, the first two only were employed by Galileo.

the first who evinced a higher apprécia-
tifs doing, the founda-

were perfectly clear.
experimental procedure by which, at the Thepresem

present day, the laws of falling bodies are verified, is taimeansof
somewhat different from that of Galileo. Two methods the/awsKof
may be employed. Either the motion of falling, which fes!mK t?°d

from its rapidity is difficult to observe directly, is so
retarded, without altering the law,
served ; or the motion of falling i

Huygens was
tion of the third, and laid, in

tions of important advances.
15. We may add a i

this table that is very valuable,

previously that a body, by virtue

acquired in its fall, is able to rise again

nal height, in doing which its velocity diminishes in

the same way (with respect to time and space) as it

increased in falling. Now a freely falling body ac-

quires in double time of descent double velocity, but

falls in this double time through four times the simple

distance. A body, therefore, to which we impart a ver-

tically upward double velocity will ascend twice as

long a time, but four t imes as high as a body to which

the simple velocity has been imparted.

It was remarked, very soon after Galileo, that there

in the velocity of a body a something that
something, that is, by which
certain ‘‘efficacy,” as it has

debated

remark in connection with
It has been statedA remark

on the rela-
tion of the
spaces and
the times.

of the velocity it has
in to its origi- as to be easily ob-

is not altered at all,
means of observation are improved in deli-cacy. On the first principle Galileo’s inclined

gutter and Atwood’s machine
machine

but our

rest.
% Atwood’s

consists (Fig. 97) of
nmg pulley, over which is thrown
to whose extremities
attached.

an easily run- /Va thread,
two equal weights P are

If upon one of the weights P welay a third small weight p, a uniformly accel-
erated motion will be set up by the
weight, having the acceleration (//2 Pf ) g— a resultthat will be readily obtained when we shall have dis-cussed the notion of “ mass. ” Now by means of agraduated vertical standard connected
it may easily be shown that i
the dista

UP
over- Fis- 97’

Thedispute
of the Car- .
tesians and is inherent in
Leibnitz- . f

ians on the corresponds to a iorce— a
measure of
force. a force can be overcome, a

been aptly termed. The only point that

, whether this efficacy was to be reckoned propor-
tional to the velocity or to the square of the velocity.

The Cartesians held the former, the Leibnitzians the

latter. But it will be perceived that the question in-
volves no dispute whatever. The body with the double

force through double the

with the pulley
in the times 1, 2, 3, 4....nces 1, 4, 9, 16 . . . . are traversed. The finalvelocity corresponding to any given time of descent isinvestigated by catching the small additional weight,/,which is shaped so as to project beyond the outline of^ in a ring through which the falling body passes,after which the motion continues without

was

was

velocity overcomes a given acceleration.
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a rapidly operating clock-work Thcalled a chronoscope, which is set in motion at the beginning of the time to be measured and stopped at the mpp and
termination of it. Hipp has advantageously modified

Ï5I
The apparatus of Morin is based on a different prin-The appa-

Morin, La- ciple. A body to which a writing pencil is attached
borde, Lip-
pich, and
Von Babo.

nute portions of time
e de-

vices of- wheat-describes on a vertical sheet of paper, which is drawn
uniformly across it by a clock-work, a horizontal straight
line. If the body fall while the paper is not in motion,
it will describe a vertical straight line. If the two
motions are combined, a parabola will be produced,
of which the horizontal abscissae correspond to the
elapsed times and the vertical ordinates to the dis-
tances of descent described. For the abscissae 1, 2,
3, 4 . . . . we obtain the ordinates 1, 4, 9, 16 . . . . By
an unessential modification, Morin employed instead of
a plane sheet of paper, a rapidly rotating cylindrical
drum with vertical axis, by the side of which the body
fell down a guiding wire. A different apparatus, based
on the same principle, was invented, independently, by
Laborde, Lippich, and Von Babo. A lampblacked
sheet of glass (Fig. 98#) falls freely, while a horizon-
tally vibrating vertical rod, which in its first transit
through the position of equilibrium starts the motion
of descent, traces, by means of a quill, a curve on the
lampblacked surface. Owing to the constancy of the
period of vibration of the rod combined with the in-
creasing velocity of the descent, the undulations traced
by the rod become longer and longer. Thus (Fig. 98)
bc=z $ ab, cd= $ abf de= yab, and so forth,

law of falling bodies is clearly exhibited by this, since
ab + cb= /\ab, a b -\- b c c d — gab, and so forth.
The law of the velocity is confirmed by the inclinations
of the tangents at the points a, b, c, d, and so forth. If
the time of oscillation of the rod be known, the value
of g is determinable from an experiment of this kind
with considerable exactness.

Wheatstone employed for the measurement ôf mi-

d

b

Mir , . iiii . M m*

The
F«K- 9^.

Fig. 98a.this method by simply causing a light index-hand tobe thrown by means of a clutch in and out of gear witha rapidly moving wheel-work regulated by a vibratingreed of steel tuned to a high note, and acting as an es-
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capement. The throwing in and out of gear is effected
electric current. Now if, as soon as the body be- the distance from the point that the body passes at time

t = 0. When Galileo had once reached his fundamentalconception of dynamics, he easily recognised the
of horizontal projection as a combination of two inde-pendent motions, a horizontal uniform motion, and avertical uniformly accelerated motion.

by an
gins to fall, the current be interrupted, that is the hand
thrown into gear, and as soon as the body strikes the

closed, that is the hand
case

platform below the current is

thrown out of gear, we can read by the distance the
index-hand has travelled the time of descent.

17. Among the further achievements of Galileo we
have yet to mention his ideas concerning the motion
of the pendulum, and his refutation of the view that
bodies of greater weight fall faster than bodies of less
weight. We shall revert to both of these points on
other occasion. It may be stated herd, however, that
Galileo, on discovering the constancy of the period of
pendulum-oscillations, at once applied the pendulum
to pulse-measurements at the sick-bed, as well as pro-
posed its use in astronomical observations and to
tain extent employed it therein himself .

Of still greater importance are his investiga-
tions concerning the motion of projectiles. A free body,

constantly experiences a
If at the

He thus intro-duced into use the principle of the parallelogram of mo-tions. Even oblique projection no longer presented theslightest difficulty.
Galileo’s
minor in-
vestiga-
tions. If a body receives a horizontal velocity c, it de- The curvescribes in the horizontal direction in time t the distance tfolTapar-y= ct, while simultaneously it falls in a vertical direc-tion the distance x=

gtI
2/2. Different motion-deter-minative circumstances exercise no mutual effect on oneanother, and the motions determined by them takeplace independently of each other.

this assumption by the attentive observation of thephenomena ; and the assumption proved itselfFor the curve which a body describes when themotions in question are compounded, we find, byploying the two equations above given, the expressiony = V (2 c 2 /g) x. It is the parabola of Apollonius hav-ing its parameter equal to c 2 /g and its axis vertical,as Galileo knew.

an-

Galileo was led toa cer-

true.
18. twoThe motion

of projec-
tiles. em -

according to Galileo’s view,
vertical acceleration g towards the earth,

beginning of its motion it is affected with a vertical

A— 1 P y velocity c, its velocity at the
end of the time t will be v —
c -f- gt. An initial velocity up-
wards would have to be reck -

We readily perceive with Galileo, that obliqujection involves nothing new. The velocity c impartedto a body at the angle a with the horizon is resolvableinto the horizontal component c . cos a and the verticalcomponent c . sin a

e pro- Oblique
projection

I oned negative here. The dis-
\ tance described at the end of

time t is represented by the
equation ^ = a ct -f \gi2 , where ct and\gt2 are the
portions of the traversed distance that correspond re-
spectively to the uniform and the uniformly accelerated
motion. The constant a is to be put = 0 when we reckon

. With the latter velocity the bodyascends during the same interval of time t which itwould take to acquire this velocity in falling verticallydownwards. Therefore,
reached its

X
Fig 90-

c . sin a=gt. When it has
greatest height the vertical component oftts initial velocity has vanished, and from the point S
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goes from A to D. Now, this also happens if the two
circumstances that simultaneously determine the
tions AB and AC, have no influence
It is easy to see that we may compound by the paral-
lelogram not only displacements that have taken place
but also velocities and accelerations that simultane-
ously take place.

154 155

onward (Fig. 100) it continues its motion as a horizon-
tal projection. If we examine any two epochs equally

distant in time, before and after the transit through S,
we shall see that the body at
these two epochs is equally
distant from the perpendicu -
lar through S and situated the
samedistance below the hori-
zontal line through S. The

mo-
on one another.

% 11.
curve is therefore symmet-

the vertical line through S. It
and the parameter

Fig. 100.
THE ACHIEVEMENTS OF HUYGENS.rical with respect to

parabola with vertical axis 1. The next in succession of the great mechanical in- Huygens'squirers is HUYGENS, who in every respect must be as^nST*
ranked as Galileo’s

is a
(c cos a) 2 /g.

To find the so-called range of projection, we have
the horizontal motion during the

peer. If, perhaps, his philosophical
endowments were less splendid than those of Galileo,
this deficiency was compensated for by the superiorityof his geometrical powers. Huygens not only continued
the researches which Galileo had begun, but he alsosolved the first problems in the dynamics of severalmasses, whereas Galileo had throughout restricted him-self to the dynamics of a single body.

The plenitude of Huygens’s achievements is bestEin his HorologiumOsdilatorhim, which appeared i1673. The most important subjects there treatedthe first time,
tion, the invention

quirer.
The range
of projec-
tion. simply to consider

time of the rising and falling of the body. For the ascent

this time is, according to the equations above given,
With the

t= c sin a/g, and the same for the descent,

horizontal velocity c . cosa, therefore, the distance is

traversed .sin 2 a.c sin a
J 2 sin a cos a = -w = c cos a . gg

numera-
tion of Huy-

in gens’s
achieve-
ments.

The range of projection is greatest accordingly

when a= 450, and equally great for any two angles

« = 45° ± P°-
seen

of for
: the theory of the centre of oscilla-
„ and construction of the pendulum-clock, the invention of the <

tion of the acceleration of gravity, g, by pendulum-observations, a proposition regarding the employmentof the length of the seconds pendulum as the unit oflength, the theorems respecting centrifugal force, themechanical and geometrical properties of cycloids, thedoctrine of evolutes, and the theory of the circle ofcurvature.

are
recognition of the mutual independence of

motion-determinative circumstances oc-
curring in nature, which was
reached and found expression
in the investigations relating to

® projection,is important. A body
may move (Fig. 101) in the di-

rection AB, while the space in which this motion oc-

curs is displaced in the direction AC. The body then

The19.The mutual
indepen-
dence of
forces.

escapement, the determina-the forces, or

A

Fig. 101.
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coveries, and thus always
conducts his reader into the
full comprehension of his
performances. Nor had he
cause
methods. If , some thou-
sand years hence, it will be
found that he was a man, it
will likewise be seen what
manner of man he was.
In our discussion of the
achievements of Huygens,
however, we shall have to
proceed in a somewhat dif -
ferent manner from that
which we pursued in the
case of Galileo. Galileo’s
views, in their classical sim-
plicity, could be given in an
almost unmodified form.
With Huygens this is not
possible. The latter deals
with more complicated
problems; his mathematical
methods and notations be-
come inadequate and cum -
brous. For reasons of brev-
ity, therefore, we shall re -
produce all the conceptions
of which we treat, in mod-
ern form, retaining, how-
ever, Huygens’s essential
and characteristic ideas.

of his I Characteri-
sation of
Huygens's
perform-
ances.

With respect to the form of presentation
rked that Huygens shares with

Y -4?2 .

work, it is to be renia / 01
3

Q
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to conceal these *1W
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Galileo, in all its perfection, the latter’s exalted and

inimitable candor. He is frank without reserve in the

presentment of the methods that led him to his dis-
cuss

Huygens’s Pendulum Clock.
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formly travelled round by two bodies ; the velocities in Uniform

the circles I and II bear to each other the proportion "gui?" m

i : 2. If in the two circles we consider any same arc- circleb'

element corresponding to some very small angle a, then
the corresponding element ^ of the distance that the
bodies in consequence of the centripetal acceleration
have departed from the rectilinear path (the tangent),
will also be the same. If we call cp1 and cp2 the re-
spective accelerations, and r and r/2 the time-elements
for the angle a, we find by Galileo’s law

2s4 TV that is to say cp2 = 4<px .

concerning

ised with3. We begin with the investigations

centrifugal force. When once we have recogn

Galileo that force determines acceleration, we are im-
pelled, unavoidably, to ascribe every change of velocity

and consequently also every change in the direction of

a motion (since the direction is determined by three

velocity-components perpendicular to one another) to

a force. If , therefore, any body attached to a string,
uniformly round in a circle, the

is intelligible only
force that deflects the

of the

Centrifugal
and centri-
petal force.

stone, is swungsay a
curvilinear motion which it performs

the supposition of a constant
body from the rectilinear path.
string is this force ; by it the body is constantly deflected

from th*e rectilinear path and made to move towards

the centre of the circle. This tension, accordingly, rep-

resents a centripetal force. On the other hand, the axis

also, or the fixed centre, is acted on by the tension of

the string, and in this aspect the tension of the string

centrifugal force

2s
<Pl = T 2 > =

Therefore, by generalisation, in equal circles the
centripetal acceleration is proportional to the square of
the velocity of the motion.

Let us now consider the motion in the circles I and Uniform

II (Fig. 103), the radii of which are to each other as unequal
circles.

i : 2, and let us take for the ratio of the velocities of
the motions also 1 : 2, so that like arc-elements are
travelled through in equal times. < plf <p2 , s, 2s denote
the accelerations and the elements of the distance trav-
ersed ; r is the element of the time, equal for both
cases. Then

on The tension

appears as a
I I .

2s
'llV

2s •L that is to say cp.,= 2 cpl .
If now we reduce the velocity of the motion in II

one-half, so that the velocities in I and II become
equal, cp 2 will thereby be reduced one-fourth, that is
to say to cp 1 /2. Generalising, we get this rule : when
the velocity of the circular motion is the same, the cen-
tripetal acceleration is inversely proportional to the
radius of the circle described.

4- The early investigators, owing to their follow!'

<Pi= 92 =r 2’ r 2’

Fig. 103.
Fig. 102.

Let us suppose that we have a body to which av\ve-

locity has been imparted and which is maintained in

uniform motion in a circle by an acceleration constantly
directed towards the centre. The conditions on which

this acceleration depends, it is our purpose to investi-
We imagine (Fig. 102) two equal circles uni-

gate.
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the conceptions of the ancients, generally obtained their
of’ the gen- . . . . . r r
erai law of propositions in the cumbersome form ot proportions.
ç i rcu I cii*

motion. We shall pursue a different method. On a movable
object having the velocity v let a force act during the

element of time r which imparts to the object perpen-

dicularly to the direction of its motion the acceleration
cp. The new velocity-component thus becomes cpr,
and its composition with the first velocity produces a

direction of the motion, making the angle a with

the original direction. From this results, by conceiving

the motion to take place in a circle of radius r, and on

account of the smallness of the angular element putting

efation is constantly changing ; and that a change of
velocity (as will appear in the discussion of the prin-
ciple of vis viva ) is connected with an approach of the
bodies that accelerate each other, which does not take

The more complex case of elliptical

Deduction

place here.
tral motion is elucidative in this direction.

cen-

5. The expression for the centripetal or centrifugal A different
acceleration, cp = v2 /r, can easily be put in a somewhat of îheïaw”
different form. If T denote the periodic time of the
circular motion, the time occupied in describing the
circumference, then vT= 2 r n, and consequently q) =
A^ rn2 / T- , in which form we shall employ the
sion later on. If several bodies moving in circles have
the same periodic times, the respective centripetal ac-
celerations by which they are held in their paths
apparent from the last expression, are proportional to
the radii.

new

expres-

«7 , as is

cp T a
6. We shall take it for granted that the reader is Some phe-

familiar with the phenomena that illustrate the con- which the
sidérations here presented : as the rupture of strings of plains,
insufficient strength on which bodies are whirled about,
the flattening of soft rotating spheres, and so on. Huy-gens was able, by the aid of his conception, to explain
at once whole series of phenomena. When a pendulum-clock, for example, which had been taken from Paris
to Cayenne by Richer (1671-1673), showed a retarda-tion of its motion, Huygens deduced the apparent
diminution

Fig. 105.Fig. 104.

a, the following, as the complete expression
for the centripetal acceleration of a uniform motion in

a circle,

tan a =

7» 2V Tcpr or cp= .r= tan a= a

The idea of uniform motion in a circle conditioned
The para-
character by a constant centripetal acceleration is a little para-
probiem. doxical. The paradox lies in the assumption of

acceleration towards the centre without actual

of the acceleration of gravity g thus estab-lished, from the greater centrifugal acceleration of the
rotating earth at the equator ; an explanation that atonce rendered the observation intelligible.

An experiment instituted by Huygens may here be
noticed, on account of its historical interest. WhenNewton brought out his theory of universal gravitation,

a con-

stant
approach thereto and without increase of velocity. This
is lessened when we reflect that without this centripetal

acceleration the body would be continually moving

from the centre ; that the direction of the accel-gaW
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V (Fig. 107) of radius /. If we give the pendulum a very Galileo s
small excursion, it will travel in its oscillations over a UoTof the
very small arc which coincides approximately with the
chord belonging to it. But this
chord is described by a falling
particle, moving on it as
inclined plane (seeSect.1of this
Chapter, § 7), in the same time
as the vertical diameter BD —
2 /. If the time of descent be
called /, we shall have 2 / =
i g l 2 , that is l = 2\/ JJg. But
since the continued movement

An interest- Huygens belonged to the great number of those who
ment ot were unable to reconcile themselves to the idea of action
Hu > gens.

^ a distance. He was of the opinion that gravitation
could be explained by a vortical medium. If we enclose
in a vessel filled with a liquid a number of lighter bod-

say wooden balls in water, and set the vessel ro-
tating about its axis, the balls will at once rapidly move
towards the axis. If for instance (Fig. 106), we place
the glass cylinders RR containing the wooden balls KK

rotatory apparatus, and ro-
tate the latter about its ver-

law of the
pendulum.

on anles,

by means of a pivot Z on a

A

^ tical axis, the balls will iiri-
E mediately run up the cyl-

inders in the direction away
from the axis,

tubes be filled with water,
each rotation will force the

R

K
from B up the line BC occupies an equal interval of
time, we have to put for the time 7’ of an oscillation
from Cto C\T — \y ljg. It will be seen that even from
so crude a conception as this the correct form of the
pendulum-laws is obtainable.

Z But if the
A\

Fig. 106.
The exact expression

for the time of very small oscillations is, as we know,
T — 7T. \/ l/g.

Again, the motion of a pendulum bob may be viewed
as a motion of descent on a succession of inclined Viewed as a

balls floating at the extremities EE towards the. axis.
The phenomenon is easily explicable by analogy with
the principle of Archimedes. The wooden balls
a centripetal impulsion, comparable to buoyancy,
which is equal and opposite to the centrifugal force
acting on the displaced liquid.

Before we proceed to Huygens’s investigations
the centre of oscillation, we shall present to the

reader a few considerations concerning pendulous and
oscillatory motion generally, which will make up in ob-
viousness for what they lack in rigor.

Many of the properties of pendulum motion

receive

Pendulum

planes. If the string of the pendulum makes the angle down in-a with the perpendicular, the pendulum bob receives planes,in the direction of the position of equilibrium the accel-
When a is small, g.a is the expres-

sion of this acceleration ; in other words, the accelera-tion is always proportiQnal and oppositely directed tothe excursion.

Oscillatory
motion. 7 -

on
eration g. sin a.

When the excursions are small thecurvature of the path may be neglected.
8. From these preliminaries, we may proceed tothe study of oscillatory motion in a simpler manner. Abody is free to

were
known to G A L I L E O. That he had formed the concep-
tion which we shall now give, or that at least he was

the verge of so doing, may be inferred from many
scattered allusions to the subject in his Dialogues. The
bob of a simple pendulum of length / moves in a circle

on
a straight line OA (Fig. 108),constantly receives in the direction towards the

move on
and
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l65
A simpler point 0 an acceleration proportional to its distance from
and modern . .
view of os- O. We will represent these accelerations by ordinates

erected at the positions considered. Ordinates upwards

accelerations towards the left ; ordinates down-
wards represent accel-
erations towards the

rye _

^
right. The body, left
to itself at A, will

towards 0 with
acceleration,

of every succeeding pair of elements the
tion also holds true.

same asser-
Therefore, generalising, it will

be readily perceived that the period of oscillation is
independent of its amplitude or breadth.

Next, let us conceive two oscillatory motions, I andThetimeof
II, that have equal excursions (Fig. 109) ; but in II let inversely11

a fourfold acceleration correspond to the same distance afto°the°n’

from O. We divide the amplitudes of
the oscillations AO and O' A' = OA -
into a very large equal number of 0

parts. These parts

di la tory
motion.

denote
ac

IAt
0 square root

of the ac-
celeration.Imove

varied
IF A' Pass through O to A

where OA , = OA,
back to O, and

11A', HA
1’ then equal in

The initial accelerations at
are

I and II.
come
so again continue its
motion.

A and A' cp and 4 (p ; the ele-
ments of the distance described

are I I
It is in the are

AB= A' B' = s ; and the times
respectively rand r\ We obtain, then,
r =V '2 s/ cp, T'

HA>

The period first place easily demonstrable that the period of os-
cillation (the time of the motion through AOAx) is in-

dependent of the amplitude of the oscillation (the dis-
tance OA ). To show this, let us imagine in I and

oscillation performed, with single and
As the acceleration

are
of oscilla-
tion inde-
pendent of
the ampli-
tude.

= |/2 s!4 (p = r/2.
The element A'B' is accordingly trav-
elled through in one-half the time
the element AB is.II the same

double amplitudes of oscillation.
:i from point to point, we

= 2OA into a very large equal number of ele-
Each element A' B' of O' A' is then twice as

large as the corresponding element AB of OA.
initial accelerations cp and <7/ stand in the relation

cp — 2 cp. Accordingly, the elements AB and A'B' =
described with their respective accelerations

The final velocities v

The final velocities v and v' at
B and B' are found by the equations v = cpr and
v' =4 cp( j/2) = 2 v. Since, therefore, the initial velo-cities at B and B' are to one another as 1: 2, and the
accelerations are again as 1: 4, the element of II suc-ceeding the first will again be traversed in half thetime of the corresponding one in I. Generalising, we
get : For equal excursions the time of oscillation is in-versely proportional to the square root of the accelera-tions.

must divide OA and
varies

O' A'
ments. The

2 AB are
cp and 2 cp m
and v' in I and II, for the first element, will be v — cpr

and v = 2qn, that is v' = 2 v. The accelerations and

the initial velocities at B and B' are therefore again as

1:2. Accordingly, the corresponding elements that

next succeed will be described in the same time. And

the same time r.
9. The considerations last presented may be put ina very much abbreviated and very obvious form by amethod of conception first employed by Newton. .ton calls those material systems similar that havemetrically similar configurations and

New-
geo-

whose homolo-
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= a y= a/ ft 2 , and therefore ft = i/zfc ,/ y ; where-
with the second law of oscillating motion is obtained.

Two uniform circular motions are always phoronom-
ically similar. Let the ratio of their radii be
the ratio of their velocities
accelerations is then s= a/ ft 2 , and since y= a/ ft,
also = y2/a ; whence the theorems relative to cen -
tripetal acceleration are obtained.

It is a pity that investigations of this kind
ing mechanical and phoronomical affinity
extensively cultivated, since they promise the most
beautiful and most elucidative
imaginable.

The princi- gous masses bear to one another the same ratio. He

itude. says further that systems of this kind execute similar

movements when the homologous points describe simi-
lar paths in proportional times. Conformably to the

geometrical terminology of the present day we should

not be permitted to call mechanical structures of this

kind (of five dimensions) similar unless their homolo-
linear dimensions as well as the times and the

another the same ratio. The struc-
tures might more appropriately be termed affined to

i : a and
The ratio of their1 : y.

gous
masses bore to one respect-

are not more
one another.

We shall retain, however, the name phoronomically
similar structures, and in the consideration that is to

follow leave entirely out of account the masses.
In two such similar motions, then, let

extensions of insight

10. Between uniform motion in a circle and oscil- The con-. n e c t i o n b e-latory motion of the kind just discussed an important tween oscii-• • 1 * 1 i n T T 7 l a t o r y m o-relation exists which we shall now consider. We as- tion of this
k i n d a n da system of rectangular co- u n i f o r m. . . . . m o t i o n i n aordinates, having its origin at the circle,

centre, O, of the circle of Fig. no,
about the circumference of which

conceive a body to move
formly. The centripetal accelera-
tion <p which conditions this
tion, we resolve in the directions
of X and Y; and observe that the X
motion are affected

the homologous paths be s and as,
the homologous times be t and ftt\ whence

the homologous velo-
cities are

the homologous accel-
erations

sume

a s
v = -- and yv = p *'

a 2s we2s um-and ecp=-pz / 2 *9= t 2

Thededuc- Now all oscillations which a body performs under

laws of ose- the conditions above set forth with any two different

thiïmethod amplitudes 1 and a, will be readily recognised as sim-
ilar motions. Noting that the ratio of the homologous

accelerations in this case is £ = a, we have a — a/ ft2.
the ratio of the homologous timef , that is

We ob-

mo-
Fig. no.

.-components of the
only by the -̂components of theacceleration. We may regard both the motions andboth the accelerations as independent of each other.Now, the two

dilatory motions
sion x the acceleration-component cp ( xjr ) or (cpjr ) xin the direction O, corresponds. The acceleration isproportional, therefore, to the excursion. And accord-ingly the motion is of the kind just investigated.

Wherefore components of the motionof the times of oscillation, is ft — 1. are OS- The iden-tity of theto say
tain thus the law, that the period of oscillation to and fro about O.is inde- To the excur- two.

pendent of the amplitude.
If in two oscillatory motions we put for the ratio

between the amplitudes 1 : a, and for the ratio between
shall obtain for this case Thethe accelerations 1 : a y, we



THE SCIENCE OF MECHANICS.168 TIIE PRINCIPLES OF D INAMICS.

which to maintain the plane of oscillation invariable Experimen-
are suspended by double threads, have the lengths i, îtan’Sthe*'
4, 9, then a will execute two oscillations to one oscil- penduiVm?
lation of b, and three to one of c.

169

time T of a complete to and fro movement is also the
periodic time of the circular motion. ' With respect to

the latter, however, we know that cp= 4 r n'^ jT2 , or,
what is the same, that T= T.n v/ r / cp. Now <pfr is
the acceleration for x= 1, the acceleration that corre-

sponds to unit of excursion, which we shall briefly
designate by f For the oscillatory motion we may
put, therefore, 7T= 2 7t V 1 jf For a single movement
to, or a single movement fro,— the common method of
reckoning the time of oscillation, — we get, then, T —
7TV i If

11. Now this result is directly applicable to pen-
The appli-
cation of
the last re-
duiumvi-

n glecting the curvature of the path, it is possible to ad-
brations.

dulum vibrations of very small excursions, where, ne-

here to the conception developed. For the angle of

elongation a we obtain as the distance of the pendulum
bob from the position of equilibrium, la ; and as the
corresponding acceleration, ga ; whence

ITg a, and T=l a l

This formula tells us, that the time of vibration is
directly proportional to the square root of the length
of the pendulum, and inversely proportional to the

square root of the acceleration of gravity. A pendulum
that is four times as long as the seconds pendulum,
therefore, will perform its oscillation in two seconds.
A seconds pendulum removed a distance equal to the
earth’s radius from the surface of the earth, and sub-
jected therefore to the acceleration g/4, will likewise
perform its oscillation in two seconds.

12. The dependence of the time of oscillation on

the length of the pendulum is very easily verifiable by

experiment. If (Fig. 111) the pendulums a, b, c,

/=

The verification of the dependence of the time of
oscillation on the acceleration of gravity g is some-
what more difficult ; since the latter cannot be arbi-
trarily altered. But the demonstration can be effected
by allowing
pendulum.

component only of g to act on the
If we imagine the axis of oscillation of
one
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Experimen- the pendulum AA fixed in the vertically placed plane
tal verifica- . .
tionofthe of the paper. EE will be the intersection of the plane
laws of the 1 1 .

r

pendulum. /^^7 of oscillation with the plane of the paper

We see from this result, that as ft is increased the
acceleration g cos ft diminishes, and consequently the
time of oscillation increases. The experiment may be
easily made with the apparatus represented in Fig. 113.
The frame RR is free to turn about a hinge at C ; it can
be inclined and placed on its side. The angle of in-
clination is fixed by a graduated arc G held by a set-

Every increase of ft increases the time of oscil-
lation. If the plane of oscillation be made horizontal,
in which position R rests on the foot E, the time of
oscillation becomes infinitely great. The pendulum
in this case no longer returns to any definite position
but describes several complete revolutions in the same
direction until its entire velocity has been destroyed
by friction.

13. If the movement of the pendulum do not take The conical
pendulum.

and likewise the position of equilibrium
of the pendulum. The axis makes with

6
the horizontal plane, and the plane of os-
cillation makes with the vertical plane, the
angle ft\ wherefore the acceleration g.cosft
is the acceleration which acts in this plane.

If the pendulum receive in the plane of its oscillation
the small elongation 1v, the corresponding acceleration

E> screw.
Fig. 112.

place in a plane, but be performed in space, the thread
of the pendulum willdescribe the surface
of acone. The motion of the conical pen-
dulum was alsoinvestigated byHuygens.
We shall examine a simple case of this
motion. We imagine (Fig. 114) a pen- p-
dulum of length l removed from the ver- g
tical by the angle a, a velocity v imparted
to the bob of the pendulum at right
angles to the plane of elongation, and the pendulum re-
leased. The bob of the pendulum will move in a hori-
zontal circle if the centrifugal acceleration (p developed
exactly equilibrates the acceleration of gravity g; that
is, if the resultant acceleration falls in the direction of
the pendulum thread. But in that case cp/g= tan a.
If T stands for the time taken to describe one revolu-
tion, the periodic time, then (p=^ 7’ 7r2 /T2 or 7=2 71 Vr/ q), Introducing, now, in the place of r / (p the

It

W
Fig- H4.

\

will be (•£• cos ft) a ; whence the time of oscillation is
T= nVl/g cos ft.
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a length divided by the square of a time, according to
the nature of an acceleration.

16. The most important achievement of Huygens The prob-
is his solution of the problem to determine the centre centre of

of oscillation. So long as we have to deal with the dy- a lon’

namics of a single body, the Galilean principles amply
suffice. But in the problem just mentioned we have to
determine the motion of several bodies that mutually
influence each other. This cannot be done without
resorting to a new principle. Such a one Huygens
actually discovered.

We know that long pendulums perform their oscil- statement
lations more slowly than short ones. Let us imagine a iem. e pr°b"

heavy body, free to rotate about an axis, the centre of
gravity of which lies outside of the axis; such — Mr —
a body will represent a compound pendulum. 6 *
Every material particle of a pendulum of this
kind would, if it were situated alone at the

own pe- 6
6connec- Fig. 115.

value l sina/g tan a=l cosa/g, we get for the periodic
time of the pendulum, T= 2 it V l cos a/g. For the ve-
locity v of the revolution we find v =V rep, and since

£*tan a it follows that v= v gl sin a tan a. For9=
very small elongations of the conical pendulum we may

1/ l /gy which coincides with the regularput T -= 2 7t
formula for the pendulum, when we reflect that a single
revolution of the conical pendulum corresponds to two
vibrations of the common pendulum.

14. Huygens was the first to undertake the exact
determination of the acceleration of gravity g by means

From the formula T=
The deter-
mination of
the accel-
eration of f -, 1 ,

gravity by ol pendulum observations.
7t v l/g for a simple pendulum with small bob we ob-
tain directly g= 7T 2 l/ T2. For latitude 45° we obtain
as the value of g, in metres and seconds, 9.806.
provisional mental calculations it is sufficient to re-
member that the acceleration of gravity amounts in

the pendu-
lum.

For

round numbers to 10 metres a second. same distance from the axis, have its
riod of oscillation. But owing to the
tions of the parts the whole body
a single, determinate period of oscillation,

ture to ourselves several pendulums of unequal lengths,
the shorter

Every thinking beginner puts to himself thei5-A remark

uUexpreï ï- question how it is that the duration of an oscillation,
ing the law. vibrate with onlycanthat is a time, can be found by dividing a number that

is the measure of a length by a number that is the
measure of an acceleration and extracting the square

If we pic-

ones will swing quicker, the longer
slower. If all be joined together so as to form a single
pendulum, it is to be presumed that the longer
will be accelerated, the shorter ones retarded, and that7

1a sort of mean time of oscillation will result,

must exist therefore a simple pendulum, intermediatein length between the shortest and the longest, thathas the same time of oscillation as the compound pen-dulum. If we lay off the length of this pendulum onthecompound pendulum, we shall find a point that pre-serves the same period of oscillation in its connection

root of the quotient. But the fact is here to be borne in
mind that g= 2 s/i2 , that is a
square of a time,

have is T= 71 \/ ( l/ 2s ) i 2.
of two lengths, and therefore a number, what we have
under the radical sign is consequently the square of a

It stands to reason that we shall find T in sec-

ones
length divided by the

In reality therefore the formula we
And since l/ 2 s is the ratio

ones

\ There

time.
onds only when, in determining g, we also take the sec-
ond as unit of time.

In the formula g= 7T 2 l/ T* we see directly that g is
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with the other points as it would have if detached and
This point is the centre of oscillation. same result. What Huygens asserted, therefore,

one had ever really doubted ; on the contrary, everyone had instinctively perceived it.
gave this instinctive perception
form. He does not omit, moreover, to point out, on theground of this view, the fruitlessness of endeavors toestablish a perpetual motion. The principle just devel-oped will be recognised as a generalisation of one of Ga-lileo' s ideas.

noleft to itself.
MERSENNE was the first to propound the problem of

The solution of Huygens, however,determining the centre of oscillation.
DESCARTES, who attempted it, was, however, precipi- abstract, conceptualan

tate and insufficient.
17. Huygens was the first who gave a general solu-

Besides Huygens nearly all the great inquirers
of that time employed themselves

may say that the most important principles of mod-
mechanics were developed in connection with it.

The new idea from which Huygens set out, and
which is more important by far than the whole prob-

In whatsoever manner the material par-

Huygens’s
solution. tion.

the problem, andon

18. Let us now see what the principle accomplishes Huygens’sin the determination of the centre of oscillation.
OA (Fig. 116), for. simplicity’s sake,
be a linear pendulum, made up of a
large number of masses indicated in
the diagram by points.

we
principleLet applied.

ern

lem, is this.
tides of a pendulum may by mutual interaction modify
each other’s motions, in every case the velocities ac-
quired in the descent of the pendulum can be such only
that by virtue of them the centre of gravity of the par-
ticles, whether still in connection or with their connec-
tions dissolved, is able to rise just as high as the point
from which it fell, Huygens found himself compelled,

Set free at
OA, it will swing through B to OA' ,
where AB = BA' . Its centre of
gravity .S’ will ascend just as high
on the second side as it fell on the
first. From this, so far, nothing would follow. Butalso, if we should suddenly, at the position OB, re-lease the individual masses from their connections, themasses could, by virtue of the velocities impressedthem by their connections, only attain the same heightwith respect to centre of gravity. If we arrest the freeoutward-swinging masses at the greatest heights theyseverally attain, the shorter pendulums will be foundbelow the line OA', the longer ones will have passedbeyond it, but the centre of gravity of the system willbe found on OA' in its former position.Now let

The new
which Huy- by the doubts of his contemporaries as to the correct-
gens intro-
duced. of this principle, to remark, that the only assump-ness

tion implied in the principle is, that heavy bodies of
themselves do not move upwards. If it were possible
for the centre of gravity of a connected system of falling
material particles to rise higher after the dissolution
of its connections than the point from which it had
fallen, then by repeating the process heavy bodies
could, by virtue of their own weights, be made to rise
to any height we wished,

the connections the centre of gravity should rise to a
height less than that from which it had fallen, we
should only have to reverse the motion to produce the

on

\

If after the dissolution of us note that the enforced velocitiesproportional to the distances from the axis ; therefore,being given, all are determined, and the height ofascent of the centre of gravity given. Conversely,

are
one
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therefore, the velocity of any material particle also is
determined by the known height of the centre of grav-

But if we know in a pendulum the velocity cor-
responding to a given distance of descent, we know its
whole motion.

From this a relation is deducible between the distance of
descent k and the velocity v. Since, however, all
dulum motions of the same excursion are phoronomi-cally similar, the motion here under consideration is,
in this result, completely determined.

To find the length of the simple pendulum that has The length
the same period of oscillation as the compound pen- pfe Uoch

'

. dulum considered, be it noted that the same relation pendulum,must obtain between the distance of its descent and itsvelocity, as in the case of its unimpeded fall. If y isthe length of this pendulum, ky is the distance of itsdescent, and vy its velocity ; wherefore
( vyy

pen-ity.

Premising these remarks, we proceed to thetailed reso- ^ °
lution of the problem itself . On a compound linear pendulum (Fig.
The de- 19‘

117) we cut off, measuring from the axis, the
portion = 1. If the pendulum move from its
position of greatest excursion to the position
of equilibrium, the point at the distance = 1

from the axis will fall through the height k.

/

rim

The masses ///, m" . . . at the distances
. . . will fall in this case the dis-

9*/nr

= ky, orr, r , 1

tances rk, r k, r" k . . ., and the distance of
the descent of the centre of gravity will be :

g
V 2Fig. 1x7.

=k (*)y - 2
Multiplying equation ( a ) by equation (^) we obtain

2 7/1 r2

~ 2mr ’

tnrk + 77i rlk + mnr/ ,k + . . . , 2mr
771 + 771 + ///"

_
" 2m *

Let the point at the distance 1 from the axis ac-
quire, on passing through the position of equilibrium,
the velocity, as yet unascertained, v.
its ascent,
be v 2 /2 g.
the other material particles will then be ( rv ) 2 / 2 g,
(t* v ) 2 /2 g, (r" v ) 2 /2 g . . . . The height of ascent of the
centre of gravity of the liberated masses will be

„ (r"vy
-g

771 -p 771 77Î' + . . .

Employing the principle of phoronomic similitude,we may also proceed in this way.
Solution of
the prob-
lem by the
principle of
similitude.

The height of
From (a) we getafter the dissolution of its connections, will

2’ 771 r
2 Hi?2 ’

A simple pendulum of length 1, under correspondingcircumstances, has the velocity

The corresponding heights of ascent of v =

=Y'lgk.
Calling the time of oscillation of the compound pendu-lum T, that of the simple pendulum of length 1 7\=nV 1/g, we obtain, adhering to the supposition ofequal excursions,

, (rv ) 2(r v) 2
771 V 2 27717 2

' 2g 2771
+ • • • • \+ 7H+ 2^%

By Huygens’s fundamental principle, then,

727717' V 2 2771 r2
k 2 771 2^ 2 771

T( a ). 2777 r 2wherefore T= \g2771r
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21. With the aid of the principle of living forces General
can determine the duration of the infinitely small determin-

ing the pe-riod of pen-
dulum os-
cillations.

without difficulty in the Huygenian
of work as the condition de-

exactly, the condition
By the vis

of masses m, mn
v> vn . .

20. We see

^ ^
principle the recognition

principle of tcrmincitivc of velocity, or, more
determinative of the so-called vis viva.

living force of a system
. . affected with the velocities

understand the sum *

Huygens’s
principle
ident ica l we

oscillations of any pendulum whatso-
We let fall from the centre ofever.

gravity J- (Fig. 118).a perpendicular on
the axis ; the length of the perpendic-

vis viva.
viva or

we• • >

We lay off on this,
m , , .

ular is, say, a.
measuring from the axis, the lengthin , ,v ,,2- : . V I ,v ,2

2 2
;// v 2

Let the distance of descent of++
the point in question to the position of
equilibrium be k, and v the velocity acquired. Since
the work done in the descent is determined by the
motion of the centre of gravity, we have

2

The fundamental principle of Huygens is identical with
the principle of vis viva. The additions of later in-

made not so much to the idea as to the

ourselves generally any system of
weightsp, p,, p,,. . . ., which fall connected or uncon-
nected through the heights h, hn hn . . . ., and attain
thereby the velocities v, v,, vft . . .., then, by the Huy-

genian conception, a relation of equality exists between
the distance of descent and the distance of ascent of the

centre of gravity of the system, and, consequently, the

equation holds

quirers were
form of its expression.

work done in descent = vis viva :If we picture to
v 2— 2mr2.a k g M=

Mhere we call the total mass of the pendulum and
anticipate the expression vis viva. By an inference
similar to that in the preceding case, we obtain T=nV 2m r 2 fa gM.

22. We see that the duration of infinitely small The mo. . _
determina-oscdlations of any pendulum is determined by two fac- tivefactors,

tors— by the value of the expression 2m r 2, which
Euler called the moment of inertia and which Huygens
had employed without any particular designation, andby the value of agM. The latter expression, which we
shall briefly term the statical moment, is the producta P of the weight of the pendulum into the distance of

. its centre of gravity from the axis. If these two valuesbe given, the length of the simple pendulum of thesame period of oscillation (the isochronous pendulum)and the position of the centre of oscillation are deter-mined.

v" 2^2V 2 + P \P TV . + P 2*ph+/// + f ' /r + . . . _
/ +/ + /" + • • •

— p + / + P" + •

1 « pv2

* 2 *or "Sph =
c?

reached the concept of “ mass,” which
Huygens did not yet possess in his investigations, we

substitute for p/g the mass m and thus obtain the
2, which is very easily generalised

If we have

may
form 2ph — ^-2 m v
for non-constant forces.

* This is not the usual definition of English writers, who follow the older

in making the vis viva twice this quantity.— Trans.authorities
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the wedge are consequently at the same distance from

, the axis,\AC.
Following out this idea,

correctness of the following assertions,

geneous rectangle of height h swinging about one of methods.8its sides, the distance of the centre of gravity from theaxis is ///2, the distance of the centre of oscillation\h.For a homogeneous triangle of height //, the axis ofwhich passes through the vertex parallel to the base,the distance of the centre of gravity from the axis is2 //, the distance of the centre of oscillation f //.
ing the moments of inertia of the rectangle and of thetriangle A l 9 z/ 2, and their respective masses Mx, M2 >we get

THE SCIENCE OF MECHANICS.
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For the determination of the lengths of the penduHuygens's _ .
methods of

1
lums referred to, Huygens, in the lack of the analytical
methods later discovered, employed a very ingenious

, which
readily perceive the Analogous

For a homo-

solution.
we

applica-tions of theB
geometrical procedure

shall illustrate by one or
two examples. Let the prob-
lem be to determine the time
of oscillation of a homogene-

D
ous, material, and heavy rec-
tangle ABCD, which swings

the axis AB (Fig. 119).
Dividing the rectangle into
minute elements of area

having the distances
r, r„ r, f . . . . from the axis, the expression for the
length of the isochronous simple pendulum, or the dis-
tance of the centre of oscillation from the axis, is given

we

Call-
on

1h=~h nr

Consequently A x — ~

By this pretty geometrical conception many prob-lems can be solved that
veniently it is true— by routine forms.

A* M. h2 M2
2 *

by the equation
, 4* =32 + . . . .y>2 + f' r * + f n r

f r +/, r, +/,, *•„+ • • • •
/ /

to-day treated— more con-areABCD at C and D the perpendicularsLet us erect on
CE= DF — AC= BD and picture to ourselves a
homogeneous wedge ABCDEE. Now find the distance
of the centre of gravity of this wedge from the plane
through AB parallel to CDEE. We have to consider,

. . and

\

A A

doing, the tiny columns fr, ft r„fn rn . .
. . . from the plane referred

//in so
their distances r, r,, r
to. Thus proceeding, we obtain for the required dis-

of the centre of gravity the expression

/
n *

Fig. 120.
23. We shall now discuss a proposition relating tomoments of inertia, that Huygens made use of in asomewhat different form. Let O (Fig. 121) be thecentre of gravity of any given body. Make this the

tance
. r„+ • • • •fr . r +/ r, . r , -f /„r

f r+ f,r, + f„r„+
before. The centre ofthat is, the same expression as

oscillation of the rectangle and the centre of gravity of
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gravity by the distance x /a. Therefore x /a is the dis-
tance of the centre of oscillation from the centre of
gravity. If through the centre of oscillation we place
a second axis parallel to the original
thereby into x/a, and we obtain the new pendulum
length

The reia- origin of a system of rectangular coordinates, and sup-
ments of in- pose the moment of inertia with reference to the Z-axis
ertia re-
ferred to determined. If m is the element of mass and r its dis-
parallel . . . . .
axes. tance from the Z-axis, then this moment 01 inertia is

We now displace the axis of rotation
axis, a passes

A= 2mr 2.
parallel to itself to 0', the distance a in the -̂direction.
The distance r is transformed, by this displacement,

and the new moment of
r= * X K+ ~ -=a + —a a-= /.Kinto the new distance p,

inertia is
© = 2mp2= 2m [(# — à)2 -(- y2 ~\ = 2m( x2 -)- y2 ) —
2a 2mx -(- a22 ///, or, since2m (x 2-|-y2 )=2mr2 = Z,
calling the total mass M= 2m, and remembering the
property of the centre of gravity 2mx — 0,

a
The time of oscillation remains the same therefore

for the second parallel axis through the centre of oscil-
lation, and consequently the
allel axis that is at the same distance n/a from the
centre of gravity as the centre of oscillation.

The totality of all parallel

also for every par-same

© = A + a2 M. axes corresponding to
the same period of oscillation and having the distances a
and u/a from the centre of gravity, is consequently re-alised in two coaxial cylinders,

is interchangeable as axis with every other generatingline without affecting the period of oscillation.
25. To obtain a clear view of the relations subsist

ing between the two axial cylinders, as we shall briefly^call them, let us institute the following considerations.We put A — k 2 M, and then

From the moment of inertia for one axis through the
centre of gravity, therefore, that for any other axis
parallel to the first is easily derivable.

24. An additional observation presents itself here.
cation of 1 . . . .
thispropo- The distance of the centre of oscillation is given by
sition.

Each generating line
An appli-

the equation / = A a 2 M /aM, where Z, M, and a
have their previous significance. The quantities A and
M are invariable for any one given body. So long
therefore as *z retains the same value, l will also remain
invariable. For all parallel axes situated at the same
distance from the centre of gravity, the same body as
pendulum has the same period of oscillation,

put AjM=- xy then

- The axial
cylinders.

\

k 2
l= -+ a-a

If we seek the a that corresponds to a given /, andtherefore to a given time of oscillation, we obtain
If we

2 ^ %/ r-i= H + «.a
Now since / denotes the distance of the centre of

oscillation, and a the distance of the centre of gravity
from the axis, therefore the centre of oscillation is
always farther away from the

. k 2.a — 4
Generally therefore to one value of / there correspondtwo values of a. Only where I l2/4 — k 2 = 0, that isin cases in which 1= 2 do both values coincide ina= k.axis than the centre of
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If we designate the two values of a that correspond

to every /, by a and ft, then
of the drawing, and make it swing about all possible Aparallel axes at right angles to the plane of theAll the axes that pass through the circle a are, wefind, with respect to period of oscillation, interchange-able with each other and also with those thatthrough the circle ft. If instead of

circle À, then in the place of ft

_ n illustra-
tion of thispaper, idea./,2 I „2 /{ 2 _|_ £2

l = - -- - „ -, orPa
ft { k* + a2 ) = ot ( k2 + f t 2 ),
k 2 { f t — a) = af t ( f t — a),

k 2 = a . ft.
The deter-

^
If , therefore, in any pendulous body we know two par-

the preced- allel axes that have the same time of oscillation and
ing factors
by a geo- different distances a and ft from the centre of gravity,
metrical . . . .
method. as is the case for instance where we are able to give the

centre of oscillation for any point of suspension, we
can construct k. We lay off (Fig. 122) a and ft con-

pass
a we take a smaller

we shall get a larger

f-

secutively on a straight line, describe a semicircle on
a ft as diameter, and erect a perpendicular at the
point of junction of the two divisions a and ft. On this
perpendicular the semicircle cuts off k. If on the other
hand we know k, then for every value of a, say À, a
value f-i is obtainable that will give the same period
of oscillation as À. We construct (Fig. 123) with À
and k as sides a right angle, join their extremities by a
straight line on which we erect at the extremity of k a
perpendicular which cuts off on À produced the por-

tion /n.

\

circle //. Continui
timately meet in

ng in this manner, both circles ul-one with the radius k.H 26. We have dwelt at
matters for good
served

such length on the foregoing J^j;apitula. In the first place, they haveour purpose of displaying in a clear light thesplendid results of the investigations of Huygens. Forall that we have given is virtually contained, thoughin somewhat different form, in the writings of Huygens,

reasons

Now let us imagine any body whatsoever (Fig. 124)
with the centre of gravity O. We place it in the plane
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or is at least so approximately presented in them that
it can be supplied without the slightest difficulty. Only
a very small portion of it has found its way into our
modern elementary text-books. One of the proposi-
tions that has thus been incorporated in our elemen-
tary treatises is that referring to the convertibility of
the point of suspension and the centre of oscillation.
The usual presentation, however, is not exhaustive.
Captain KATER, as we know, employed this principle
for determining the exact length of the seconds pen -
dulum.

Great as the merits of Huygens are with respect to Huygens’s
tl'e most different physical theories, the art of horology
poetical dioptrics, and mechanics in particular, his
chief performance, the

crowning, achieve-
ment.

one that demanded the greatest
in ellectual courage, and that was also accompanied
with the greatest results, remains his enunciation of the
principle by which he solved the problem of the centre
oi oscillation. This very principle, however, was the
o. y one he enunciated that was not adequately appre-
cidCH by his contemporaries ; nor was it for a long
period thereafter. We hope to have placed this prin-
ciple here in its right light as identical with the prim
ciple of bt\ viva.

The points raised in the preceding paragraphs haveFunction of

of inertia, also rendered us the service of supplying enlighten-
ment as to the nature of the conception “ moment of
inertia. ” This notion affords us no insight, in point
of principle, that we could not have obtained without
it. But since we save by its aid the individual con-
sideration of the particles that make up a system, or
dispose of them once for all, we arrive by a shorter
and easier way at our goal. This idea, therefore, has
a high import in the economy of mechanics. Poinsot,
after Euler and Segner had attempted a similar object
with less success, further developed the ideas that be-
long to this subject, and by his ellipsoid of inertia and
central ellipsoid introduced further simplifications.

27. The investigations of Pluygens concerning the
geometrical and mechanical properties of cycloids are
of less importance. The cycloidal pendulum, a contriv-
ance in which Huygens realised, not an approximate,
but an exact independence of the time and amplitude
of oscillation, has been dropt from the practice of mod-
ern horology as unnecessary. We shall not, therefore,
enter into these investigations here, however much of
the geometrically beautiful they may present.

HI.

THE ACHIEVEMENTS OF NEWTON.
i. The merits of NEWTON with respect to our sub- Newton’seject were twofold. First, he greatly extended the

of mechanical physics by his discoveiy of
gravitation. Second, he completed the formal enunciation
of the mechanicalprinciples no7u generally accepted.
his time no essentially new principle has been stated.
All that has been accomplished in mechanics since hisday, has been a deductive, formal, and mathematicaldevelopment of mechanics on the basis of Newton'slaws.

range
universal

Since

The lesser
investiga-
tions of
Huygens. 2. Let us first cast a glance at Newton's achieve- His greatment in the domain of physics. Kepler had deduced discov’eryfrom the observations of Tycho Brahe and his own,three empirical laws for the motion of the planetsabout the sun, which Newton by his new view renderedintelligible.

1) The planets move about the
one focus of which the sun is situated.

The laws of KEPLER are as follows :
sun in ellipses, in
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simplicity, that their orbits actually are circles. If RL ,
R2, R3 are the radii and T. . T ,

2) The radius vector joining each planet with tl.e

describes equal areas in equal times.

3) The cubes of the mean
from the sun are proportional to the squares
their times of revolution.

The formal
rr, . character
I 3 the respective of this ac-

tinies of revolution of the planets, Kepler’s third law Seducible
may be written as follows :

Kepler’s
laws. Their
part in the
discovery. sun 1 » 2 ’

distances of the plane:s from Kep-
ler’s third
law.

R1
® R2

8 R3
®

— r2
a — T. *

But we know that the expression for the central accel-
eration of motion in a circle is cp= 4 R n 2 / T 2 , or
T2 = 4 7r2 R/ cp. Substituting this value we get

cpY R x 2 = <p2 ^ o
2 — ^:J

2 — constant ; or
cp= constant jR 2 ;

that is to say, on the assumption of a central accelera-
tion inversely proportional to the square of the distance,
we get, from the known laws of central motion, Kep-
ler’s third law ; and vice versa.

Moreover, though the demonstration is not easily
put in an elementary form, when the idea of a central
acceleration inversely proportional to the square of the
distance has been reached, the demonstration that this
acceleration is another expression for the motion in
conic sections, of which the planetary motion in ellipses
is a particular case, is a mere affair of mathematical
analysis.

3. But in addition to the intellectual performance The ques-
just discussed, the way to which was fully prepared by physical

characterofKepler, Galileo, and Huygens, still another achieve- this accei-
ment of Newton remains to be estimated which i~

respect should be underrated. This is an achievement
of the imagination.
in saying that this last is the most important of all.
Of what nature is the acceleration that conditions the
curvilinear motion of the planets about the sun, and
of the satellites about the planets ?

— a constant.
He who clearly understands the doctrine of Galfeo

and Huygens, must see that a curvilinear motion i"11"

plies deflective acceleration. Hence, to explain the p ^"

of planetary motion, an acceleration must > e
sïdènomena

supposed constantly directed towards the
of the planetary orbits.

Now Kepler’s second law, the law of
plained at once by the assumption of a const?*1!plane-

or rather, this ac-

concav'
is ex-area*?

Central ac-
celeration
explains

second iaw. tary acceleration towards the sun ;
celeration is another form of expression

fact. If a radius vector describes
for the same

element of time the areaB — in an
L ABS (Fig. 125), then in the next

equal element of time, assuming
acceleration, the area BCS

will be described, where BC=
AB and lies in the prolongation
of AB. But if the central accel-

no

eration during the first element of time produces a

of which the distance BD will be
velocity by virtue
traversed in the same interval, the next-succeeding

area swept out is not BCSf but BBS, where CE is par-
allel and equal to BD. But it is evident that BES=
BCS= ABS. Consequently, the law of the areas con-
stitutes, in another aspect, a central acceleration.

Having thus ascertained the fact of a central accel-

eration, the third law leads us to the discovery of its

character. Since the planets move in ellipses slightly

different from circles, we may assume, for the sake of

in no

We have, indeed, no hesitation
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Newton perceived, with great audacity of thought,
w h i c h o r i g- . . .
i n a i i y l e d and first in the instance of the moon, that this accel-
Newton to . .
the idea of eration differed in no substantial respect from the ac-
universal . . . ...
gravitation, celeration of gravity so familiar to us.

ably the principle of continuity, which accomplished

so much in Galileo’s case, that led him to his dis-
He was wont— and this habit appears to be

new conception was attractive in that it embraced ob-
jects that previously were very remote, and it
vincing in that it involved the most familiar elements.
This explains its prompt application in other fields and
the sweeping character of its results.

The steps was con-

It was prob-

Newton not only solved by his new conception the its univer-
thousand years’ puzzle of the planetary system, buttiontoaii
also furnished by it the key to the explanation of a

In the same

covery. matter.
to all truly great investigators— to adhere ascommon

closely as possible, even in cases presenting altered

conditions, to a conception once formed, to preserve

the same uniformity in his conceptions that nature
That which is a

number of other important phenomena,

way that the acceleration due to terrestrial gravity ex-
tends to the moon and to all other parts of space, so do
the "accelerations that are due to the other heavenly
bodies, to which we must, by the principle of contin-
uity, ascribe the same properties, extend to all parts
of space, including also the earth. But if gravitation is
not peculiar to the earth, its seat is not exclusively in the
centre of the earth. Every portion of the earth, how-
ever small, shares it. Every part of the earth attracts,
or determines an acceleration of, every other part.
Thus an amplitude and freedom of physical view were
reached of which men had no conception previously to
Newton’s time.

teaches us to see in her processes,

property of nature at any
place, constantly and everywhere recurs, though it

may not be with the same prominence,

tion of gravity is observed to prevail, not only on the

surface of the earth, but also on high mountains and in

deep mines, the physical inquirer, accustomed to

tinuity in his beliefs, conceives this attraction as also

operative at greater heights and depths than those ac-
cessible to us. He asks himself, Where lies the limit

of this action of terrestrial gravity ? Should its action

not extend to the moon ? With this question the great

flight of fancy was taken, of which, with Newton’s in-

tellectual genius, the great scientific achievement was

time and in any oneone

If the attrac-

con-

A long series of propositions respecting the action The sweep-
• • charac-of spheres on other bodies situated beyond, upon, or ter of its re-

witliin the spheres ; inquiries as to the shape of the
earth, especially concerning its flattening by rotation,
sprang, as it were, spontaneously from this view. The
riddle of the tides, the connection of which with the
moon had long before been guessed, was suddenly ex-
plained as due to the acceleration of the mobile
of terrestrial water by the

4. The reaction of the new ideas on mechanics
a result which speedily followed. The greatly varying
accelerations which by the new view the same body be-

but a necessary consequence.

Newton discovered first in the case of the moon that

the same acceleration that controls the descent of a

.stone also prevented this heavenly body from moving

away in a rectilinear path from the earth, and that, on

the other hand, its tangential velocity prevented it from

falling towards the earth,

thus suddenly appeared to him in an entirely new light,’

but withal under quite familiar points of view.

The appli-
cation of
this idea to
the motion
of the moon masses

moon.
The motion of the moon was

The



THE PRINCIPLES OF DYNAMICS.TIIE SCIENCE OF MECHANICS.
193

192 r
4) The statement of the law of action and reaction.6. With respect to the first point little is to be Hisattitudeadded to what has already been said,

ceives all circumstances determinative of

affected with according to its position in space,
suggested at once the idea of variable weight, yet also
pointed to one characteristic property of bodies which

The notions of mass and weight were
The recognised vari-

The effect Caille
of the new
ideas on
mechanics.

with regardNewton con- to the idea
of force.motion,whether terrestrial gravity or attractions of planets, orthe action of magnets, and so forth, as circumstancesdeterminative of acceleration.

was constant.
thus first clearly distinguished,

ability of acceleration led Newton to determine by spe-
cial experiments the fact that the acceleration of gravity
is independent of the chemical constitution of bodies ;
whereby new positions of vantage were gained for the
elucidation of the relation of mass and weight, as will

Finally, the uni-

He expressly remarks
on this point that by the words attraction and the like
he does not mean to put forward any theory
ing the cause or character of the mutual action referred
to, but simply wishes to express (as modern writerssay, in a differential form) what is otherwise expressed
(that is, in an integrated form) in the description of themotion.

concern-

presently be shown more in detail.
versai applicability of Galileo’s idea of force
palpably impressed on

than it ever had been before.

was more
the mind by Newton’s perform -

People could no Newton’s reiterated and emphatic protesta-tions that he is not concerned with hypotheses as to thecauses of phenomena, but has simply to do with theinvestigation and transformed statement of actualfacts,— a direction of thought that is distinctly and terselyuttered in his words “ hypotheses non fingo, ” “ I donot frame hypotheses, ” — stamps him as a philosopherof the highest rank. He is not desirous to astound and The Regu-startle, or to impress the imagination by the originality phandi.of his ideas : his aim is to know Nature.*

ances
longer believe that this idea was alone applicable to the
phenomenon of falling bodies and the processes most
immediately connected therewith. The generalisation
was effected as of itself , and without attracting partic-
ular attention.

Newton’s 5. Let us now discuss, more in detail, the achieve-
ments^ ments of Newton as they bear upon the principles of

In so doing, we shall first devote ourselves
exclusively to Newton’s ideas, seek to bring them for-
cibly home to the reader’s mind, and restrict our criti-

wholly to preparatory remarks, reserving the

the domain
of median- IHCChatllCS.
ics.

* This is conspicuously shown in the rules that Newton formedconduct of natural inquiry (the Régula: Philosophandi ) :“ Rule I. No more causes of natural things are to be admitted than suchas truly exist and are sufficient to explain the phenomena of these things.“ Rule II. Therefore, to natural effects of the same kind we must, as faras possible, assign the same causes ; e. g., to respiration in man and animals ;to the descent of stones in Europe and in America ; to the light of our kitchenfire and of the

for the
cisms
criticism of details for a subsequent section. On pe-
rusing Newton’s work ( Philosophies Naturalis Principia
Mathcmatica.
strike us at once as the chief advances beyond Galileo

London, 1687), the following things
sun ; to the reflection of light on the earth and on the planets.“ Rule III. Those qualities of bodies that can be neither increased nordiminished, and which are found to belong to all bodies within the reach ofour experiments, are to be regarded as the universal qualities of all bodies.[Here follows the enumeration of the properties of bodies which has been in-corporated in all text-books.]

“ If it universally appear, by experiments and astronomical observations,that all bodies in the vicinity of the earth are heavy with respect to the earth ,and this in proportion to the quantity of matter which they severally contain ;

and Huygens :
1) The generalisation of the idea of force.
2) The introduction of the concept of mass.
3) The distinct and general formulation of the prin-

ciple of the parallelogram of forces. n
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7. With regard to the concept of “ mass,” it is to

be observed that the formulation of Newton, which de-
be the quantity of matter of a body as

a powerful resistance the moment we endeavor to set Mass dis-
the wheel in motion or attempt to stop it when i
tion. This is the phenomenon that led to the
tion of a distinct property of matter termed inertia, or
“ force ” of inertia— a step which, as we have already
seen, and shall further explain below is unnecessary.
Two equal loads simultaneously raised, offer resistance
by their weight. Tied to the extremities of a cord that
passes over a pulley, they offer resistance to
tion, or
by their
on a

The New-
tonian con-
cept of
mass.

tinct from
111 mo- weight.

enuncia-fines mass to
measured by the product of its volume and density, is

unfortunate. As we can only define density as the mass
Newton felt

of unit of volume, the circle is manifest,

distinctly that in every body there was inherent a prop-
erty whereby the amount of its motion was determined

d perceived that this must be different from weight.
He called it, as we still do, mass ; but he did not suc-
ceed in correctly stating this perception,

vert later on to this point, and shall stop here only to

make the following preliminary remarks.

8. Numerous experiences, of which a sufficient num-

ber stood at Newton’s disposal, point clearly to the ex-

any mo-

rather to any change of velocity of the pulley,
mass.

an rWe shall re- A large weight hung as a pendulum
very long string can be held at1 an angle of slight

deviation from the line of equilibrium with very little
effort. The weight-component that forces the pendu-
lum into the position of equilibrium, is very small.
Yet notwithstanding this we shall
siderable resistance if

The expe-
riences
which point

enceofsuch istence of a property distinct from weight, whereby the
a physical
property.

experience a con-
suddenly attempt to move or

A weight that is just supported by a
balloon, although we . have no longer to overcome its
gravity, opposes a perceptible resistance to
Add to this the fact that the same body experiences in
different geographical latitudes and in different parts
of space very unequal gravitational accelerations and

shall clearly recognise that mass exists as

quantity of motion of the
body to which it belongs is
determined. If (Fig. 126)

we
stop the weight.

we tie a fly-wheel to a rope
and attempt to lift it by

I means of a pulley, we feel
Çj the weight of the fly-wheel.

If the wheel be placed

on a perfectly cylindrical axle and well balanced, it

will no longer assume by virtue of its weight any de-
Nevertheless, we are sensible of

motion.

we
Fig. 126. a property

wholly distinct from weight determining the amount of
acceleration which a given force communicates to the
body to which'it belongs.

9. Important is Newton’s demonstration that the Mass
mass of a body may, nevertheless, under certain con- weight,
ditions, be measured by its weight. Let us suppose a
body to rest on a support, on which it exerts by its weight
a pressure. The obvious inference is that 2 or 3 such
bodies, or one-half or one-third of such a body, will pro-
duce a

terminate position.
that the moon is heavy with respect to the èarth in the proportion of its

and our seas with respect to the moon ; and all the planets with respect to one

another, and the comets also with respect to the sun ; we must, in conformity

with this rule, declare, that all bodies are heavy with respect to one another.
“ Rule IV. In experimental physics propositions collected by induction

from phenomena are to be regarded either as accurately true or very nearly

true, notwithstanding any contrary hypotheses, till other phenomena occur, by

which they are made more accurate, or are rendered subject to exceptions.
“ This rule must be adhered to, that the results of induction may not be

mass, meas-

corresponding pressure 2, 3, 1, or 1 times as
annulled by hypotheses.”
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If we imagine the acceleration of descent in-
shall ex-

their quantity of matter or mass can, as Newton pointedout, be measured by their weight.
If we imagine a rigid partition placed between

assemblage of bodies and

The prere- great.
the meas- creased, diminished, or wholly removed, we

mass by pect that the pressure also will be increased, dimin-
weight. ished, or wholly removed. We thus see, that the pres-

attributable to weight increases, decreases, and
vanishes along with the “ quan-

I L_L tity of matter ” and the magni-

* a I > r I u I tude of the acceleration of de-
In the simplest manner

ail Supple-
mentary
considera-tions.

a magnet, the bodies, if themagnet be powerful enough, or at least the majorityof the bodies, will exert
But it would

sure
a pressure on the partition,

occur to no one to employ this magneticpressure, in the manner we employed pressure due to
g

1Fig. 127.
weight, as a measure of mass. The strikingly notice-able inequality of the accelerations produced in thedifferent bodies by the magnet excludes any such idea.The reader will furthermore remark that

scent.
imaginable we conceive the pres-

sure p as quantitatively representable by the product of

the quantity of matter m into the acceleration of descent

g— by mg. Suppose now we have two bodies that

exert respectively the weight- pressures p, p’ , to which
we ascribe the “ quantities of matter ’ ’ m, ///', and which
are subjected to the accelerations of descent g, g’\ then

p= mg and p* =ni g\ If , now, we were able to prove,
that, independently of the material (chemical) compo-
sition of bodies, g=g' at every same point on the

earth’s surface, we should obtain mini =///'; that is

to say, on the same spot of the earth’s surface, it would
be possible to measure mass by weight.

Nevvtonjs Now Newton established this fact, that g

ment of pendent of the chemical composition of bodies, by
these pre-
requisites, experiments with pendulums of equal lengths but dif -

ferent material, which exhibited equal times of oscilla-

Ile carefully allowed, in these experiments, for
the resistance of the air ; this

this wholeargument possesses an additional dubious feature, inthat the concept of mass which up to this point hassimply been named and felt as a necessity, but not de-fined, is assumed by it.
10. To Newton owe the distinct formulation of The doc-the principle of the composition of forces.* If a body composi-is simultaneously acted on by two forces (Fig. 128), forces,of which one would produce the

motion AB and the other the ^motion AC in the same interval
of time, the body, since the two
forces and the motions produced
by them are independent of each other, will move in thatinterval of time to AD.

we

B

Dis inde-
Fig. 128.

This conception is in every
#respect natural, and distinctly characterises thetial point involved.

tion. essen-
It contains none of the artificialthe disturbances due to

last factor being eliminated by constructing from differ-
bobs of exactly the

and forced characters that were afterwards importedinto the doctrine of the composition of forces.We
ent materials spherical pendul
same size, the weights of which were equalised by ap-
propriately hollowing the spheres. Accordingly, all

bodies maybe regarded as affected with the same g,and

um-
may express the proposition in a somewhat

* Roberval’s (1668) achievements withposition of forces
ready been referred

respect to the doctrine of the com-are also to be mentioned here. Varignon and Lami have al-’ to. (See the text, page 36.)
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principle was that resorted to by Huygens in his inves-tigation of the centre of oscillation.
Discussion different manner, and thus bring it nearer its modern
trine of the form. The accelerations that different forces impart
composi- .
tion of to the same body are at the same time the measure ol
forces. these forces. But the paths described in equal times

proportional to the accelerations. Therefore the
the measure of the forces. We

Such a principlealso is Newton’s law of action and reaction.
A body that presses or pulls another body is, ac- Newton’scording to Newton, pressed or pulled in exactly the of the lawdegree by that other body. Pressure and counter- and reacpressure, force and counter-force, are always equal toeach other. As the measure of force is defined byNewton to be the quantity of motion or momentum(mass X velocity) generated in a unit of time, it conse-quently follows that bodies that act on each other com-municate to each other in equal intervals of time equaland opposite quantities of motion ( momenta)ceive contrary velocities reciprocally proportional totheir masses.

are
samelatter also may serve as

may say accordingly : If two forces, which are propor-

tional to the lines AB and AC, act on a body A in the

directions AB and AC, a motion will result that could
also be produced by a third force acting alone in the
direction of the diagonal of the parallelogram
structed on AB and AC and proportional to that di-
agonal. The latter force, therefore, may be substituted

Thus, if (p and ip are the two ac-

con-

, or re-
for the other two.
celerations set up in the directions .// /? and AC, then
for any definite interval of time t, AB — (f )t - /2, AC =
ip l 2 / 2. If , now, we imagine AD produced in the same
interval of time by a single force determining the accel-

Now, although Newton’s law, in the form here ex- Thereia-, . . . ,. tive imrne-pressed, appears much more simple, more immediate, diacyor
Newton'sand at first glance more admissible than that of Huy- and Huy-gens, it will be found that it by no means contains less cipies.1 nn

unanalysed experience or fewer instinctive elements.Unquestionably the original incitation that promptedthe enunciation of the principle was of a purely instinc-tive nature.

eration j, we get
AD = x /-> and AB : AC : AD = cp : ip : X -

As soon as we have perceived the fact that the forces
independent of each other, the principle of the parai
lelogram of forces is easily reached from Galileo’
tion of force. Without the assumption of thiâ inde-
pendence any effort to arrive abstractly and philosoph-
ically at the principle, is in vain.

11. Perhaps the most important achievement of
Newton with respect to the principles is the distinct
and general formulation of the law of the equality of
actio?i and reaction, of pressure and counter-pressure.
Questions respecting the motions of bodies that exert
a reciprocal influence on each other, cannot be solved
by Galileo’s principles alone. A new principle is ne-

that will define this mutual action. Such a

are

We know that we do nots no- experience anyresistance from a body until we seek to set it in motion.The more swiftly we endeavor to hurl a heavy stonefrom us, the more our body is forced back by it.sure and counter-pressure go hand in hand,

sumption of the equality of pressure and counter

Pres-
The as-The law of

action and
reaction. -pres-sure is quite immediate if, using Newton’s own illus-tration, we imagine a rope stretched between two bod-or a distended or compressed spiral spring betweenles

them.
There exist in the domain of statics. very many in-stinctive perceptions that involve the equality of pres-cessary

-
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The reader has already felt that the various enunci
ations of Newton with respect to mass and the
ciple of reaction, hang consistently together, and that
they support one another. The experiences that lie at
their foundation

and counter-pressure. The trivial experience that
periences • ... , .. . . . .
which point one cannot lift one s self by pulling
to the exist-
enceofthe of this character.

physicists Wren, Huygens, and Wallis as his prede-
cessors in the employment of the principle, Newton

He imagines the

Statical ex- SUXe - The merits
and defects

pr i l l- of Newton’s
doctrines.

on one’s chair is
In a scholium in which he cites the

: the instinctive perception of the
connection of pressure and counter-pressure ; the dis-
cernment that bodies offer resistance to change of ve-
locity independently of their weight, but proportion-
ately thereto ; and the observation that bodies of greater
weight receive under equal pressure smaller velocities.
Newton’s sense of what fundamental concepts and prin-
ciples were required in mechanics was admirable. The
form of his enunciations, however, as we shall later in-
dicate in detail, leaves much to be desired. But we have
no right to underrate on this account the magnitude of
his achievements ; for the difficulties he had to conquer
were of a formidable kind, and he shunned them less
than any other investigator.

are
puts forward similar reflections,

earth, the single parts of which gravitate towards
another, divided by a plane. If the pressure of the

portion on the other were not equal to the counter-

one

Lone
pressure, the earth would be compelled to move in the

But the motion ofdirection of the greater pressure.
a body can, so far as our experience goes, only be de-
termined by other bodies external to it. Moreover,

might place the plane of division referred to at any
point we chose, and the direction of the resulting mo-
tion, therefore, could not be exactly determined.

12. The indistinctness of the concept of mass takes
?nUs°con^SS

a very palpable form when we attempt to employ the
with this principle of the equality of action and reaction dynam-

ically. Pressure and counter-pressure may be equal.
But whence do we know that equal pressures generate
velocities in the inverse ratio of the masses ? Newton, *

indeed, actually felt the necessity of an experimental
corroboration of this principle. He cites in a scholium,
in support of his proposition, Wren’s experiments
impact, and made independent experiments himself.
He enclosed in one sealed vessel a magnet and in an-

we

The con-

IV.
DISCUSSION AND ILLUSTRATION OF THE

REACTION.
i . We shall now devote ourselves a moment ex- The princi-

clusively to the Newtonian ideas, and seek to bring the Son?* reac

principle of reaction more clearly home to our mind

PRINCIPLE OF

on

V a a-0 0^0 — * v— M
other a piece of iron, placed both in a tub of water,
and left them to their mutual action. The vessels ap-
proached each other, collided, clung together, and af-
terwards remained at rest,

equality of pressure and counter-pressure and of equal
and opposite momenta (as we shall learn later on,
when we come to discuss the laws of impact).

Fig. 129.
and feeling. If two

another, they impart to each other, according
to Newton, contrary velocities Kand v, which
versely proportional to their masses, so that

MV-j- mv = 0.

Fig. 130.
(Fig. 129) Mand m act onmasses

oneThis result is proof of the
are m-
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The appearance of greater evidence may be im-
parted to this principle by the following consideration.

We imagine first (Fig. 130) two absolutely equal bodies

a, also absolutely alike in chemical constitution. We

set these bodies opposite each other and put them in

mutual action ; then, on the supposition that the in-
fluences of any third body and of the spectator
eluded, the communication of equal and contrary velo-

cities in the direction of the line joining the bodies is

the sole uniquely determined interaction.
Now let us group together in A (Fig. 131)0/ such

bodies a, and put at B over against them m' such

bodies a. We have then before us bodies whose quan-

ta

THE PRINCIPLES OF DYNAMICS.
T202 203

and on the other M accelerated.
have begun to move with the same acceleration, all notion of

'6

further distortion of the connection

When bothGeneral
elucidation
of the prin-
ciple of re-
action.

masses The deduc-

“ moving
" rce.”If we call fo

a the acceleration of M and /3 the diminution of the
acceleration of ;//, then a= cp — /?, where agreeably
to what precedes a M= /3 m.

ceases.

From this follows
are ex- a M m cp= m or a= — , — .m ' M -f m

exhaustively into the de-
tails of this last occurrence, we should discover that
the two masses, in addition to their motion of progres-
sion, also generally perform with respect to each other
motions of oscillation. If the connection on slight dis-
tortion develop a powerful tension, it will be impos-
sible for any great amplitude of vibration to be reached,
and we may entirely neglect the oscillatory motions,
as we actually have done.

If the

a -j- (3 — ( x -|-

L If we were to enter more

ima
M

BA Fig. 132.Fig. 131.
tities of matter or masses bear to each other the pro-

portion m : vi’ . The distance between the groups we

assume to be so great that we may neglect the exten-
Let us regard now the accelera-

tions ex, that every two bodies a impart to each other,

as independent of each other. Every part of A, then,

will receive in consequence of the action of B the ac-

celeration ma, and every part of B in consequence of

the action of A the acceleration m a— accelerations
which will therefore be inversely proportional to the

expression a — m cp /M -j- m, which deter-
mines the acceleration of the entire system, be ex-
amined, it will be seen that the product m cp plays a
decisive part in its determination. Newton therefore
invested this product of the mass into the acceleration
imparted to it, with the name of “ moving force.”M -\- m, on the other hand, represents the entire mass
of the rigid system. We obtain, accordingly, the accel-
eration of any mass vi on which the
moving force p acts, from the
sion //;;/.

3. To reach this result, it is not at
all necessary that the two connected

Pof the bodies.sion

expres-masses.
2. Let us picture to ourselves now a mass M (Fig.

elastic connection with a mass m,
m3 ma

132) joined by some
both masses made up of bodies a equal in all respects.
Let the mass m receive from some external source an

acceleration cp. At once a distortion of the connection
the one hand m is retarded

Fig. 133.

masses should act directly on each other in all their
parts.
three masses

We have, connected together, let us say, the
. j 0/ x, m2, ;// 3, where mx is supposed to actis produced, by which on

J2fl
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the load just so much, and so much only, as it in return Some phys-presses the load, that is prevents the same from falling. pCies oftheIf p is the weight, m the mass, and g the acceleration of Reaction,of gravity, then by Newton’s conception p= mg. Ifthe table be let fall vertically downwards with the ac-celeration of free descent g, all pressure on it ceases.We discover thus, that the pressure on the table is de-termined by the relative acceleration of the load with
respect to the table.
acceleration y, the pressure on it is respectively m( g —y ) and m ( g + y). Be it noted, however, thatchange of the relation is produced by a constant velocityof ascent or descent,

terminative.

Let the mass m1 re-A condition only on /// 2, and ;// 3 only on ;// 2.
not affect ceive from some external source the acceleration cp.
the pre-
vious re-
sult. In the distortion that follows, the

m 2masses
receive the accelerations -f- à I P +— a.— r
Here all accelerations to the right are reckoned as
positive, those to the left as negative, and it is obvious
that the distortion ceases to increase

when ô= ft — y, â= cp — a,
where ô m3= ym2, am1 — fim2.

The resolution of these equations yields the
acceleration that all the masses receive ; namely,

If the table fall or rise with theu
no

com- 1he relative acceleration is de-mon
Galileo knew this relation of things very well. TheThepres-doctrine of the Aristotelians, that bodies of greater parts of faii-weight fall faster than bodies of less weight, he not only bodies‘

refuted by experiments, but cornered his adversariesby logical arguments. Heavy bodies fall faster thanlight bodies, the Aristotelians said, because the

mi + M 2 + m s— a result of exactly the same form as before. When
of iron which is

0=

therefore a magnet acts on a piece
joined to a piece of wood, we need not trouble our-
selves about ascertaining what particles of the wood
are distorted directly or indirectly (through other par-
ticles of the wood) by the motion of the piece of iron.

The considerations advanced will, in some meas-
perhaps, have contributed towards clearly impress-

the great importance for mechanics of the
They will also serve, in a

upperparts weigh down on the under parts and acceleratetheir descent. In that case, returned Galileo, a smallbody tied to a larger body must, if it possesses in sc theproperty of less rapid descent, retard the larger. There-fore, a larger body falls
body. The entire fundamental

ure,
ing on us
Newtonian enunciations.

slowly than a smaller
assumption is wrong,

says, because one portion of a falling body
not by its weight under any circumstances
other portion.

more

Galileosubsequent place, to
der more readily obvious
the defects of these enun-

ren- can-
press a7i-

A pendulum with the time of oscillation T= nVl/g, A failingwould acquire, if its axis received the downward accel- ^

eration y, the time of oscillation T= nV l/g y,and if let fall freely would acquire an infinite time ofoscillation, that is, would cease to oscillate.

u
ciations.

4. Let us now turn to
a few illustrative physical

We consider,
The table is pressed by

pendulum.?
Fig. 134-

examples of the principle of reaction,

say, a load L on a table T.
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the load just so much, and so much only, as it in return Some phys-prcsses the load, that is prevents the same from falling, piesofthe
If p is the weight, m the mass, and g the acceleration of Reaction,of gravity, then by Newton’s conception p — mg. Ifthe table be let fall vertically downwards with the ac-celeration of free descent g, all pressure on it ceases.We discover thus, that the pressure on the table is de-termined by the relative acceleration of the load withrespect to the table. If the table fall or rise with theacceleration y, the pressure on it is respectively m ( g —y) and m( g -\- y ). Be it noted, however, thatchange of the relation is produced by a constant velocityof ascent or descent,

terminative.

Let the mass m 1 re-A condition only on m2 , and ;/*3 only on ;;/ 2.
not affect ceive from some external source the acceleration (p.
the pre-
vious re-
sult. In the distortion that follows, the

m2;;/ 3masses
receive the accelerations -f- d + P + <P

— a.
Here all accelerations to the right are reckoned as
positive, those to the left as negative, and it is obvious
that the distortion ceases to increase

when ô= P — y, â= cp — a,
where ô m3= ym2, a m x — f i m2.

The resolution of these equations yields the
acceleration that all the masses receive ; namely,

- Y

4*

no
com- I he relative acceleration is de-mon

Galileo knew this relation of things very well. TheThepres-doctrine of the Aristotelians, that bodies of greater parts of faii-weight fall faster than bodies of less weight, he not onlyinR bodies'
refuted by experiments, but cornered his adversariesby logical arguments. Heavy bodies fall faster thanlight bodies, the Aristotelians said, because the upperparts weigh down on the under parts and acceleratetheir descent.

mi <P
"l L + m2 + m3

0=
When

of iron which is
— a result of exactly the same form as before.
therefore a magnet acts on a piece
joined to a piece of wood, we need not trouble our-
selves about ascertaining what particles of the wood
are distorted directly or indirectly (through other par-
ticles of the wood) by the motion of the piece of iron.

The considerations advanced will, in some meas-
perhaps, have contributed towards clearly impress-

for mechanics of the

1-
In that case, returned Galileo, a smallbody tied to a larger body must, if it possesses in se the

property of less rapid descent, retard the larger. There-fore, a larger body falls more slowly than a smallerbody. The entire fundamental

ure,
ing on us the great importance
Newtonian enunciations. assumption is wrong,

one portion of a falling body
They will also serve, in a
subsequent place, to
der more readily obvious

Galileo says, because
not by its weight under any circumstances
other portion.

ren- can-u
press an-

the defects of these enun-L
A pendulum with the time of oscillation T= n j/l/g, A failingwould acquire, if its axis received the downward accel- pendulum*

eration y, the time of oscillation T= 7tV 1/g y,and if let fall freely would acquire an infinite time ofoscillation, that is, would cease to oscillate.

ciations.
4. Let us now turn to

a few illustrative physical
We consider,

The table is pressed by

Fig. 134 -
examples of the principle of reaction,

say, a load L on a table T.
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We ourselves, when we jump or fall from an eleva-

tion, experience a peculiar sensation, which must be

due to the discontinuance of the gravitational pressure

of the parts of our body on one another— the blood, and

so forth. A similar sensation, as if the ground were

sinking beneath us, we should have on a smaller planet,
to which we were suddenly transported. The sensation
of constant ascent, like that felt in an earthquake,
would be produced on a larger planet.

5. The conditions referred to are very beautifully
illustrated by an apparatus (Fig. 135c) constructed
by Poggendorff . A string loaded at both extremities

The sensa-
tion of fall-
ing.

descending weight, only partially impeded in its motionof descent, exerts only a partial pressure
We may vary the

loaded at

the pulley.
experiment. We pass a thread A variationone extremity with the weight P over the experimentpulleys a, b, d, of the apparatus as indicated in Fig.

on

rx
Poggen-
dorff ’s ap-
paratus. C b

a

bb c

t t©
'P+t 2P+ p

\d
P

d
Fig. 135b.Fig. 135a.

by a weight P (Fig. 135^) is passed over a pulley r,
attached to the end of a scale-beam. A weight p is
laid on one of the weights first mentioned and tied by
a fine thread to the axis of the pulley. The pulley
now supports the weight 2 P p. Burning away the

thread that holds the over-weight, a uniformly accel-
erated motion begins with the acceleration y, with

which P -f- p descends and P rises. The load on the

pulley is thus lessened, as the turning of the scales in-

dicates. The descending weight P is counterbalanced
by the rising weight P, while the added over-weight,
instead of weighing/, now weighs ( P/g )(g — y)• And
since y= (//2 /* + /) g> we have now to regard the
load on the pulley, not as /, but as/(2 PIT. P-\-p). The

1
Fig. 135c.

135A, tie the unloaded
the balance. If

extremity at ///, and equilibrate
we pull on the string

not directly affect the balance si
string passes exactly through ...

immediately falls. The slackeni
a to rise.

at ///, this
since the direction of the
its axis.

can-

But the side a
ling of the string causes

of the weights would
An unaccelerated motion
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pended particles, by the following consideration. In a
liquid A a smaller quantity of a heavier liquid B is in-
troduced and distributed in fine drops. The areometer,
let us assume, indicates only the specific gravity of

Now, take more and more -
just as much of it as we have of A: we can, then,
longer say which liquid is suspended in the other, and
which specific gravity, therefore, the areometer
indicate.

not disturb the equilibrium. But we cannot pass from

rest to motion without acceleration.
Thesuspen- 6. A phenomenon that strikes us at first glance is,
s iou of mi- . .r
nute bodies that minute bodies of greater or less specific gravity

dif ferent than the liquid in which they are immersed, if suffi-
speci f ic . . . . . .
gravi ty. ciently small, remain suspended a very long time in the

at once that
over-

A. of the liquid B, finally
no

liquid. We perceive

particles of this kind have to
the friction of the liquid. If the

cube of Fig. 136 be divided into 8
parts by the 3 sections indicated,
and the parts be placed in
their mass and over-weight will re-

must

4»come
7. A phenomenon of an imposing kind, in which The Phe-

the relative acceleration of the bodies concerned i nomenon of
IS the t ides.

seen to be determinative of their mutual
that of the tides.

a row pressure, is
We will enter into this subject here

only in so far as it may serve to illustrate the point we
are considering.

main the same, but their cross-sec-Fig. 136.
The connection of the phenome

of the tides with the motion of the moon asserts itself
in the coincidence of the tidal and lunar periods, in
the augmentation of the tides at the full and new
moons, in the daily retardation of the tides (by about
50 minutes), corresponding to the retardation of the
culmination of the moon, and so forth,

of fact, the connection of the two occurrences was very
early thought of. In Newton’s time people imagined
to themselves a kind of wave of atmospheric pressure,
by means of which the
posed to create the tidal

tion and superficial area, with which the friction goes
hand in hand, will be doubled.

Do such Now, the opinion has at times been advanced with
particie^af- respect to this phenomenon that suspended particles
speci f ic of the kind described have no influence on the specific
the suppor t- gravity indicated by an areometer immersed in the
ing l iquids? . . , . . . . «

liquid, because these particles are themselves areo-
But it will readily be seen that if the sus-

pended particles rise or fall with constant velocity, as

in the case of very small particles immediately
the effect on the balance and the areometer must be

If we imagine the areometer to oscillate

non

As a matter
meters.

!occurs
in its motion was sup-moon

wave.the same.
about its position of equilibrium, it will be evident
that the liquid with all its contents will be moved with
it. Applying the principle of virtual displacements,
therefore, we can be no longer in doubt that the areo-

meter must indicate the mean specific gravity,

may convince ourselves of the untenability of the rule

by which the areometer is supposed to indicate only

the specific gravity of the liquid and not that of the sus-

The phenomenon of the tides makes, on every one i t s impos-that sees it for the first time in its full proportions, an te r.
overpowering impression. We must not be surprised,
therefore, that it is a subject that has actively engagedthe investigators of all times. The warriors of Alex-ander the Great had, from their Mediterranean homes,
scarcely the faintest idea of the phenomenon of thetides, and they were, therefore, not a little taken aback

We

i
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by the sight of the powerful ebb and flow at the mouth
of tlie Indus ; as we learn from the account of Curtius
Rufus {De Rebus Gcstis Alexandri Magni), whose
words we here literally quote :

“ 34. Proceeding, now, somewhat more slowly in

“ their course, owing to the current of the river being

“ slackened by its meeting the waters of the sea, they

“ at last reached a second island in the middle of the
Here they brought the vessels to the shore,

“ and, landing, dispersed to seek provisions, wholly
of the great misfortune that awaited

if HE PRINCIPLES OF D YNAMICS. 213

“ And what was the nature of this element, which
“ opposed and now obeyed the dominion of the hours? ’
“ As the king concluded from what had happened that
“ the fixed time for the return of the tide was after
“ sunrise, be set out, in order to anticipate it, at mid-
“ night, and proceeding down the river with a few
“ ships he passed the mouth and, finding himself at

last at the goal of his wishes, sailed out 400 stadia
“ into the ocean. He then offered a sacrifice to the
“ divinities of the sea, and returned to his fleet. ”

8. The essential point to be noted in the explication Theexpii-
of the tides is, that the earth as a rigid body can re- the phe-
ceive but one determinate acceleration towards thethetides?
moon, while the mobile particles of water on the sides
nearest to and remotest from the
various accelerations.

now

Extract
from Cur-
tius Rufus.

t

“ river.

“ unconscious

“ them.
35. It was about the third hour, when the ocean,

“ in its constant tidal flux and reflux, began to turn
The latter, at first

( (Describing
the effect
on the army
of Alexan-
der the
Great of the
tides at the “ mere
mouth of
the Indus.

and press back upon the river.
ly checked, but then more vehemently repelled,

“ at last set back in the opposite direction with a force

“ greater than that of a rushing mountain torrent.

“ The nature of the ocean was unknown to the multi-
tude, and grave portents and evidences of the wrath

“ of the Gods were seen in what happened. With

“ ever- increasing vehemence the sea poured in, com-

“ pletely covering the fields which shortly before

“ dry. The vessels were lifted and the entire fleet dis-

“ persed before those who had been set on shore, ter-

“ rifled and dismayed at this unexpected calamity,
But the more haste, in times of great

i c moon can acquire

M

were

Let us consider (Fig. 137) on the earth.#, opposite
which stands the moon M, three points A, R, C. The
accelerations of the three points in the direction of the
moon, if we regard them as free points, are respect-
ively ( pAcp, cp, (p — A (p. The earth as a whole,

rigid bod)', the acceleration cp. The
acceleration towards the centre of the earth we will
call g. Designating now all accelerations to the left
as negative, and all to the right as positive, we get the
following table :

“ could return.
“ disturbance, the less speed. Some pushed the ships

the shore with poles ; others, not waiting to adjust“ to
“ their oars, ran aground. Many, in their great haste

“ to get away, had not waited for their companions,

“ and were barely able to set in motion the huge, un-
“ manageable barks ; while some of the ships were too

“ crowded to receive the multitudes that struggled to

however, has, as a
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“ get aboard. The unequal division impeded all. The Tin
ter tcries of some clamoring to be taken aboard, of others andt
fleet.

i i

crying to put off, and the conflicting commands of
“ men, all desirous of different ends, deprived every one

of the possibility of seeing or hearing. Even the
steersmen were powerless ; for neither could their

“ cries be heard by the struggling masses nor were their
“ orders noticed by the terrified and distracted crews.
“ The vessels collided, they broke off each other’s oars,
“ they plunged against one another. One would think
“ it was not the fleet of one and the same army that
“ was here in motion, but two hostile fleets in combat.
“ Prow struck stern ; those that had thrown the fore-
“ most in confusion were themselves thrown into con-

i i

( (

i <

“ fusion by those that followed ; and the desperation
“ of the struggling mass sometimes culminated in
“ hand- to-hand combats.

“ 36. Already the tide had overflown the fields sur-
rounding the banks of the river, till only the hillocks
“ jutted forth from above the water, like islands.
“ These were the point towards which all that had given
“ up hope of being taken on the ships, swam. The
“ scattered vessels rested in part in deep water, where

there were depressions in the land, and in part lay
“ aground in shallows, according as the waves had
“ covered the unequal surface of the country. Then,
“ suddenly, a new and greater terror took possession
“ of them. The sea began to retreat, and its waters
“ flowed back in great long swells, leaving the land
“ which shortly before had been immersed by the salt
“ waves, uncovered and clear. The ships, thus for-
“ saken by the water, fell, some on their prows, some
“ on their sides. The fields were strewn with luggage,
“ arms, and pieces of broken planks an*4

( i

nni
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soldiers dared neither to venture on the land nor to
remain, in the ships, for every moment they expected

“ something new and worse than had yet befallen
“ them. They could scarcely believe that that which
“ they saw had really happened— a shipwreck on dry
“ land, an ocean in a river. And of their misfortune
“ there seemed no end. For wholly ignorant that the
“ tide would shortly bring back the sea and again set
“ their vessels afloat, they prophesied hunger and dir-
“ est distress. On the fields horrible animals crept
“ about, which the subsiding floods had left behind.

“ 37. The night fell, and even the king was sore
re- “ distressed at the slight hope of rescue. But his so-

“ licitude could not move his unconquerable spirit. He
“ remained during the whole night on the watch, and
“ despatched horsemen to the mouth of the river, that,
“ as soon as they saw the sea turn and flow back, they
“ might return and announce its coming. He also
“ commanded that the damaged vessels should be re-
“ paired and that those that had been overturned by
“ the tide should be set upright, and ordered all to be
“ near at hand when the sea should again inundate the
“ land. After he had thus passed the entire night in
“ watching and in exhortation, the horsemen came
“ back at full speed and the tide as quickly followed.
“ At first, the approaching waters, creeping in light

swells beneath the ships, gently raised them, and,
“ inundating the fields, soon set the entire fleet in mo-
“ tion. The shores resounded with the cheers and

clappings of the soldiers and sailors, who celebrated
“ with immoderate joy their unexpected rescue. ‘But
“ whence/ they asked, in wonderment, ‘had the sea
“ so suddenly given back these great masses of water ?

had they, on the day previous, retreated ?

£ £may
.riny.

£ £

TtS

£ £

£ £

/ £ w r, *
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B CA would be increased, and the height at C diminished.
The water would be elevated only on the side facing
the moon. (Fig. 138. )

— ( <p + A(P ) y — ( <p — Acp )— <P>

+ g — g-
E— 9

— U — 4 <p),
where the symbols of the first and second lines repre-
sent the accelerations which the free points that head
the columns receive, those of the third line the accel-
eration of corresponding rigid points of the earth, and
those of the fourth line, the difference, or the resultant
accelerations of the free points towards the earth. It
will be seen from this result that the weight of the water
at A and C is diminished by exactly the same amount.
The water will rise at A and C (Fig. 137). A tidal
wave will be produced at these points twice every
day.

— 9>— 9>

g — Acp, 0, M

9. It would hardly be worth while to illustrate An iiiustra-
propositions best reached deductively, by experiments mentxpen
that can only be performed with difficulty. But such
experiments are not beyond the limits of possibility.
If we imagine a small iron sphere K to swing as a
conical pendulum about the pole of a
magnet N (Fig. 139),. and cover the /
sphere with a solution of magnetic sul- /
phate of iron, the fluid drop should, if /
the magnet is sufficiently powerful, rep-

resent the phenomenon of the tides. But
if we imagine the sphere to be fixed and
at rest with respect to the pole of the
magnet, the fluid drop will certainly not
be found tapering to a point both on
the side facing and the side opposite to
the pole of the magnet, but will remain suspended only
on the side of the sphere towards the pole of the
magnet.

10. We must not, of course, imagine, that the Some fur-. * 1 1 • 1 1 1 1 • t h e r con-
entire tidal wave is produced at once by the action sidérations,

of the moon. We have rather to conceive the tide
as an oscillatory movement maintained by the moon.
If , for example, we should sweep a fan uniformly and

i

It is a fact not always sufficiently emphasised, that
r the phenomenon would be an essentially different one

if the moon and the earth were not affected with ac-
celerated motion towards each other but were relatively
fixed and at rest. If we modify the considerations
presented to comprehend this case, we must put for the
rigid earth in the foregoing computation, cp = 0 simply.
We then obtain for

the free points . . . .
the accelerations. . — ( cp + Acp),

+ <<r
( g — A9 ) — <h
g' — p>

where g' =g — A cp. In such case, therefore, the
weight of the water at A would be diminished, and the
weight at C increased ; the height of the water at A

A variation
of the phe-
nomenon

N
r\

Fig. 139.cA — ( <p — A<p),— g

— C«r — dtp ) — cp

— (s' + v),
or

i»or
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continuously along over the surface of the water of a
circular canal, a wave of considerable magnitude fol-
lowing in the wake of the fan would by this gentle and
constantly continued impulsion soon be produced. In
like manner the tide is produced. But in the latter
case the occurrence is greatly complicated by the irreg-
ular formation of the continents, by the periodical
variation of the disturbance, and so forth.

217*

there is still something that is measurable by the same Newton’s
^standard, which something we call quantity of matter, of the con-

may be suggested by mechanical experiences, but is an
assumption nevertheless that needs to be justified.
When therefore, with Newton, we make the assump-

tions, respecting pressure due to weight, that p = mg,
p' =in*g, and put in conformity with such assumptions
pip' = we have made actual use in the operation
thus performed of the supposition, yet to be justified,
that different bodies are measurable by the same stand-
ard.Vv.

CRITICISM OF THE PRINCIPLE OF REACTION AND OF THE
CONCEPT OF MASS.

1. Now that the preceding discussions have made
us familiar with Newton’s ideas, we are sufficiently
prepared to enter on a critical examination of them.
We shall restrict ourselves primarily in this, to the
consideration of the concept of mass and the principle
of reaction. The two cannot, in such an examination,
be separated ; in them is contained the gist of New-
ton’s achievement.

2. In the first place we do not find the expression
quantity of matter ” adapted to explain and elucidate

the concept of mass, since that expression itself is not
possessed of the requisite clearness,

though we go back, as many authors have done, to an
enumeration of the hypothetical atoms. We only
plicate, in so doing, indefensible conceptions,

place together a number of equal, chemically homo-
geneous bodies, we can, it may be granted, connect

clear idea with “ quantity of matter, ” and we per-
ceive, also, that the resistance the bodies offer to
tion increases with this quantity. But the moment we
suppose chemical heterogeneity, the assumption that

We might, indeed, arbitrarily posit, that mini =p/p*;
that is, might define the ratio of mass to be the ratio
of pressure due to weight when g was the same,

we should then have to substantiate the use that is made
of this notion of mass in the principle of reaction and
in other relations.

ButThe con-
cept of
mass.

A
+ <p'

Fig. 140 b.Fig. 140 a.
3. When two bodies (Fig. 140 <z), perfectly equal

in all respects, are placed opposite each other, we ex-
pect, agreeably to the principle of symmetry, that they
will produce in each other in the direction of their line
of junction equal and opposite accelerations,

these bodies exhibit any difference, however slight, of
form, of chemical constitution, or are in any other re-
spects different, the principle of symmetry forsakes us,
unless we assume or know beforehand that sameness of
form or sameness of chemical constitution, or whatever
else the thing in question may be, is not determina-

tive. If , however, mechanical experiences clearly and
indubitably point to the existence in bodies of a special
and distinct property determinative of accelerations,

1 A new form-
ulation of
the con-
cept.

T he expres-
sion “ quan-
tity of mat- “ter.”

But ifAnd this is so,

com-
If we

Xsome
mo-

1
I
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nothing stands in the way of our arbitrarily establish -
ing the following definition :

All those bodies are bodies of equal Mass, which, mu-
tually acting on each other, produce in each other equal
and opposite accelerations.

We have, in this, simply designated, or named, an
actual relation of things. In the general case we pro-
ceed similarly. The bodies A and B receive respec-
tively as the result of their mutual action (Fig. 140 b )
the accelerations — cp and -f- cp', where the senses of
the accelerations are indicated by the signs. We say
then, B has (pfp' times the mass of A. If we take A
as our unit, we assign to that body the mass in which im-
parts to A m times the acceleration that A in the reaction
imparts to it. The ratio of the masses is the negative
inverse ratio of the counter-accelerations. That these
accelerations always have opposite signs, that there
are therefore, by our definition, only positive masses,

point that experience teaches, and experience alone
can teach. In our concept of mass no theory is in-
volved ; “ quantity of matter ” is wholly unnecessary in
it ; all it contains is the exact establishment, designa-
tion, r nd denomination of a fact. (Compare Appendix,
no

select B as our standard of comparison (as our unit), discussion
shall we obtain for C the mass-value m' fm, and for Z> cuityin-

the value m" jm, or will perhaps wholly different values the preccd-
result ? More simply, the question maybe put thus : iafionnnU
Will two bodies B, C, which in mutual action with A
have acted as equal masses, also act as equal masses
in mutual action with each other? No logical necessity
exists whatsoever, that two masses that are equal to a
third mass should also be equal to each other. For
we are concerned here, not with a mathematical, but
with a physical question. This will be rendered quite
clear by recourse to an analogous relation. We place
by the side of each other the bodies A, B, C in the
proportions of weight a, b, c in which they enter into
the chemical combinations AB and AC. There exists,
now, no logical necessity at all for assuming that the
same proportions of weight b, c of the bodies B, C will
also enter into the chemical combination BC. Expe-
rience, however, informs us that they do. If we place
by the side of each other any set of bodies in the pro-
portions of weight in which they combine with the
body A, they will also unite with each other in the
same proportions of weight. But no one can know
this who has not tried it. And this is precisely the case
with the mass-values of bodies.

If we were to assume that the order of combination The order

of the bodies, by which their mass-values are deter- nation not

mined, exerted any influence on the mass-values, the
consequences of such an assumption would, we should
find, lead to conflict with experience. Let us suppose,
for instance (Fig. 141), that we have three elastic
bodies, A, B, C, movable on an absolutely smooth and
rigid ring. We presuppose that A and B in their
mutual relations comport themselves Uke equal masses

Definition
of equal
masses.

IS a
Character
of the defi-
nition. m

4. One difficulty should not remain unmentioned in
this connection, inasmuch as its removal is absolutely
necessary to the formation of a perfectly clear concept
of mass. We consider a set of bodies, A, B, C, D . .
and compare them all with A as unit.

A, B, C, D, E, F.
in, in , in ' , in ", m

We find thus the respective mass-values, 1 , 111, m’ ,
. ., and so forth. The question now arises, If we

•7

r n r1,

111 . •
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and that B and C do the We are then also
obliged to assume, if we wish to’ avoid conflicts with
experience, that C and A in their mutual relations act
like equal masses,

will transmit this velocity by impact to B, and B to C.
But if C were to act towards A, say, as a greater mass,

A on impact would acquire a greater
velocity than it originally had while
C would still retain a residue of

same.
of a number of like and commensurable it also in-

volves theEvery pressure can be counterbalanced by fact that
mass can be

Eet tWO bodies measured
by weight.

the pressure
weights.
the pressure of weights of this kind.
m and vi be respectively affected in opposite directions
with the accelerations cp and cp', determined by exter-

And let the bodies be joined by a

If we impart to A a velocity, A

nal circumstances.
If equilibrium prevails, the acceleration <y; instring.

m and the acceleration q/ in vi are exactly balanced
* " bv interaction. For this case, ac-

cordingly, vi cp — vi cp’ . When, <-
therefore; ^ <p' -, as is the case ^
when the bodies are abandoned
to the acceleration of gravity, we have, in the'

of equilibrium, also vi = vi. It is obviously imma-
terial whether we make the bodies act on each: other
directly by means of a string, or by means of a string-
passed over a pulley, or by placing them on the two
pans of a balance.
ured by weight is evident from our definition without
recourse or reference to “ quantity of matter. ”

7. As soon therefore as we, our attention being The general

drawn to the fact by experience, have perceived in bod- this view,

ies the existence of a special property determinative of
accelerations, our task with regard to it ends with the
recognition and unequivocal designation of this fact.
Beyond the recognition of this fact we shall not get,
and every venture beyond it will only be productive of
obscurity. All uneasiness will vanish when once we
have made clear to ourselves that in the concept of
mass no theory of any kind whatever is contained, but
simply a fact of experience. The concept has hitherto
held good. It is very improbable, but not impossible,
that it will be shaken in the future, just as the concep-

what it had. With every revolution
in the direction of the hands of a
watch the vis viva of the system
would be increased. If C were the
smaller mass as compared with A,

reversing the motion would produce the same result.But a constant increase of vis viva of this kind is at
decided variance with our experience.

5. The concept of mass when reached in the man-

vi — >m
9

Fig. 142.

The new
concept of
mass in-
volves im- . . r . . . . .piicitiy the enunciation ot the principle of reaction.principle of
reaction.

The fact that mass can be meas-ner just developed renders unnecessary the special
In the con-

cept of mass and the principle of reaction, as we have
stated in a preceding page, the same fact is form-ulated ; which is redundant.

«

If two masses 1 and 2
act on each other, our very definition of mass asserts
that they impart to each other contrary accelerations
which are to each other respectively

6. The fact that
as 2 : 1.

mass can be measured by weight,
where the acceleration of gravity is invariable, can also
be deduced from our definition of Wemass.
sensible at once of any increase or diminution of
sure, but this feeling affords us only a very inexact and
indefinite measure of magnitudes of
exact, serviceable measure of pressure springs from
the observation that every pressure is replaceable by

are
a pres-

pressure. An
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tion of a constant quantity of heat, which alsoon experience, was modified by new experiences.
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rested

“ equality, in order that they may measure by a truer

“ time the celestial motions. It may be that there is
equable motion, by which time can accurately be

All motions can be accelerated and re-
the flow of absolute time cannot be

changed. Duration, or the persistent existence of
whether motions be swift

VI.
“ no

“ measured,

“ tarded. But

NEWTON S VIEWS OF TIME, SPACE, AND MOTION.
i. In a scholium which he appends immediately tohis definitions, Newton presents his views regardingtime and space— views which we shall now proceed toexamine more in detail. We shall literally cite, to thisend, only the passages that are absolutely necessarx.- -to the characterisation of Newton’s yiey/s.“ So far,

t i

“ things, is always the same,
“ or slow or null.”

2. It would appear as though Newton in the re- Discussion. of Newton’s
marks here cited still stood under the influence of the view of

time.
mediaeval philosophy, as though he had grown unfaith-
ful to his resolve to investigate only actual facts. When
we say a thing A changes with the time, we mean sim-
ply that the conditions that determine a thing A depend
on the conditions that determine another thing B. The
vibrations of a pendulum take place in time when its
excursion depends on the position of the earth. Since,
however, in the observation of the pendulum
not under the necessity of taking into account its de-
pendence on the position of the earth, but may com-
pare it with any other thing (the conditions of which
of course also depend on the position of the earth), the
illusory notion easily arises that all the things with
which we compare it are unessential. Nay, we may,
in attending to the motion of a pendulum, neglect en-
tirely other external things, and find that for every po-
sition of it our thoughts and sensations are different.
Time, accordingly, appears to be some particular and
independent thing, on the progress of which the posi-
tion of the pendulum depends, while the things that
we resort to for comparison and choose at random ap-
pear to play a wholly collateral part,

not forget that all things in the world are connected
another and depend on one another, and that

1Newton’s
views of mv object has been to explain the sensestime, space, -‘in which certain words little known are to be used inaflGJ??Otion.

“ the sequel. Time, space, place, and motion, being“ words well known to everybody, I do not define. Yet“ it is to be remarked, that the vulgar conceive these“ quantities only in their relation to sensible objects.“ And hence certain prejudices with respect to them“ have arisen, to remove which it will be convenient to“ distinguish them into absolute and relative,“ apparent, mathematical and

The
con
mas
volv
plie
prim
react

we are
true and

common, respectively.“ I. Absolute, true, and mathematical time, of it-“ self , and by its own nature, flows uniformly“ out regard to anything external.
‘‘duration.

Absolute
and relative
time.

on, with-
it is also called

“ Relative, apparent, and common time, i“ sensible and external
is some

of absolute time (dura-tion), estimated by the motions of bodies, whether“ accurate or inequable, and is commonly employed“ in place of true time ; as an hour, a day, a month,“ a year. . .

measure

“ The natural days, which, commonly, for the pur-“ pose of the measurement of time, are heldare in reality unequal.
But we mustas equal.

Astronomers correct this in-
< e

with one
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x

resented under the conception of a number,
are

more comp

best rep-
//, of quantities that satisfy a lesser number, //', of equa-

tions. Were n= n , nature would be invariable. Were

n = n — 1 , then with one quantity all the rest would

If this latter relation obtained in

could be reversed the moment this had been

single motion.

Iwe ourselves and all our thoughts are also a part of
It is utterly beyond our power to measure the

changes of things by time. Quite the contrary, time
is an abstraction, at which
changes of things ; made because

;neral
iscussion

of the con- nature,
cept of
time.

arrive by means of thewe na-
be controlled.

we are not restricted
to any one definite measure, all being interconnected.
A motion is termed uniform in which equal increments
of space described correspond to equal increments of
space described by some motion with which we form a
comparison, as the rotation of the earth,

may, with respect to another motion, be uniform.
the question whether a motion is in itself uniform, is
senseless.

ture, time But the
accomplished with any

true state of things is represented by a different rela-

The quantities in question are
another ; but they retain

freedom, than in the

one

tion between n and ri.
partially determined by

a greater indeterminateness, or
last cited. We ourselves feel that we are such a

partially determined, partially undetermined element

of nature. In so far as a portion only of the changes

us and can be reversed by us,

one
A motion

. But
case

With just as little justice, also, may we
speak of an “ absolute time ” — of a time independent of
change. This absolute time can be measured by
parison with no motion ; it has therefore neither a
practical nor a scientific value ; and
in saying that he knows aught about it.
metaphysical conception.

It would not be difficult to show from the points of
of psychology, history, and the science of lan-

guage (by the names of the chronological divisions),
that we reach our ideas of time in and through the in-
terdependence of things on one another. In these ideas
the profoundest and most universal

of nature depends on
corn- irreversible, and the time that

does time appear to us

is past as irrevocably gone.
We arrive at the idea of time, — to express it briefly Some psy-

• . chological

and popularly,— by the connection of that which îsconsidera-
. , . , . f

. tions.
contained 111 the province of our memory with that

which is contained in the province of our sense-percep-
tion. When we say that time flows on in a definite di-
rection or sense, we mean that physical events gene-
rally (and therefore also physiological events) take

place only in a definite sense.* Differences of tern-
electrical differences, differences of level gen-

less and not

no one is justified
It is an idle

Furtherelu-
cidation of
the idea. View

connection of things
is expressed. When a motion takes place in time, it
depends on the motion of the earth. This is not refuted
by the fact that mechanical motions can be reversed.
A number of variable quantities may be so related that
one set can

perature,
erally, if left to themselves, all grow

If we contemplate two bodies of different
greater.
temperatures, put in contact and left wholly to them-

selves, we shall find that it is possible only for greater

differences of temperature in the field of memory tosuffer a change without the others being
Nature behaves like a machine.affected by it.

individual parts reciprocally determine
But while in a machine the position of one part de-
termines the position of all the other parts, in nature

The
one another. * Investigations concerning the physiological nature of the sensations of

time and space are here excluded from consideration.
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“ are distinguished from one another, are centrifugal
“ forces, or those forces in circular motion which pro-
“ duce a tendency of recession from the axis.
“ a circular motion which is purely relative no such
4 ‘forces exist ; but in a true and absolute circular
“ tion they do exist, and

exist with lesser ones in the field of sense-perception,
and not the reverse,

pressed a peculiar and profound connection of things.
To demand at the present time a full elucidation of this
matter, is to anticipate, in the manner of speculative
philosophy, the results of all future special investiga-

tion, that is a perfect physical science. (Compare Ap-
pendix, III.)

3. Views similar to those concerning time, are de-
veloped by Newton with respect to space and motion.

We extract here a few passages which characterise his

position.

“ II. Absolute space, in its own nature and with-
“ out regard to anything external, always

“ ilar and immovable.
Relative space is some

“ measure of absolute space,

“ mine by its position with respect to other bodies,

“ and which is commonly taken for immovable [abso-

In all this there is simply ex-
For in

mo-
greater or less according

“ to the quantity of the [absolute] motion.
If a bucket, suspended by a long The rota-

i • r , . ting bucket.cord, is so often turned about that finally the cord is

“ strongly twisted, then is filled with water, and held
“ at rest together with the water ; and afterwards by
“ the action of a second force, it is suddenly set whirl-
“ ing about the contrary way, and continues, while the
“ cord is untwisting itself, for some time in this mo-
“ tion ; the surface of the water will at first be level,
“ just as it was before the vessel began to move ; but,
“ subsequently, the vessel, by gradually
“ ing its motion to the water, will make it begin sens-
“ ibly to rotate, and the water will recede little by little
“ from the middle and rise up at the sides of the ves-

sel, its surface assuming a concave form.
“ périment I have made myself .)

“ . . . . At first, when the relative motion of the. and real“ ter in the vessel was greatest, that motion produced motion.
“ no tendency whatever of recession from the axis ; the
“ water made no endeavor to move towards the cir-
“ cumference, by rising at the sides of the vessel, but
“ remained level, and for that reason its true circular
“ motion had not yet begun.
“ the relative motion of the water had decreased, the
“ rising of the water at the sides of the vessel indicated
“ an endeavor to recede from the axis ; and this en-
“ deavor revealed the real circular motion of the
“ continually increasing, till it had reached its greatest

are

“ For instance.I ( (JNewton’s
views of
space and
motion.

1

remains sim-

movable dimension or
which our senses deter-

< e

com municat-

“ lute] space . . . .
“ IV. Absolute motion is the translation of a body

“ from one absolute place* to another absolute place ;

“ and relative motion, the translation from one relative

( e (This ex-• •t

Wa- Relative

“ place to another relative place . . . .
“ . . . . And thus we use, in common

“ of absolute places and motions, relative ones ; and
But in physical

should abstract from the senses.

affairs, instead
Passages
from his
works.

“ that without any inconvenience.
disquisitions, we

“ For it may be that there is no body really at rest, to

“ which the places and motions of others can be re-

< <

But afterwards, when

“ ferred . . . .
“ The effects by which absolute and relative motions

water,to Newton, is not its position,
relative.— Trans.* The place, or locus of a body, according

but the part of space which it occupies. It is either absolute or

\

I V
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“ point, when relatively the water was at rest in the
vessel . . . .

“ It is indeed a matter of great difficulty to discover
“ and effectually to distinguish the true from the ap-
“ parent motions of particular bodies ; for the parts of
“ that immovable space in which bodies actually move,
“ do not come under the observation of our senses.

“ Yet the case is not altogether desperate ; for there
ingabsolute ^ * exist to us certain marks, abstracted partly
from rela- “ from the apparent motions, which are the differencestive motion.

“ of the true motions, and partly from the forces that
“ are the causes and effects of the true motions. If ,
“ for instance, two globes, kept at a fixed distance
“ from one another by means of a cord that connects
“ them, be revolved about their common centre of
“ gravity, one might, from the simple tension of the
“ cord, discover the tendency of the globes to recede
“ from the axis of their motion, and on this basis the
“ quantity of their circular motion might be computed.
“ And if any equal forces should be simultaneously
“ impressed on alternate faces of the globes to augment
“ or diminish their circular motion, we might, from
“ the increase or decrease of the tension of the cord,
“ deduce the increment or decrement of their motion ;
“ and it might also be found thence on what faces
“ forces would have to be impressed, in order that the
“ motion of the globes should be most augmented ;
“ that is, their rear faces, or those which, in the cir-

“ cular motion, follow. But as soon as we knew which
“ faces followed, and consequently which preceded, we
“ should likewise know the direction of the motion.
“ In this way we might find both the quantity and the
“ direction of the circular motion, considered even in
“ an immense vacuum, where there was nothing ex-

eternal or sensible with which the globes could be( (

“ compared . . .
A . It is scarcely necessary to remark that in the re- Thcpredi-

flections here presented Newton has again acted con- Newton. . are not the
trary to his expressed intention only to investigate actual expression

No one is competent to predicate things about facts.facts.
absolute space and absolute motion ; they are pureNewton’s

criteria for things of thought, pure mental constructs, that cannot
be produced in experience. All our principles of me-
chanics are, as we have shown in detail, experimental
knowledge concerning the relative positions and mo-
tions of bodies. Even in the provinces in which they
are now recognised as valid, they could not, and were
not, admitted without previously being subjected to
experimental tests. No one is warranted in extending
these principles beyond the boundaries of experience.
In fact, such an extension is meaningless, as no one
possesses the requisite knowledge to make use of it.

Let us look'at the matter in detail. When we say that Detailed

a body K alters its direction and velocity solely through matter,

the influence of another body Kwe have asserted
a conception that it is impossible to come at unless
other bodies A, B, C . . . . are present with reference
to which the motion of the body K has been estimated.
In reality, therefore, we are simply cognisant of a re-
lation of the body K to A, B, C . . . . If now we sud-
denly neglect A, B, C . . . . and attempt to speak of
the deportment of the body K in absolute space, we
implicate ourselves in a twofold error. In the first
place, we cannot know how K would act in the ab-
sence of A, B, C . . . .\ and in the second place, every
means would be wanting of forming a judgment of the
behaviour of K and of putting to the test what we had

r
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icated,— which latter therefore would be bereft of
. scientific significance.
Two bodies K and K\which gravitate toward each

îesof other, impart to each other in the direction of theirspace play-
in the de-
terminat ion . . . . .of mot ion, their masses m, m . In this proposition is contained,

not only a relation of the bodies K and K' to

relations to the bodies placed in it we have at present

no adequate knowledge. In itself such a state of things

would not belong to the impossibilities. It is known,
from recent hydrodynamical investigations, that a rigid
body experiences resistance in a frictionless fluid only

True, this result is derived

Ç< The par t
which the
bodies of

line of junction accelerations inversely proportional to
when its velocity changes.
theoretically from the notion of inertia ; but it might,
conversely, also be regarded as the primitive fact from

which we have to start. Although, practically, and at

present, nothing is to be accomplished with this

ception, we might still hope to learn more in the future
concerning this hypothetical medium ; and from the

point of view of science it would be in every respect

a more valuable acquisition than the forlorn idea of
reflect that we cannot abol-

one an-
other, but also a relation of them to other bodies. For
the proposition asserts, not only that K and K ' suffer
with respect to one another the acceleration designated
by n ( in -f - m / r 2 ), but also that K experiences the ac-
celeration — K i l l

* con-

/r 2 and K' the acceleration + ;£;;//r 2

in the direction of the line of junction ; facts which
be ascertained only by the presence of other bodies.

The motion of a body K

can

can only be estimated by
reference to other bodies A, B, C . . . . But since we
always have at our disposal a sufficient number of
bodies, that are as respects each other relatively fixed,
or only slowly change their positions, we are, in such
reference, restricted to

absolute space. When
ish the isolated bodies A, B, C . . . ., that is, cannot

determine by experiment whether the part they play is

fundamental or collateral, that hitherto they have been
the sole and only competent means of the orientation
of motions and of the description of mechanical facts,
it will be found expedient provisionally to regard all
motions as determined by these bodies.

5. Let us now examine the point on which New- Cri t ica l
. . . . examina-

ton, apparently with sound reasons, rests his distinc- t ion of

tion of absolute and relative motion. If the earth is dis t inc t ion
.. . . . . of absolute

affected with an absolute rotation about its axis, cen- f rom rela-
t ive mot ion.

we

one definite body and can
alternately leave out of account now this one and
that one.

no
now

In this way the conviction arose that these
bodies are indifferent generally.

It might be, indeed, that the isolated bodies A, B,
a medium C . . . . play merely a collateral rôle in the determina-in space de- #terminative tion of the motion of the body K, and that this motion

is determined by a medium in which K exists. . I11 such
a case we should have to substitute this medium for
Newton’s absolute

The hy-
pothes is of

trifugal forces are set up in the earth : it assumes an
oblate form, the acceleration of gravity is diminished
at the equator, the plane of Foucault’s pendulum ro-

All these phenomena disappear if
the earth is at rest and the other heavenly bodies are
affected with absolute motion round it, such that the
same relative rotation is produced. This is, indeed, the
case, if we start ab initio from the idea of absolute space.

space. Newton certainly did not
entertain this idea. Moreover, it is easily demonstrable
that the atmosphere is not this motion-determinative
medium.

tates, and so on.r
We should, therefore, have to picture to

ourselves some other medium, filling, say, all space,
with respect to the constitution of which and its kinetic
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JBut if we take our stand on the basis of facts, we shall
find we have knowledge onlyt)f relative spaces and mo-
tions. Relatively, not considering the unknown and
neglected medium of space, the motions of the uni-
verse are the same whether we adopt the Ptolemaic or
the Copernican mode of view. Both views are, indeed,
equally correct ; only the latter is more simple and more
practical. The universe is not twice given, with an

an earth in motion ; but only once,
with its relative motions, alone determinable.

of a body referred to terrestrial objects.
of such brief duration and extent, that the light of

. this-view.
take into account the earth s

Most terres- The law ot
inertia in

trial motions are
it is wholly unnecessary to

rotation and the changes of its progressive velocity with
This consideration is

respect to the celestial bodies,

found necessary only in the case of projectiles cast

great distances, in the case of the vibrations of Fou-

cault’s pendulum, and in similar instances. When now

Newton sought to apply the mechanical principles dis-
covered since Galileo’s time to the planetary system,
he found that, so far as it is possible to form any es-
timate at all thereof, the planets, irrespectively of dy-

their direction and

earth at rest and
It is,

accordingly, not permitted us to say how things would
be if the earth did not rotate. We may interpret the
one case that is given us, in different ways. If, how-
ever, we so interpret it that we come into conflict with
experience, our interpretation is simply wrong,

principles of mechanics can, indeed, be so conceived,
that even for relative rotations centrifugal forces arise.

Newton’s

namic effects, appear to preserve
velocity with respect to bodies of the universe that are

very remote and as regards each other apparently fixed,

as bodies moving on the earth do with re-The
the same
spect to the fixed objects of the earth. The comport-

of terrestrial bodies with respect to the earth isInterpreta-
tion of the

experiment with the rotating vessel of
experiment water simply informs us, that the relative rotation ofwith the _
rotating
bucket of
water.

ment
reducible to the comportment of the earth with respect

to the remote heavenly bodies,

that we knew more of moving objects than this their

last - mentioned, experimentally - given comportment

with respect to the celestial bodies, we

ourselves culpable of a falsity. When, accordingly, we

say, that a body preserves unchanged its direction and

velocity in space, our assertion is nothing more or less

than an abbreviated reference to the eiitire universe.
The use of such an abbreviated expression is permit-
ted the original author of the principle, because he

difficulties stand in the

the water with respect to the sides of the vessel pro-
duces no noticeable centrifugal forces, but that such
forces are produced b}' its relative rotation with respect
to the mass of the earth and the other celestial bodies.
No one is competent to say how the experiment would
turn out if the sides of the vessel increased in thickness
and mass till they were ultimately several leagues thick.
The one experiment only lies before us, and our busi-
ness is, to bring it into accord with the other facts
known to us, and not with the arbitrary fictions of
imagination.

If we were to assert

1

should render

\

our
knows, that as things are no

of carrying out its implied directions.6. We can have But nodoubts concerning the signifi-
cance of the law of inertia if we bear in mind the man -
ner in which it was reached.

no way
remedy lies in his power, if difficulties of the kind men-
tioned present themselves ; if, for example, the re-
quisite, relatively fixed bodies are wanting.To begin with, Galileo

discovered the constancy of the velocity and direction

J
I
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c;pen at once if we construct through u as vertex cones The expres-
3 . sion of the
that cut out different portions of space, and set up the law of iner-
condi t ion with respect to the masses of these separate of th is re-

la t ion.

7. Instead, now, of referring a moving body K to
space, that is to say to a system of coordinates, let us
view directly its relation to the bodies of the universe,
by which alone such a system of coordinates can be
determined. Bodies very remote from each other, mov-
ing with constant direction and velocity with respect
to other distant fixed bodies, change their mutual dis-
tances proportionately to the time. We may also say,
All very remote bodies— all mutual or other forces ne-
glected— alter their mutual distances proportionately
to those distances. Two bodies, which, situated at a
short distance from one another, move with constant
direction and velocity with respect to other fixed bod-
ies, exhibit more complicated relations. If we should
regard the two bodies as dependent on one another,
and call r the distance, / the time, and a a constant
dependent on the directions and velocities, the formula
would be obtained : d2r/dt2 = (1/r ) [a2 — («dr/dt)2 ~\ .
It is manifestly much simpler and clearer to regard the
two bodies as independent of each other and to con-
sider the constancy of their direction and velocity with
respect to other bodies.

Instead of saying, the direction and velocity of a
mass in space remain constant, we may also employ
the expression, the mean acceleration of the mass\x
with respect to the masses m, m\ m". . . . at the dis-
tances r, r , r” . . . . is = 0, or d2 {2mr/2vi)/dt2 — 0.
The latter expression is equivalent to the former, as
soon as we take into consideration a sufficient number
of sufficiently distant and sufficiently large masses.
The mutual influence of more proximate small masses,
which are apparently not concerned about each other,
is eliminated of itself. That the constancy of direction
and velocity is given by the condition adduced, will be

The rela-
t ion of the
bodies of
the uni-
verse to
each other. We may put, indeed, for the entire space

But the
portions.
encompassing //, d2 {2mr/2vi) /dt2 = 0.
equation in this case asserts nothing with respect to the
motion of //, since it holds good for all species of mo-
tion where is uniformly surrounded by an infinite
number of masses. If two masses /x ± 1 /u.2 exert on each
other a force which is dependent on their distance r,
then d2r/dt 2 — (/ -f - /c,)/(?'). But, at the same time,
the acceleration of the centre of gravity of the two
masses or the mean acceleration of the mass-system
with respect to the masses of the universe (by the prin-
ciple of reaction) remains = 0 ; that is to say,

2m r2
2m

2mrr
dt 2 2vi

d 2
= 0.+

When we reflect that the time-factor that enters The neces-. . . . . si ty in sci-into the acceleration is nothing more than a quantity ence of a

that is the measure of the distances (or angles of rota- t ionof the

tion) of the bodies of the universe, we see that even in *

the simplest case, in which apparently we deal with
the mutual action of only two masses, the neglecting
of the rest of the world is impossible. Nature does not
begin with elements, as we are obliged to begin with
them. It is certainly fortunate for us, that we can,
from time to time, turn aside our eyes from the over-
powering unity of the All, and allow them to rest on
individual details. But we should not omit, ultimately
to complete and correct our views by a thorough con-

sideration of the things which for the time being we
left out of account.

8. The considerations just presented show, that it

-
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by it which conformably to the remarks above we may
replace by an expression of the form d 2r /dp2. By the
force-relation, therefore, a departure of the /'-ordinate
from the mean of the adjacent ordinates is produced,
which would not exist if the supposed force-relation
did not obtain. This intimation will suffice here.

g. We have attempted in the foregoing to give the Character
,... r . J . of the new

law of inertia a different expression from that in ordi- expression. . ... , rr for the law
This expression will, so long as a sum- of inertia.

The law of is not necessary to refer the law of inertia to a special
inertia does
not involve absolute space. On the contrary, it is perceived that
space. the masses that in the common phraseology exert forces

on each other as well as those that exert none, stand
with respect to acceleration in quite similar relations.
We may, indeed, regard all masses as related to each
other. That accelerations play a prominent part in the
relations of the masses, must be accepted as a fact of
experience ; which does not, however, exclude attempts
to elucidate this fact by a comparison of it with other
facts, involving the discovery of new points of view.
In all the processes of nature the differences of certain

quantities u play a de-
terminative rôle. Differ-
ences of temperature, of
potential function, and so
forth, induce the natural
processes, which consist
in the equalisation of

these differences. The familiar expressions d 2 u/dx 2,
d 2 u/ dy 2, d 2 u/dz2, which are determinative of the
character of the equalisation, may be regarded as the
measure of the departure of the condition of any point
from the mean of the conditions of its environment—
to which mean the point tends. The accelerations of
masses may be analogously conceived. The great dis-
tances between masses that stand in no especial force-
relation to one another, change proportionately to each
other. If we lay off, therefore, a certain distance p as
abscissa, and another r as ordinate, we obtain a straight
line. (Fig. 143.) Every /'-ordinate corresponding to. a definite p-value represents, accordingly, the mean of
the adjacent ordinates. If a force-relation exists be-
tween the bodies, some value d 2rjdt 2 is determined

(

nary use.
cient number of bodies are apparently fixed in space,

It is asaccomplish the same as the ordinary one.
easily applied, and it encounters the same difficulties.
In the one case we are unable to come at an absolute
space, in the other a limited number of masses only is
within the reach of our knowledge, and the summation
indicated can consequently not be fully carried out. It
is impossible to say whether the new expression would
still represent the true condition of things if the stars

to perform rapid movements among one another.
The general experience cannot be constructed from the
particular case given us. We must, on the contrary,
wait until such an experience presents itself. Perhaps
when our physico-astronomical knowledge has been
extended, it will be offered somewhere in celestial
space, where more violent and complicated motions
take place than in our environment. The most impor- The sim-r . ples t pr in-
tant result of our reflexions is, however, that precisely cipies of

. . - " mechanics
the apparently simplest mechanical principles are of a very are of a

77 . 7 r 7 j highly com-complicated character, that these principles arc founded on pl ica tedx . . tureandare
uncompleted experiences, nay on experiences that never can ai l der ived

J
‘ 77 * 7 7 7 r fr°m expe-

be fully completed, that practically, indeed, they are suf- r ience.
ficiently secured, in view of the tolerable stability of our
environment, to serve as the foundation of mathematical
deduction, but that they can by no means themselves be re-

1

\r\r
~~ P P

Fig- 143- were
Natural
processes
consist in
the equali-
sation of
the differ-
ences of
quantities.

na-

I
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2. Definition 1 is, as has already been set forth, a Criticism of

pseudo-definition. The concept of mass is not made Definitions,
clearer by describing mass as the proHur* ^ th^ vohirr ~

gardai as mathematically established truths but
principles that not only admit of constant
rienec

only as
control by expe-

perception is valu-_ _ is propitious to the advancement of
(Compare Appendix, IV.)

but actually require it. This
able in that it i
science TIIE PRINCIPLES OF DYNAMICS. 239

“ Definition V. A centripetal force is any force by

“ which bodies are drawn or impelled towards, or te n

“ in any way to reach, some point as centre.
“ Definition VI. The absolute quantity of a cenuri rc scias-

, . . . . . . 1 T I - s i t i e d a s a b-
petal force is a measure 01 it increasing and dim in lute, ac-

“ ishing with the efficacy of the cause that propagate • mov- ’

“ it from the centre through the space round about.

“ Definition VII. The accelerative quantity of

“ centripetal force is the measure of it proportional

“ the velocity which it generates in a given time.

“ Definition VIII. The moving quantity of a ce i

“ tripetal force is the measure of it proportional to 11

“ motion [See Def. 11.] which it generates in a give

“ time.

VII.

SYNOPTICAL CRITIQUE OF THE 4»
NEWTONIAN ENUNCIATIONS.

Newton’s
Definitions. i. Now that we have discussed the details withsufficient particularity, we may pass again under re-view the form and the disposition of the Newtonianenunciations. Newton premises to his work severaldefinitions, following which he gives the laws oftion. We shall take up the former first.

“ Definition /. The

r \ i 1l

! mg.

11smo-

Mass. quantity of any matter is the“ measure of it by its density and volume conjointly.. . . This quantity is what I shall understand by the“ term mass or body in the discussions to follow.
“ ascertainable from the weight of the body i
“ tion. Fori have found, by pendulum-experiments
“ of high precision, that the mass of a body is propor-“ tional to its weight ; as will hereafter be shown.

“ Definition II. Quantity of motion is the measure“ of it by the velocity and
“ jointly.

i e

ï
It is

in ques- “ The three quantities or measures of * “ 'ce thus d is
“ tinguished, may, for brevity’s sake, *ast:alled abîso
“ lute, accelerative, and moving forces, being, for dis
“ tinction’s sake, respectively referred to the centre o
“ force, to the places of the bodies, and to the bodies
“ that tend to the centre : that is to say, I refer moving
“ force to the body, as being an endeavor of the whole
“ towards the centre, arising from the collective en

“ deavors of the several parts ; accelerative force to the
“ place of the body, as being a sort of efficacy originat-
“ ing in the centre and diffused throughout all the sev-
“ eral places round about, in moving the bodies that
“ are at these places ; and absolute force to the centre,

as invested with some cause, without which moving
“ forces would not be propagated through the space

about ; whether this latter pause be some cen-
% (such as is a loadstone in a centre of mag-

or the earth in the centre of the forr^ - c

n»c rela-
of the
- thus

shedÎU1

Quantity of
motion,
inertia,
force, and
accelera-
tion.

Iquantity of matter con- u“ Definition III. The resident force [vis insiia, i. e.“ the inertia] of matter is a power of resisting, by“ which every body, so far as in it lies, x“ its state of rest or of uniform motion i
“ line.

perseveres in
in a straight

“ Defijiition IV. An impressed force is any action“ upon a body which changes, or tends to change, its“ state of rest, or of uniform motion in a straight line.
( c

..'TTf-yr--
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set forth, a Criticism of
. _ Newton’s
IS not made Definitions.2. Definition 1 is, as has already been

pseudo-definition. The concept of mass is

clearer by describing mass as the product of the volume

into the density, as density itself denotes simply the

mass of unit of volume. The true definition of mass

be deduced only from the dynamical relations of
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y I lished truths but only as1

'
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Ï“ physical causes and
si der. seats I do not in this place a mode

Defini-
bodies.

To Definition 11, which simply enunciates

of computation, no objection is to be made,

tion HI (inertia), however, is rendered superfluous by

Definitions iv-vm of force, inertia being included and

given in the fact that forces are accelerative.

Definition iv defines force as the cause of the accel-

eration, or tendency to acceleration, of a body. The

latter part of this is justified by the fact that in the

also in which accelerations cannot take place,

that answer thereto,
etc. of bodies occur.

of an acceleration towards a definite centre is

in Definition v as centripetal force, and is distinguished

in vi, vu, and vm as absolute, accelerative, and mo-
It is, we may say, a matter of taste and of form

shall embody the explication of the idea

in several definitions. In point of
to no ob-

( e con-
IT h e d i s- “ Accelerating force, t h e r e f o r e, is to moving force,

t i n c t i o n . . . . . .
^

m a t h e m a t- “ as> velocity is to quantity of motion, borphysical, “ of motion arises from the velocity and the quantity“ of matter ; and moving force arises from the accel-erating force and the same quantity of matter ; the“ s(um of the effects of the accelerative fuiue on me sev-“ eral particles of the body being the motive force of“ the whole. Hence, near the surface of the earth,“ where the accelerative gravity or gravitating force is“ iiji all bodies the same, the motive force of gravity ortihe weight is as the body [mass]. But if we ascend“ to higher regions, where the accelerative force of“ gravity is the weight will be equally diminished,“ always reim tiing proportional conjointly to the mass“ ahd the accelerative force of gravity. Thus, in those“ regions where the accelerative force of gravity is half“ ^is great, the weight of a body will be diminished by“ çme- half. Further, I apply the terms accelerative and“ motive in one and the same sense to attractions“ to impulses. I employ the expressions attraction, i“ pulse, or propensity of any kind towards a centre,“ promiscuously and indifferently, the one for the other;“ considering those forces not in a physical“ mathematically. The reader, therefore,“ infer from any expressions of this kind“ use, that I take

»
quantity

Newton’s
Definitions. ;

cases
other attractions
sion and distension

as the compres-
The cause

is definedMass.
t i

tive.
whether we
of force in one or in

_
principle the Newtonian definitions are open

jections.
3. The Axioms or Laws

which Newton enunciates l1

u Law I. Every body perseveres
“ or of uniform motion in a straight line, except in so

“ far as i t is compelled to change that state by im-

Quan
moti (

inert
force
accel
tion.

of Motion then follow, of Newton's

Motion.and
lm-

three :
in its state of rest

sense, but
“ pressed forces.”

“ Law II. Change of motion [i. e. of momentum] is

“ proportional to the moving force impressed, and takes
niust not

that Iupon me to explain the kind or the“ mode of an action, or the causes or the physical rea-“ son thereof, or that I attribute forces in“ physical sense, to centres (which“ ical

\may

\!a true or
only mathemat-any time I happen to say that

ï » . .

are rpoints), when at
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tion of the law enunciated in corollary First,
maining corollaries, likewise, are simple deductions,
that is, mathematical consequences, from the concep-
tions and laws that precede.

5. Even if we adhere absolutely to the Newtonian
points of view, and disregard the complications and in-
definite features mentioned, which are not removed

“ place in the direction of the straight line in which

“ such force is impressed. ”
“ Law III. Reaction is always equal and opposite

“ to action ; that is to say, the actions of two bodies
upon each other are always equal and directly op-

The re-
ii

i i

“ posite. ”
Newton appends to these three laws a number of

Corollaries.
cipie of the parallelogram of forces ; the third to the
quantity of motion generated in the mutual action of
bodies ; the fourth to the fact that the motion of the
centre of gravity is not changed by the mutual action
of bodies ; the fifth and sixth to relative motion. .

We readily perceive that Laws 1 and
tained in the definitions of force that precede. Ac-
cording to the latter, without force there is no accel-
eration, consequently only rest or uniform motion in a

straight line. Furthermore, it is wholly unnecessary
tautology, after having established acceleration as the

of force, to say again that change of motion is

but merely concealed by the abbreviated designations
“ Time ” and “ Space,” it is possible to replace New-
ton’s enunciations by much more simple, methodically
better arranged, and more satisfactory propositions.
Such, in our estimation, would be the following :

a. Experimental Propositio7i.

The first and second relate to the prin-

/1
!

Bodies set opposite Proposed. . substitu-each other induce in each other, under certain circum- tionsfor
tlie New-stances to be specified by experimental physics, con- tonian laws
and delini-

ii are con-Criticism of
Newton’s
laws of
motion.

4-
trary accelerations in the direction of their line of junc- Sons,

tion. (The principle of inertia is included in this.)
b. Defiiiition. The mass-ratio of any two bodies is

the negative inverse ratio of the mutually induced ac-
celerations of those bodies.measure

proportional to the force. It would have been enough
to say that the definitions premised were not arbitrary
mathematical ones, but correspond to properties of
bodies experimentally given. The third law apparently

But we have seen that it is

c. Experimental Propositio7i. The mass-ratios of *
bodies are independent of the character of the physical
states (of the bodies) that condition the mutual accel-
erations produced, be those states electrical, magnetic,
or what not ; and they remain, moreover, the same,
whether they are mediately or immediately arrived at.

d. Experimental Proposition. The accelerations
which any number of bodies A, Py C . . . . induce in a
body P C, are independent of each other. (The principle
of the parallelogram of forces follows immediately from
this.)

US
Ot
er

contains something new.
unintelligible without the correct idea of mass, which
idea, being itself obtained only from dynamical expe-

rc
ce

>n.

rience, renders the law unnecessary.
The first corollary really does contain something

But it regards the accelerations determined in
a body K by different bodies M, N, P as self-evidently
independent of each other, whereas this is precisely
what should have been explicitly recognised as a fact
of experience. Corollary Second is a simple applica-

The corol-
laries to
these laws. 11ew.

e. Definition. Moving force is the product of the
mass-value of a body into the acceleration induced in
that body.

r
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Then the remaining arbitrary definitions of the al-
momentum,,, “ vis viva,” and

the like, might follow. But these are by no means in-
dispensable. The propositions above set forth satisfy
the requirements of simplicity and parsimony which,
on economico-scientific grounds, must be exacted of
them. They are, moreover, obvious and clear ; for no
doubt can exist with respect to any one of them either
concerning its meaning or its source ; and we always
know whether it asserts an experience or an arbitrary
convention.

inquiries regarding the right by which he holds each The

post of vantage lie has won. The magnitude of thememsof
problem to be solved leaves no time for this. But at the light of

a later period, the case is different. Newton might research*
111

well have expected of the two centuries to follow that
they should further examine and confirm the founda-
tions of his work, and that, when times of greater scien-
tific tranquillity should come, the principles of the sub-
ject might acquire an even higher philosophical in-
terest than all that is deducible from them. Then prob-
lems arise like those just treated of, to the solution of
which, perhaps, a small contribution has here been
made. We join with the eminent physicists Thomson
and Tait, in our reverence and admiration of Newton.
But we can only comprehend with difficulty their opin-
ion that the Newtonian doctrines still remain the best
and most philosophical foundation of the science that
can be given.

Extent and
character •
of the pro- gebraical expressions
posed sub-
stitutions.

( <

6. Upon the whole, we may say, that Newton dis-
ments of cemed in an admirable manner the concepts and princi-
Newton
from the
point of ..
view of his ther built upon,
time.

The

pies that were sufficiently assured to allow of being fur-
It is possible that to some extent he

forced by the difficulty and novelty of his subject,
in the minds of the contemporary world, to great am-
plitude, and, therefore, to a certain disconnectedness
of presentation, in consequence of which one and the

property of mechanical processes appears several
To some extent, however, he was,

as - it is possible to prove, not perfectly clear himself
concerning the import and especially concerning the

of his principles. This cannot, however, ob-
scure in the slightest his intellectual greatness. He
that has to acquire a new point of view naturally can-
not possess it so securely from the beginning as they
that receive it unlaboriously from him. He has done
enough if he has discovered truths on which future
generations can further build. For every new infer-

therefrom affords at once a new insight, a new

was

VIII.same
times formulated. RETROSPECT OF THE DEVELOPMENT OF DYNAMICS.

i. If we pass in review the period in which the de- The chief

velopment of dynamics fell,— a period inaugurated by discovery
6

of one greatGalileo, continued by Huygens, and brought to a close fact.'
by Newton, — its main result will be found to be the

source

perception, that bodies mutually determine in each
other accelerations dependent on definite spatial and
material circumstances, and that there are masses. The
reason the perception of these facts was embodied in
so great a number of principles is wholly an historical
one ; the perception was not reached at once, but slowly
and by degrees. In reality only one great fact was es-
tablished.

ence
control, an extension of our prospect, and a clarifica-
tion of our field of view. Like the commander of an
army, a great discoverer cannot stop to institute petty

Different pairs of bodies determine, inde-
pendently of each other, and mutually, in themselves,
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pairs of accelerations, whose terms exhibit a constant
ratio, the criterion and characteristic of each pair.

Not even men of the calibre of Galileo, Huygens,
greatesfin- and Newton were able to perceive this fact at once.
2oüid per- Even they could only discover it piece by piece, as it
ceive only
in frag-
ments.

the noting of the connection of certain determinative The form of
elements of the mechanical processes. The precise
tablishment of the form of this connection was rather
task for plodding research, which created the different ?cai orîgîn.
concepts and principles of mechanics. We can de-
termine the true value and significance of these prin-
ciples and concepts only by the investigation of their
historical origin. In this it appears unmistakable at
times, that accidental circumstances have given to the
course of their development a peculiar direction, which
under other conditions might have been very different.
Of this an example shall be given.

Before Galileo assumed the familiar fact of the de- Forexam-
pendence of the final velocity on the time, and put it to ieo’Æws
the test of experiment, he essayed, as we have already bodies"8

seen, a different hypothesis, and made the final velocity Slfcni*dif-
proportional to the space described. He imagined, by aie,entform*

course of fallacious reasoning, likewise already referred
to, that this assumption involved a self -contradiction.
His reasoning was, that twice any given distance of de-
scent must, by virtue of the double final velocity ac-
quired, necessarily be traversed in the same time as the
simple distance of descent. But since the first half is
necessarily traversed first, the remaining half will have
to be traversed instantaneously, that is in an interval
of time not measurable. Whence, it readily follows,
that the descent of bodies generally is instantaneous.

The fallacies involved in this reasoning are manifest.
Galileo was, of course, not versed in mental integra-
tions, and having at his command no adequate methods
for the solution of problems whose facts
degree complicated, he could not but fall into mistakes
whenever such cases were presented,

distance and t the time, the Galilean assumption reads

the nie-es- clianical
principles,a in the mainThis fact

is expressed in the law of falling bodies, in the special
law of inertia, in the principle of the parallelogram of
forces, in the concept of mass, and so forth. To-day,
no difficulty any longer exists in apprehending the unity
of the whole fact. The practical demands of communi-
cation alone can justify its piecemeal presentation in
several distinct principles, the number of which is really
only determined by scientific taste. What is more, a
reference to the reflections above set forth respecting
the ideas of time, inertia, and the like, will surely con-

that, accurately viewed, the entire fact has,
in all its aspects, not yet been perfectly apprehended.

The point of view reached has, as Newton expressly
states, nothing to do with the “ unknown causes ” of

That which in the mechanics of

vmce us

The results
reached
have noth-
ing to do
with the so- natural phenomena.
called
“ causes ” the present day is called force is not a something that
of phenom-

iatent t}ie natural processes, but a measurable,
actual circumstance of motion, the product of the mass

Also when we speak of the at-into the acceleration,

tractions or repulsions of bodies, it is not necessary to
think of any hidden causes of the motions produced.
We signalise by the term attraction merely an actually
existing resemblance between events determined by con-
ditions of motion and the results of our volitional im-

Galileo’s
reasoning
and its
errors.In both cases either actual motion occurs or,pulses.

when the motion is counteracted by some other circum- were in any
stance of motion, distortion, compression of bodies,
and so forth, are produced.

2. The work which devolved on genius here, was
If we call s the
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in the language of to-day ds/dt = as, from which fol-
lows s= A eat , where a is a constant of experience and
A a constant of integration. This is an entirely different
conclusion from that drawn by Galileo. It does not
conform, it is true, to experience, and Galileo would
probably have taken exception to a result that, as a
condition of motion generally, made different from 0
when t equalled 0. But in itself the assumption is by
no means .sy///1contradictory.

Let us suppose that Kepler had put to himself the

troducing the concepts mass (m) and force (/), where
p ^ mg, we obtain, by multiplying the three equations
by ///, the expressions viv=p t, ms == _ pt 2 /2, ps=
mv 2 /2— the fundamental equations of mechanics. Of
necessity, therefore, the concepts force and momentum
( mv ) appear more primitive than the concepts work ( ps')
and vis viva (jnv2 ). It is not to be wondered at, accord-
ingly, that, wherever the idea of work made its appear-

ance, it was always sought to replace it by the histor-
ically older concepts. The entire dispute of the Leib-
nitzians and Cartesians, which was first composed in
a manner by D'Alembert, finds its complete explana-
tion in this fact.

From an unbiassed point of view, we have exactly Justifica-
- . . . . p 1 . .a . .tion of this

the same right to inquire after the interdependence of view,

the final velocity and the time as after the interde-
pendence of the final velocity and the distance, and to
answer the question by experiment. The first inquiry
leads us to the experiential truth, that given bodies in
contraposition impart to each other in given times defi-
nite increments of velocity. The second informs us,
that given bodies in contraposition impart to each other
for given mutual displacements definite increments of
velocities. Both propositions are equally justified, and
both may be regarded as equally original.

The correctness of this view has been substantiated Exempiifi-
in our own day by the example of J. R. Mayer. Mayer, in modem
a modern mind of the Galilean stamp, a mind wholly
free from the influences of the schools, of his own in-
dependent accord actually pursued the last-named
method, and produced by it an extension of science
which the schools did not accomplish until later in a
much less complete and less simple form. For Mayer,
work was the original concept. That which is called

The suppo-
Kepier had same question. Whereas Galileo always sought after
made Gali-
leo’s re-
searches.

the very simplest solutions of things, and at once re-
jected hypotheses that did not fit, Kepler’s mode of pro-
cedure was entirely different. He did not quail before
the most complicated assumptions, but worked his way,
by the constant gradual modification of his original
hypothesis, successfully to his goal, as the history of
his discovery of the laws of planetary motion fully
shows. Most likely, Kepler, on finding the assumption
ds/dt = as would not work, would have tried a num-
ber of others, and among them probably the correct one
ds/dt=a ]/ s. But from this would have resulted an
essentially different course of development for the sci-
ence of dynamics.

It is only gradually and with great difficulty that
the concept of “ work ” has attained its present position
of importance ; and in our judgment it is to the above-
mentioned trifling historical circumstance that the diffi-

In such a
case the
concept
“ work ”
might have
been the
original

mechanics, culties and obstacles it had to encounter are to be as-
cribed. As the interdependence of the velocity and the
time was, as it chanced, first ascertained, it could not
be otherwise than that the relation v=^/ should appear
as the original one, the equation .9=gt * /2 as the next
immediate, and gs = v 2 /2 as a remoter inference. In-
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the other. Thus the Galileo- Newtonian ideas are culti-
vated with preference by the school of Poinsot, the
Galileo-Huygenian by the school of Poncelet.

4. Newton operates almost exclusively with the no- The impor-“ „ , ,
TT . r . . tance andtions of force, mass, and momentum. His sense ot the history of

value of the concept of mass places him above his pred
cessors and contemporaries. It did not occur to Galileo
that mass and weight were different things. Huygens,
too, in all his considerations, puts weights for
as for example in his investigations concerning the
centre of oscillation. Even in the treatise De Perçus-
sione (On Impact), Huygens always says “ corpus ma-
jus, ” the larger body, and “ corpus minus, ” the smaller
body, when he means the larger or the smaller mass.
Physicists were not led to form the concept mass till
they made the discovery that the same body can by the
action of gravity receive different accelerations. The
first occasion of this discovery was the pendulum-ob-
servations of Richer (1671-1673),— from which Huy-
gens at once drew the proper inferences,— and the
second was the extension of the dynamical laws to the
heavenly bodies. The importance of the first point may
be inferred from the fact that Newton, to prove the pro-
portionality of mass and weight on the same spot of the
earth, personally instituted accurate observations
pendulums of different materials (Principia. Lib. II,
Sect. VI, De Motu et Resistentia Corporum Funependu-lorufri). In the case of John Bernoulli, also, the first
distinction between mass and weight (in the Meditatio
de Natura Centri Oscillationis. Opera Omnia, Lausanne
and Geneva, Vol. II, p. 168) was made on the ground
of the fact that the same body can receive different
gravitational accelerations. Newton, accordingly, dis-poses of all dynamical questions involving the relations

250 251

work in the mechanics of the schools, he calls force.
Mayer's error was, that he regarded his method as the

only correct one.
3. We may, therefore, as it suits us, regard the time

of descent or the distance of descent as the factor de-
If we fix our attention on

The results
which flow
from it.

the New-e- tonian con-
cept of
mass.

terminative of velocity,

the first circumstance, the concept of force appears as
the original notion, the concept of work as the derived

If we investigate the influence of the second fact
first, the concept of work is the original notion,

the transference of the ideas reached in the observation
of the motion of descent to more complicated relations,
force is recognised as dependent on the distance be-

tween the bodies— that is, as a function of the distance,

f (r). The work done through the element of distance dr

is then /(;') dr. By the second method of investiga-

tion work is also obtained as a function of the distance,
know force only in the form

masses ;one.
In

F ( f ) ; but in this case we
d. F { f ) jdr— that is to say, as the limiting value of the

ratio : (increment of work)/(increment of distance.)
Galileo cultivated by preference the first of these
methods. Newton likewise preferred it. Huygens

pursued the second method, without at all restricting

himself to it. Descartes elaborated Galileo’s ideas after
But his performances are in-

significant compared with those of Newton and Huy-
and their influence was soon totally effaced. After

The prefer-
ences of the
different in- tWO
quirers.

a fashion of his own. on

gens,
Huygens and Newton, the mingling of the two spheres

of thought, the independence and equivalence of which
blunders andnot always noticed, led to

confusions, especially in the dispute between the Car-
and Leibnitzians, already referred to, concern-

variousare

tesians
ing the measure of force. In recent times, however, in-

quirers turn by preference now to the one and now to
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That the velocity of a body is determined byof several bodies to each other, by the help of the ideas
of force, mass, and momentum.

5. Huygens pursued a different method for the so-
lution of these problems. Galileo had previously dis-
covered that a body rises by virtue of the velocity ac-
quired in its descent to exactly the same height as that
from which it fell. Huygens, generalising the principle
(in his Horologium Oscillâtoriuvi ) to the effect that the
centre of gravity of any system of bodies will rise by
virtue of the velocities acquired in its descent to ex-
actly the same height as that from which it fell, reached
the principle of the equivalence of work and vis viva.
The names of the formulae which he obtained, were,
of course, not supplied until long afterwards.

The Huygenian principle of work was received by
the contemporary world with almost universal distrust.
People contented themselves with making use of its
brilliant consequences. It was always their endeavor
to replace its deductions by others. Even after John
and Daniel Bernoulli had extended the principle, it
was its fruitfulness rather than its evidency that was
valued.

Themeth- We observe, that the Galileo-Newtonian principles
ton and were, on account of their greater simplicity and ap-
compared. parently greater evidency, invariably preferred to the

Galileo-Huygenian. The employment of the latter is
exacted only by necessity in cases in which the em-
ployment of the former, owing to the laborious atten-
tion to details demanded, is impossible ; as in the case
of John and Daniel Bernoulli’s investigations of the
motion of fluids.

If we look at the matter closely, however, the same
simplicity and evidency will be found to belong to the
Huygenian principles as to the Newtonian proposi-

tions.
the time of descent or determined by the distance of
descent, are assumptions equally natural and equally
simple. The form of the law must in both cases be
supplied by experience. As a starting-point, therefore,
pt= mv andps = mv2 j2 are equally well fitted.

6. When we pass to the investigation of the motion The

of several bodies, we are again compelled, in both cases, unïversai-
to take a second step of an equal degree of certainty. twometh-
The Newtonian idea of mass is justified by the fact,
that, if relinquished, all rules of action for events would
have an end ; that we should forthwith have to expect
contradictions of our commonest and crudest experi-
ences ; and that the physiognomy of our mechanical
environment would become unintelligible. The same
thing must be said of the Huygenian principle of work.
If we surrender the theorem 2ps= 2mv 2 / 2, heavy
bodies will, by virtue of their own weights, be able to
ascend higher ; all known rules of mechanical occur-
rences will have an end. The instinctive factors which

The meth-
ods of Huy-
gens.

neces-

entered alike into the discovery of the one view and of
the other have been already discussed.

The two spheres of ideas could, of course, have The points

grown up much more independently of each other. But of the two

in view of the fact that the two were constantly in con- metllodb-
tact, it is no wonder that they have become partially
merged in each other, and that the Huygenian appears
the less complete. Newton is all-sufficient with his
forces, masses, and momenta. Huygens would like-
wise suffice with work, mass, and vis viva. But since
he did not in his time completely possess the idea of
mass, that idea had in subsequent applications to be
borrowed from the other sphere. Yet this also could
have been avoided. If with Newton the mass-ratio of
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even apparently erroneous notions, may be verytwo bodies can be defined as the inverse ratio of the
velocities generated by the same force, with Huygens
it would be logically and consistently definable as the

ratio of the squares of the velocities generated
by the same work.

The two spheres of ideas consider the mutual de-
pendence on each other of entirely different factors of
the same phenomenon. The Newtonian view is in so
far more complete as it gives us information regarding
the motion of each mass. But to do this it is obliged
to descend greatly into details. The Huygenian view
furnishes a rule for the whole system. It is only a con-
venience, but it is then a mighty convenience, when
the relative velocities of the masses are previously and

nay
important and very instructive. The historical investi-
gation of the development of a science is most needful,
lest the principles treasured up in it become a system
of half -understood prescripts, or worse, a system of
prejudices. Historical investigation not only promotes
the understanding of that which now is, but also brings

possibilities before us, by showing that which ex-

ists to be in great measure conventional and accidental.
From the higher point of view at which different paths
of thought converge we may look about us with freer
powers of vision and discover routes before unknown.

inverse

The respec-
tive merits
of each.

new

In all the dynamical propositions that we have dis- Thesubsti-
cussed, velocity plays a prominent role. The reason ‘‘integral ”
of this, in our view, is, that, accurately considered, éntiaP’^"

every single body of the universe stands in some defi- someday
nite relation with every other body in the universe ; concept of

that any one body, and consequently also any several fluo^sSUper
bodies, cannot be regarded as wholly isolated. Our
inability to take in all things at a glance alone compels
us to consider a few bodies and for the time being to
neglect in certain aspects the others ; a step accom-
plished by the introduction of velocity, and therefore
of time. We cannot regard it as impossible that inte-
gral laws, to use an expression of C. Neumann, will
some day take the place of the laws of mathematical
elements, or differential laws, that now make up the
science of mechanics, and that we shall have direct
knowledge of the dependence on one another of the
positions of bodies. In such an event, the concept of
force will have become superfluous.

independently known.
The gen- 7. Thus we are led to see, that in the develop-
opinent of ment of dynamics, just as in the development of statics,
in the

1
light the connection of widely different features of mechanical

cedingPix- phenomena engrossed at different times the attention
marks. of inquirers. We may regard the momentum of a sys-

tem as determined by the forces ; or, on the other
hand, we may regard its vis viva as determined by the
work. In the selection of the criteria in question the

It willindividuality of the inquirers has great scope,

be conceived possible, from the arguments above pre-
sented, that our system of mechanical ideas might,
perhaps, have been different, had Kepler instituted
the first investigations concerning the motions of fall-
ing bodies, or had Galileo not committed an error in
his first speculations. We shall recognise also that not
only a knowledge of the ideas that have been accepted
and cultivated by subsequent teachers is necessary for
the historical understanding of a science, but also that
the rejected and transient thoughts of the inquirers,
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it with the masses m’
lf m a. . . being affected in Schematic

., of the pre-,
T r ce(^n8(<^5/2)r2, { (f )\/ 2 )TL. . . . It statement.

/// 3 j

such directions with the accelerations <p\, <p\j. . .
the distances ( <pf /2)r 2,

imagine all these motions to be performed indep
dently of each other, we shall obtain the new position
of the mass vi . after lapse of timer. The composition
of the velocities v5 and (p\r, <p\r9 cp\r. . . . gives the
new initial velocity at the end of time r.
allow a second small interval of time r to elapse, and,
making allowance for the new spatial relations of the
masses, continue in the same way the investigation of
the motion.

we en-

CHAPTER III.

THE EXTENDED APPLICATION OF THE PRINCIPLES
OF MECHANICS AND THE DEDUCTIVE DE-

VELOPMENT OF THE SCIENCE.

We then

In like manner we may proceed with
every other mass. . It will be seen, therefore, that, in
point of principle, no embarrassment can arise ; the
difficulties which occur are solely of a mathematical
character, where an exact solution in concise symbols,
and not a clear insight into the momentary workings
of the phenomenon, is demanded. If the accelerations

SCOPE OF THE NEWTONIAN PRINCIPLES.

i. The principles of Newton suffice by themselves,
alë um-es without the introduction of any new laws, to explore
versai in
scope and
power.

Newton’s

thoroughly every mechanical phenomenon practically
occurring, whether it belongs to statics or to dynamics.
If difficulties arise in any such consideration, they are

invariably of a mathematical, or
formal, character, and in no re-

of the mass m5, or of several masses, collectively
tralise each other, the mass /// - or the other masses
mentioned are in equilibrium and will move uniformly
onwards with their initial velocities. If , in addition,
the initial velocities in question are = 0, both equilib-
rium and rest subsist for these masses.

neu-v9

m3
spect concerned with questions

We have given,of principle.
m*/ v* let us suppose, a number of mas-

vi 2 , in3. . . . in space, withses vi

definite initial velocities v19 v2,
We imagine, further, lines

of junction drawn between every
two masses. In the directions of

1’
Nor, where a number of the masses m19 m2 . . . . The same

have considerable extension, so that it is impossible to plied
speak of a single line joining every two masses, is the dif -
ficulty, in point of principle, any greater. We divide
the masses into portions sufficiently small for our pur-
pose, and draw the lines of junction mentioned between
every two such portions.
account the reciprocal relation of the parts of the
same large mass ; which relation, in the case of rigid
masses for instance, consists in the parts resisting

to ag-
gregates of
material
particles.

Vl v9

Fig. 144.
these lines of junction are set up the accelerations and
counter-accelerations, the dependence of which on the
distance it is the business of physics to determine. In
a small element of time r the mass ///

_ , for example,
will traverse in the direction of its initial velocity the
distance V -OT , and in the directions of the lines joining

We, furthermore, take into
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every alteration of their distances from one another.
On the alteration of the distance between any two parts

of such a mass an acceleration is observed proportional
Increased distances diminish, and

upper portion and a more closely pressed lower por- Rest in the

tion ; its downward acceleration g is neutralised by a these prin-
surplus of acceleration upwards, which it experiencespeareasa
from the parts beneath. We comprehend the equilib- of motion,

rium and rest of the parts of the column by imagining
all the accelerated motions which the reciprocal rela-
tion of the earth and the parts of the column determine,
as in fact simultaneously performed,

mathematical sterility of this conception vanishes, and
it assumes at once an animate form, when we reflect
that in reality no body is completely at rest, but that
in all, slight tremors and disturbances are constantly
taking place which now give to the accelerations of de-

to that alteration,

diminished distances increase in consequence of this

By the displacement of the parts withacceleration.
respect to one another, the familiar forces of elasticity

When masses meet in impact, their
are aroused. The apparent

forces of elasticity do not come into play until contact

and an incipient alteration of form take place.
2. If we imagine a heavy perpendicular column

A practical

ofSescope resting on the earth, any particle m in the interior of
of Newton ’s
principles. the column which we may choose to isolate in thought,

is in equilibrium and at rest. A vertical downward ac-
celeration g is produced by the earth in the particle,

which acceleration the particle obeys. But in so doing

it approaches nearer to the particles lying beneath it,

and the elastic forces thus awakened generate in vi a

vertical acceleration upwards, which ultimately, when

the particle has approached near enough, becomes
The particles lying above m likewise

Here, again,

scent and now to the accelerations of elasticity a slight
preponderance. Rest, therefore, is a case of motion,
very infrequent, and, indeed, never completely realised.
The tremors mentioned are by no means an unfamiliar
phenomenon. When, however, we occupy ourselves
with cases of equilibrium, we are concerned simply with
a schematic reproduction in thought of the mechanical
facts. We then purposely neglect these disturbances,
displacements, bendings, and tremors, as here they
have no interest for us. All cases of this class, which
have a scientific or practical importance, fall within the
province of the so-called theory of elasticity. The whole The unity

outcome of Newton’s achievements is that we

equal to g.
approach m with the acceleration g.
acceleration and counter-acceleration are produced,

whereby the particles situated above are brought to

rest, but whereby m continues to be forced nearer and

to the particles beneath it until the acceleration

downwards, which it receives from the particles above

it, increased by g, is equal to the acceleration it re-
ceives in the upward direction from the particles be-

neath it. We may apply the same reasoning to every

portion of the column and the earth beneath it, readily

perceiving that the lower-portions lie nearer each other

and are more violently pressed together than the parts

above. Every portion lies between a less closely pressed

and houio-every- geneity
i 1 . which these

where reach our goal with one and the same idea, and principles
by means of it are able to reproduce and construct be- into the

forehand all cases of equilibrium and motion. All
phenomena of a mechanical kind

nearer

science.

now appear to us
as uniform throughout and as made up of the same
elements.

3. Let us consider another example,

ses m, m are situated at a distance a from each
Two mas-
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A general other. (Fig. 145.) When displaced with respect to
cation of each other, elastic forces proportional to the change
the power . .. . .
oftheprin- x2 oi distance are supposed to be

awakened. Let the masses be

(l 2 v
m d i * = /

The integrals of (3) and (4) are respectively The integ-
rals of these
develop-
ments.

o
n7 • * + B cosPP . t -\- c i Jt/i \ /// ' 2
ip f~

X
~
t movable in the X-direction par-

allel to a, and their coordinates
If a force/ is applied at the point x.„ the

// = A sin andF ig- 14 5. -P
• 9 Ct D\ whence

/// mJ

be x 19 x
following equations obtain :

2 ’2 * V —
A . 2 p-0 sinA 1 . t2 \ m

d 2 x.m d t 2

d 2 x0
Vl d t 2

”

where p stands for the force that one mass exerts on
the other when their mutual distance is altered by the
value 1. All the quantitative properties of the me-
chanical process are determined by these equations.
But we obtain these properties in a more comprehensi-
ble form by the integration of the equations. The ordi-
nary procedure is, to find by the repeated differentia-
tion of the equations before us new equations in suffi-
cient number to obtain by elimination equations in x1

alone or x2 alone, which are afterwards integrated. We
shall here pursue a different method. By subtracting
the first equation from the second, we get

dHpc2 — *1)
dt 2

B f t 20)=/[(*2 — *l) — *] *1 = — . t A J
1 '>2 2m ' 2

/ n+ c t — %= — /[O2 — x i) — +/ (2) +i 4P 9 ’
I ' )A B

2 silW;f - '+ f
+ c t + 4+

2 p f * 2x2 = / 4- y-m ' 2
r COS

2m ' 2
f D
* +1T-4/

To take a particular case, we will assume that the A particu-action of the force/ begins at t= 0, and that at this the«any-time pie.

0, 4 = 0*1= dt
d x2 = 0,X 2 = <*> dt

that is, the initial positions
velocities

are given and the initialare = 0. The constants A, B, C, D beingeliminated by these conditions,
- — 2 p [( x2 — .«J — a ] +/, orThe devel- m -

opment of
the equa-
tions ob-
tained in
this exam-
ple.

we getputting x2 — xx — 11

d 2 u f ip f 12
2m ' 2

(5) x - /~ 4/
COS \ w ' t J r(3)m d [ 2 = — 2 p [ u — a] +/ 4 p’

V;/ ipand by the addition of the first and the second equa-
tions

/ n
2 m 2

(6) x2 = — /
• / +771

. COS + a + and4/ 4 p
m ^ 2J52 +/I) /=f or, putting x2 + x1 = v, (7) *2 /— *1 =dt * / + a + 2ÿip
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two masses, in addi- yet not in point of principle) more complicated whenwe conceive a body divided up into a great number ofsmall parts that cohere by elasticity. Here also in thecase of sufficient hardness the vibrations may be neg-lected. Bodies in which we purposely regard the

tual displacement of the parts
rigid bodies.

Theinform- We see from (5) and (6) that the

the°re îiVt-h tion to a uniformly accelerated motion with half the

acceleration that the force / would impart to one of
oscillatory motion sym-

The

ant equa-
tions give
concerning
this exam-
ple. these masses alone, execute

metrical with respect to their centre of gravity,

duration of this oscillatory motion,

an
mu-

as evanescent, are called\/ ini'! p, is7* = 2 7t

the force that is awakened in
attentionsmaller in proportion as

the same mass-displacement is greater (if our
is directed to two particles of the same body, in pro-

The amplitude of os-

4. We will now consider a
schcjna of a lever. case that exhibits the The deduc-. . lion of theYVe imagine the masses Az, m , ;//0 laws of the. . . jever Jjyarranged in a triangle and joined by elastic connec- Newton’stions. Every alteration of the sides, and consequently prmciples’
also every alteration of the angles, gives rise to accel-erations, as the result of which the triangle endeavors toassume its previous form and size. By the aid of theNewtonian principles we can deduce from such aschema the laws of the lever, and at the same time feelthat the form of the deduction, although it may bemore complicated, still
remains admissible when

portion as the body is harder),

cillation of the oscillatory motion //2/ likewise de-

creases with the magnitude p of the force of displace-
ment generated. Equation (7) exhibits the periodic
change of distance of the two masses during their pro-
gressive motion. The motion of an elastic body might

in such case be characterised as vermicular. With hard

bodies, however, the number of the oscillations is so
so small that they remaingreat and their excursions

unnoticed, and may be left out of account. The oscil-
latory motion, furthermore, vanishes, either gradually
through the effect of some resistance, or when the two

, at the moment the force/ begins to act, are a
and have equal initial véloci-

té
we pass from a schematic
lever composed of three
masses to the case of a
real lever. The mass M
we assume either to be in itself very large or conceiveit joined by powerful elastic forces to other very largemasses (the earth for instance),
an immovable fulcrum.

b
& di m2- Mmasses Fig- 14C.

distance « +//2/ apart
ties. The distance a //2 p that the masses are apart

after the vanishing of their vibratory motion, is//2/
A tensiongreater than the distance of equilibrium a.

by the action of /, by which the
is reduced to one-

M then represents
y, namely, is set up
acceleration of the foremost mass
half whilst that of the mass following is increased by

the same amount. In this, then, agreeably to our as-
This in- sumption, pyjm — //2 m or y= f/ 2 p. As we see, it is

is exitaus- in our power to determine the minutest details of a

of this character by the Newtonian prin-

Let Wj, now, receive from the action of some ex- Themeth-ternal force an acceleration/ perpendicular to the line deduction,of junction Mm2 = c d. Immediately a stretchingof the lines m 2 = b and m1 M — a is produced, andin the directions in question there are
up the accelerations, as yet undetermined,
which the

respectively set
.r and 0, of

components s {e/b) and 0 ( e/ai) are directed
tive. phenomenon

ciples. The investigation becomes (mathematically,
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oppositely to the acceleration f. Here e is the altitude

of the triangle mym2M. The mass in2 receives the

, which resolves itself into the two com-

the direction of M and s\ejb) par-
of these determines a slight ap-

tion of ///1 diminish until the stage is reached at whichthe accelerations of 111 y and in., bear to each other theproportion of ry to r2. This is equivalent to a rotationof the whole triangle (without further distortion) aboutM, which mass by reason of the vanishing accelera-tions is at rest. As soon as rotation sets in, thefor further alterations of (p ceases. In such

acceleration s’
ponents s\d/b) in
allel to f. The former
proach of in ., to M. The accelerations produced in M

by the reactions of 111 L and ;;/ 2 , owing to its great mass,

imperceptible. We purposely neglect, therefore,
rea-son

consequently, a case,
are
the motion of M.

The mass 111

tion f — s ( e/ li )
the parallel acceleration s\e/b ).
simple relation obtains. If , by supposition
very rigid connection, the triangle is only impercept-
ibly distorted. The components of s and operpendicular
to f destroy each other. For if this were at any one

moment not the case, the greater component would

a further distortion, which would immediately

The resultant of s and O’ is

/;/ 2 ''2 !
-FT1

(fJ ri
1 ri 2 + »‘2 rF

For the angular acceleration ip of the lever

inthe accelera- or cp —i r0
“ mq , accordingly, receives

— 6 ( c/a), whilst the mass in., suffers
Between s and G a

, we have a

The deduc-
tion ob-
tained by
the consid-
eration of
accelera-
tions.

we get
1\Vl\ f<(><l'=

//lL ri2 + W 2 r22
Nothing prevents 11s from entering stillthe details of this

r2

more into Discussion
of the char-ns acter of the
precedingrespect to each other, result.With sufficiently rigid connections, however, these de-tails may be neglected. It will be perceived thathave arrived, by the employment of the Newtonian prin-ciples, at the same result to which the Huygenian viewalso would have led us. This will not appear strange tous if we bear in mind that the two views are in every re-spect equivalent, and merely start from different aspectsof the same subject-matter. If we had pursued theHuygenian method, we should have arrived morespeedily at our goal but with less insight into the de-tails of the phenomenon. We should have employedthe work done in some displacement ofmine the vires vivee of 111 y and m2 , ./have assumed that the velocities in question vy , v2maintained the ratio vy /v2 =i\jr2. The examplehere treated is very well adapted to illustrate whatsuch an equation of condition

f and determining the distortioand vibrations of the parts with
case

*
5

produce
counteract its excess,

therefore directly contrary to/, and consequently, as is

readily obvious, 6 ( c/a )= s (d/b ). Between s and s’ ,
further, subsists the familiar relation in ys=m2 s' or

s=s\m2 /m1 ). Altogether m2 and 111 y receive re-
spectively the accelerations s'( e/b ) and f — s' ^e/b')

( ni 2 /my ) ( c -j- dje), or, introducing in the place of the

variable value s (ejb) the designation cp, the accelera-

we

is cp and f — (p {in.,/ iny ) ( c + d/c).
At the commencement of the distortion, the accel-

eration of 111 y, owing to the increase of cp, diminishes,

whilst that of in 2 increases. If we make the altitude e

of the triangle very small, our reasoning still remains

applicable. In this case, however, a becomes = c — ry ,
and a -\- b= c -\- d=r2. We see, moreover, that the

distortion must continue, (p increase, and the accelera-

tions
On the pre-
ceding sup-
positions
the laws for
the rotation
of the lever
are easily
deduced.

111 y to deter-
wherein we should

The equationmeans.
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accelerations inversely proportional to the
m2 , which neutralise the first

the slightest deviations of vx /v2

are set in action which in
The bodies

simply asserts, that on
from powerful forces
point of fact prevent all further deviation,

obey of course, not the equations, but the forces.
5. We obtain a very obvious case if we put in the

example just treated mx = m 2 =m and a= b (Fig.
The dynamical state of the system ceases to

masses m19
ones and produce equi-

librium. Similarly, along M imagine the equal and
contrary forces /, — t operative ; and along m2 M the
forces //, — u. In this case also equilibrium obtains.
If M be elastically connected with masses sufficiently
large, — u and — t need not be applied, inasmuch
as the last-named forces

A simple
case of the
same exam-
ple.

I47)*

change when c/ ) = 2 (/— 2 <p), that is, when the accel-
erations of the masses

are spontaneously evoked the
moment the distortion begins, and always balance the
forces opposed to them. Equilibrium subsists, accord-
ingly, for the two equal and opposite forces s,
well as for the wholly arbitrary forces /, u. As a matter
of fact s, — s destroy each other and /, u pass through
the fixed mass M, that is, are destroyed on distortion
setting in.

T at the base and the ver-

M tex are given by 2//5
and //5. At the com-
mencement of the dis-

tortion <p increases, and simultaneously the accelera-
tion of the mass at the vertex is decreased by double
that amount, until the proportion subsists between the
two of 2 : 1.

We have yet to consider the case of equilibrium of
a schematic lever, consisting (Fig. 148) of three masses

m2, and M, of which the last is again supposed

M
— s as

Fig. 14".

The condition of equilibrium readily reduces itself The reduc-
to the common form when we reflect that the mo- preceding
ments of t and u, forces passing through My are with common
respect to M zero, while the moments of J and —

The equi-
librium of
the lever
deduced
from the 7//.,
same con-
siderations.

are
equal and opposite. If we compound / and to py and
u and — s to y, then, byVarignon’s^<?;;/^//7^/ principle
of the parallelogram, the moment of p is equal to the
sum of the moments of ^ and /, and the moment of q
is equal to the sum of the moments of u and — s. The
moments of p and q are therefore equal and opposite.
Consequently, any two forces p and q will be in equi-
librium if they produce in the direction mv m2 equal
and opposite components, by which condition the equal-
ity of the moments with respect to M is posited. That
then the resultant of p and q also passes through My is
likewise obvious, for s and — s destroy each other and
t and u pass through M.

6. The Newtonian point of view, as the example
just developed shows us, includes that of Varignon.

to be very large or to be elastically connected with
very large masses,

site forces s, — s applied to m1 and m 2 in the direction
m^ m2 y or, what is the same thing, accelerations im-
pressed inversely proportional to the masses m 19 m
The stretching of the connection mLm2 also generates

We imagine two equal and oppo-

2 *
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tonian conceptions are certainly the most satisfactory
and the most lucid ; and Poinsot shows a noble sense
of scientific clearness and simplicity in making these
conceptions the sole foundation of the science.

We were right, therefore, when we characterised the
statics of Varignon as a dynamical statics, which, start-

Newton’s
point of
view in-
varignon’s. ing from the fundamental ideas of modern dynamics,

voluntarily restricts itself to the investigation of cases
of equilibrium. Only in the statics of Varignon, owing
to its abstract form, the significance of many opera-
tions, as for example that of the translation of the
forces in their own directions, is not so distinctly ex-

11.

THE FORMULÆ AND UNITS OF MECHANICS.
1. All the important formulae of modern mechanics History of

the formu-were discovered and employed in the period of Galileo 1» and
units ofand Newton. The particular designations, which, mechanics,

owing to the frequency of their use, it was found con-
venient to give them, were for the most part not fixed
upon until long afterwards. The systematical mechan-
ical units were not introduced until later still. Indeed,
the last named improvement, cannot be regarded as
having yet reached its completion.

2. Let denote the distance, t the time, 7; the in- Theorig-
stantaneous velocity, and cp the acceleration of a uni- t?onsCofia
formly accelerated motion. From the researches of Huygens.

nd

Galileo and Pluygens, we derive the following equa-
tions :

hibited as in the instance just treated.
The considerations here developed will convince

us that we can dispose by the Newtonian principles
of every phenomenon of a mechanical kind which may
arise, provided we only take the pains to enter far
enough into details. We literally see through the cases
of equilibrium and motion which here occur, and be-
hold the masses actually impressed with the accelera-
tions they determine in one another,
grand fact, which we
phenomena, or at least can recognise there if we make
a point of so doing. Thus a unity, homogeneity, and
economy of thought were produced, and a new and
wide domain of physical conception opened which
before Newton’s time was unattainable.

Mechanics, however, is not altogether an end in it-
self ; it has also problems to solve that touch the needs
of practical life and affect the furtherance of other sci-

Those problems are now for the most part ad-
vantageously solved by other methods than the New-
tonian,— methods whose equivalence to that has already
been demonstrated. It would, therefore, be mere im-
practical pedantry to contemn all other advantages and
insist upon always going back to the elementary New-

It is sufficient to have once convinced

The econ-
omy and
wealth of
theNewton-
ian ideas.

I It is the same
recognise in the most various

v= q)t

s = ~/2
The New-
tonian and
the modern,
routine
methods.

o (1)

I

ences.
Multiplying throughout by the mass m} these equa- The imi-

tions give the following : of “ mass
and “ mov-
ing force.”m v= m (pt

m a) „ms= - J-t 2
2

m v 2

2
~

’
tonian ideas.
ourselves that this is always possible. Yet the New-

m cps=

\
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to confidence in dealing with mechanical ideas,

pose, for instance, we
and, denoting the moving force m q> by the letter p, we Sup-

put .to ourselves, the question,
what force p will impart to a given mass m the velocity
v ; we readily see that between /, and v alone, no
equation exists, so that either

Final form
of the fun-
damental obtain
equations. m v -= pt

p H
(2)ms — - 2 t must be supplied,

and consequently the question is an indeterminate one.
We soon learn to recognise and avoid indeterminate
cases of this kind.

J* or
mv 2

ps= 2-

Equations (1) all contain the quantity cp ; and each
contains in addition two of the quantities s, /, v, as

exhibited in the following table :
' v, t

<P s, t
. s, v

Equations (2) contain the quantities m, /, s, t, 7) ;

each containing ///, p and in addition to m, p two of the

three quantities s, t, v, according to the following table :

. t
m, p s, t

. s, V

The distance that a mass m acted
by the force p describes in the time /, if moving

with the initial velocity 0, is found by the second equa-
tion s=pt* /2 m.

on

3. Several of the formulae in the above-discussed
equations have received particular
of a moving body
ternatelycalls it “ momentum,” “ impulse,” and “ en-ergy.”

The names
. which thenames. 1he force formulae of

the equa-
tions have
received.

spoken of by Galileo, who al-was
* Ns He regards this momentum as proportional to

the product of the
1

4s (or rather the weight, for Gali-leo had no clear idea of mass, and for that matter
more had Descartes,

mass
\ no

even Leibnitz) into the velo-
city of the body. Descartes accepted this view. He put
the force of a moving body = mv, called it quantity of
motion, and maintained that the sum-total of the quan-tity of motion in the universe remained constant, so that
when one body lost momentum the loss

nor

Questions concerning motions due to constant forces

answered by equations (2) in great variety. If, for

example, we want to know the velocity v that a mass

m acquires in the time t through the action of a force

/, the first equation gives v =/ ///;/. If , on the other

hand, the time be sought during which a mass m with

the velocity v can move in opposition to a force /, the
us t=mv/p. Again, if

The scope
and appli-
cation of
these equa-
tions.

are

was compen-sated for by an increase of momentum in other bodies.Newton also employed the designation “ quantity of
motion ” for mv, and this name has been retained to the M
present day. [But momentum is the more usual term.] impulse.For the second member of the first • JBelanger, proposed, as late as 1847, the
The

..

I

omen-we in-same equation gives

quire after the distance through which m will move with
velocity v in opposition to the force /, the third equa-
tion gives s = mv2 j^ p. The two last questions illus-
trate, also, the futility of the Descartes-Leibnitzian dis-
pute concerning the measure of force of a body in mo-

The use of these equations greatly contributes

equation, viz. / /,
name impulse.*

expressions of the second equation have received
*See, also, Maxwell, Matter and Motion, American edition, page 72. Butthis word is commonly used in a different sense, namely, as “ the limit of aforce which is infinitely great but acts only during an infinitely short time.”See Routh, Rigid Dynamics, Part I, pages 65-66.— Trans.tion.
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particular designations. Leibnitz (1695) called the
expression mv'1 of the third equation vis viva or living

force, and he regarded it, in opposition to Descartes,
as the true measure of the force of a body in motion,
calling the pressure of a body at rest vis mortua, or
dead force. Coriolis found it more appropriate to give

the term\mv 2 the name vis viva. To avoid confusion,
Belanger proposed to call m v 2 living force and\ni v 2

living power [now commonly called in English kinetic
energy].
Poncelet confirmed this usage, and adopted the kilo-
gramme-metre (that is, a force equal to the weight of a
kilogramme acting through the distance of a metre) as

the unit of work.
4. Concerning the historical details of the origin of

quantity of motion ” and “ vis viva,”
a glance may now be cast at the ideas which led Des-

cartes and Leibnitz to their opinions. In his Principia
Philosophice, published in 1644, II, 36, DESCARTES ex-

pressed himself as follows:

“ Now that the nature of motion has been examined,
must consider its cause, which may be conceived

“ never increases or diminishes, although in single por- Passage

“ tions it changes; namely, in this way, that
“ assume, in the case of the motion of apiece of matter
“ which is moving twice as fast as another piece, but in
“ quantity is only one half of it, that there is the same

Vis viva nO
and work. from Des-We niUSt cartelsPrincipia.

“ amount of motion in both, and that in the proportion
“ as the motion of one part grows less, in the same pro-
portion must the motion of another, equally large
“ part grow greater. We recognise it, moreover, as
“ a perfection of God, that He is not only in Himself
“ unchangeable, but that also his modes of operation
“ are most rigorous and constant ; so that, with the ex-
ception of the changes which indubitable experience
“ or divine revelation offer, and which happen, as our
“ faith or judgment show, without any change in the
“ Creator, we

For ps Coriolis employed the name work.

The history
of the ideas
quantity of these notions
motion and
vis viva.

are not permitted to assume any others
“ in his works— lest inconstancy be in anyway pre-
dicated of Him.

1 1

Therefore, it is wholly rational to
“ assume that God, since in the creation of matter he
“ imparted different motions to its parts, and preserves
“ all matter in the same way and conditions in which
“ he created it, so he similarly preserves in it the same
1‘quantity of motion.”

“ we
“ in two senses : first, as a universal, original cause—
“ the general cause of all the motion in the world ; and

“ second, as a special cause, from which the individual

“ parts of matter receive motion which before they did

“ not have.
“ festly be none other than God, who in the beginning

“ created matter with its motion and rest, and who now

“ preserves, by his simple ordinary concurrence, on the

“ whole, the same amount of motion and rest as he

“ originally created. For though motion is only a con-

dition of moving matter, there yet exists in matter

“ a definite quantity of it, which in the world at large

The merit of having first sought after a more uni- The merits
. . . . . and defectsversai and more fruitful point of view in mechanics, °f Dcscar-. . _

tes’s phys-cannot be denied Descartes. This is the peculiar task jcaiinquir-
of the philosopher, and it is an activity which con-
stantly exerts a fruitful and stimulating influence
physical science.

les.
As to the universal cause, it can mani-

on

Descartes, however, was infected with all the usual
errors of the philosopher. He places absolute confi-
dence in his own ideas. He never troubles himself to
put them to experiential test. On the contrary
imum of experience always suffices him for

, a rmn-
a maximum
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Added to this, is the indistinctness of
Descartes did not possess a clear

It is hardly allowable to say that Des-

Huygens pursued. Every body rises by virtue of the L e i b n i t z
velocity acquired in its descent to a height exactly ure of force,

equal to that from which it fell.

of inference,

his conceptions.
o n

If , therefore, we as-
sume, that the same “ force ” is requisite to raise a
body m a height 4h as to raise a body 4;;/ a height /1,
we must, since we know that in the first case the ve-
locity acquired in descent is but twice as great as in
the second, regard the product of a “ body ” into the
square of its velocity as the measure of force.

In a subsequent treatise (1695), Leibnitz reverts to
this subject.

idea of mass.
cartes defined inv as momentum, although Descartes’s
scientific successors, feeling the need of

notions, adopted this conception. Descartes's greatest

error, however,— and the one that vitiates all his phys-
ical inquiries,— is this, that many propositions appear
to him self -evident à priori concerning the truth of

Thus, in the two

Imore definite

can decide.which experience alone
paragraphs following that cited above (§§37-39) it is

asserted as a self -evident proposition that a body pre-
The ex-

He here makes a distinction between
simple pressure (vis mortua ) and the force of a moving
body ( vis viva), which latter is made up of the sum of
the pressure-impulses.serves unchanged its velocity and direction,

periences cited in §38 should have been employed, not

as a confirmation of an à priori law of inertia, but as a

foundation on which this law in an empirical sense

These impulses produce, in-
deed, an “ impetus ” (mv), but the impetus produced
is not the true measure of force ; this, since the cause
must be equivalent to the effect, is (in conformity with
the preceding considerations) determined by
Leibnitz remarks further that the possibility of per-
petual motion is excluded only by the acceptance of his
measure of force.

should be based.
Descartes’s view was attacked by L E I B N I T Z (1686)

o n q u a n t i t y #
. . . ,

of motion, in the Acta Eruditorum, in a little treatise bearing the

“ A short Demonstration of a Remarkable Error

m v 2.Leibnitz

title :
of Descartes and Others, Concerning the Natural Law
by which they think that the Creator always preserves
the same Quantity of Motion ; by which, however, the

Science of Mechanics is totally perverted. ”
In machines in equilibrium, Leibnitz remarks, the

loads are inversely proportional to the velocities of dis-
placement ; and in this way the idea arose that the

product of a body (“ corpus, ” “ moles ” ) into its velocity

is the measure of force. This product Descartes re-
garded as a constant quantity,

however, is, that this measure of force is only acci-
dentally the correct measure, in the case of the ma-

The true measure of force is different, and

must be determined by the method which Galileo and

Leibnitz, no
uine concept of mass.

more than Descartes, possessed a gen- The idea of. mass inWhere the necessity of such Leibnitz’s
an idea occurs, he speaks of a body ( corpus), of a load
( moles), of different-sized bodies of the

view.

same specific
gravity, and so forth. Only in the second treatise, and
there only once, does the expression “in all probability borrowed from Newton.

massa ” occur,
Still, to de-

rive any definite results from Leibnitz’s theory, we must
associate with his expressions the notion of
his successors actually did.
procedure is much more in accordance with the meth-ods of science than Descartes’s. Two things, however,are confounded : the question of the measure of force

Leibnitz’s opinion, mass, as
As to the rest, Leibnitz’s

chines.
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products p . dt from the beginning to the end of the
action, and C a constant quantity denoting the value
of m v before the force begins to act.

The second equation passes in like manner into the
form s=
constants of integration.

The third equation must be replaced by
m v 2

277

and the question of the constancy of the sums 2mv and
The two have in reality nothing to do with

In a sense,
Descartes
and Leib- 1111)* .
each right, each other. With regard to the first question, we now

know that both the Cartesian and the Leibnitzian meas-
ure of force, or, rather, the measure of the effective-
ness of a body in motion, have, each in a different

their justification. Neither measure, however,
jdtJ*

-̂dt Ct D, with two so-called

sense,
as Leibnitz himself correctly remarked, is to be con-
founded with the common, Newtonian, measure of » j*

p ds -j- C.force. 2
With regard to the second question, the later in-

ma-The dis-

suhofmf^’ vestigations of Newton really proved that lor free
under-
standings.

Curvilinear motion may always be conceived as the
product of the simultaneous combination of three rec-by external forces the Car-terial systems not acted on

tesian sum 2mv is a constant ; and the investigations tilinear motions, best taken in three mutually perpen-
dicular directions. Also for the components of the
tion of this

• f mo-
of Huygens showed that also the sum 2mv 2 is a con-

stant, provided work performed by forces does not alter
it. The dispute raised by Leibnitz rested, therefore,
on various misunderstandings.

very general case, the above-given equa-
tions retain their significance.

6. The mathematical processes of addition, sub-
traction, and equating possess intelligible meaning only
when applied to quantities of the same kind. We can-

The unitsof
mechanics.It lasted fifty-seven

\of D’Alembert’s Traité dcyears, till the appearance
dynamiquey in 1743.
cartes and Leibnitz, we shall revert in another place.

5. The three equations above discussed, though

thefunda- they are only applicable to rectilinear motions produced
mental
equations
to variable
forces.

To the theological ideas of Des- not add or equate masses and times, or masses and
velocities, but only masses and masses, and
When, therefore, we have a mechanical equation, the
question immediately presents itself whether the
bers of the equation are quantities of the same kind’,
that is, whether they can be measured by the same unit,
or whether, as we usually say, the equation is homo-
geneous.

? so on.
The appli-

mem-
by constant forces, may yet be considered the funda-
mental equations of mechanics,

linear but the force variable, these equations pass by a

slight, almost self -evident, modification into others,

which we shall here only briefly indicate, since mathe-

matical developments in the present treatise are wholly

If the motion be recti- I

The units of the quantities of mechanics will
form, therefore, the next subject of our investigations.

The choice of units, which are, as we know,
tities of the same kind as those they

many cases arbitrary. Thus, an arbitrary mass is
employed as the unit of length, an arbitrary time as the
unit of time.

quan-
subsidiary.

From the first equation we get for variable forces

Çpdt + C, where p is the variable force, dt the

time-element of the action, j*
pdt the sum of all the

serve to measure,
is in

m v=
The mass and the length employed as

units can be preserved ; the time can be reproduced
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by FOURIER, in 1822, in his Theory of Heat. Thus, if /The theory
denote a length, t a time, and in a mass, the dimen- s/ons?en

sions of a velocity, for instance, are /// or lt ~1. After
this explanation, the following table will be readily
derstood :

by pendulum-experiments and astronomical observa-
But units like a unit of velocity, or a unit of

acceleration, cannot be preserved, and are much more
difficult to reproduce. These quantities are conse-
quently so connected with the arbitrary fundamental
units, mass, length, and time, that they can be easily
and at once derived from them,

are called derived or absolute units. This latter desig-
nation is due to GAUSS, who first derived the magnetic
units from the mechanical, and thus created the possi-

Arbitrary
units, and
derived or tlOnS.
absolute
units.

un-

NAMES

Velocity . .
Acceleration
Force . . .
Momentum
Impulse . .
Work . .

SYMROLS UIMENSIONS

//"I

l t ~2

V I I t ~2

V I l t ~ X

VI It-1

vi l 2i ~~ 2

VUnits of this class
9<
P

vi v
ptbility of a universal comparison of magnetic measure-

The name, therefore, is of historical origin. .
As unit of velocity we might choose the velocity

of velocity, with which, say, q units of length are travelled over in
accelera-
tion, and
force.

ps
ments.

vi v 2
Vis viva vi l 2t ~2The de- 2
Moment of inertia
Statical moment .

© ml 2

ml 2t ~2
unit of time. But if we did this, we could not express

D
the relation between the time /, the distance s, and the
velocity v by the usual simple formula s= vt, but
should have to substitute for it s = q.vt. If , however,

define the unit of velocity as the velocity with
which the unit of length is travelled over in unit of
time, we may retain the form s — vt. Among the de-

rived units the simplest possible relations are made
to obtain. Thus, as the unit of area and the unit of vol-

the square and cube of the unit of length are al-

This table shows at once that the above-discussed
tions are homogeneous, that is, contain only members of
the same kind. Every new expression in mechanics
might be investigated in the same manner.

equa-
\

we

19 7. The knowledge of the dimensions of a quantity The usefui-is also important for another reason. Namely, if the thlorfo?6

value of a quantity is known for one set of fundamental sions!*"

units and we wish to pass to another set, the value of
the quantity in the new units can be easily found from
the dimensions.

I
' i.

(ume,
ways employed.

According to this, we assume then, that by unit ve-
locity unit length is described in unit time, that by unit
acceleration unit velocity is gained in unit time, that
by unit force unit acceleration is imparted to unit mass,

The dimensions of an acceleration,
which has, say, the numerical value (p, are It-2. If
we pass to a unit of length /1 times greater and to a
unit of time r times greater, then a number À times
smaller must take the place of / in the expression lt ~ 2 ,
and a number r times smaller the place of t. The
numerical value of the same acceleration referred to
the new units will consequently be (r2 A) cp.

tand so on.
The derived units depend

mental units ; they are functions of them,

tion which corresponds to a given derived unit is called
its dimensions. The theory of dimensions was laid down

on the arbitrary funda-
The func-

If we

1
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take the metre as our unit of length, and the second as
our unit of time, the acceleration of a falling body for
example is 9 *8i , or as it is customary to write it, in-
dicating at once the dimensions and the fundamental
measures : 9 *81 (metre/second 2). If we pass now to
the kilometre as our unit of length ( X = 1000), and to
the minute as our unit of time (r == 60), the value of the
same acceleration of descent is (60 X 60/1000) 9 *81,
or 35 * 316 (kilometre/minute2).

[8. The following statement of the mechanical units
at present in use in the United States and Great Britain

cause of doubt as to the length of the old metre,
owing partly to the imperfections of the standard, and
partly to obstacles now intentionally put in the way of
such ascertainment. The French metre was defined
as the distance, at the melting-point of ice, between
the ends of a platinum bar, called the metre des archives.
It was against the law to touch the ends, which made
it difficult to ascertain the distance between them.
Nevertheless, there was a strong suspicion they had
been dented. The metre des archives was intended to
be one ten-millionth of a quadrant of a terrestrial
meridian. In point of fact such a quadrant is, ac-
cording to Clarke, 32814820 feet, which is 10002015
metres.

The international unit of mass is the kilogramme, The inter-
which is the mass of a certain cylinder of platiniridium unit of

called the International Prototype Kilogramme. Each
government has copies of it called National Prototype
Kilogrammes. This mass was intended to be identical
with the former French kilogramme, which was defined
as the mass of a certain platinum cylinder called the
kilogramme des archives. The platinum being somewhat
spongy contained a variable amount of occluded gases,
and had perhaps suffered some abrasion. The kilo-
gramme is 1000 grammes ; and a gramme was intended
to be the mass of a cubic centimetre of water at its
temperature of maximum density, about 3 * 93° C. It
is not known with a high degree of precision how nearly
this is so, owing to the difficulty of the determination.

The regular British unit of length is the Imperial The British
Yard which is the distance at 62° F. between the cen- length,

très of two lines engraved on gold plugs inserted in a
bronze bar usually kept walled up in the Houses of
Parliament in Westminster. These lines are cut rela-

YThe Inter-
national
Bureau of
Weights
and Meas- is substituted for the statement by Professor Mach of
ures.

the units formerly in use on the continent of Europe.
All the civilised governments have united in establish-
ing an International Bureau of Weights and Measures
in the Pavillon de Breteuil, in the Parc of St. Cloud,
at Sèvres, near Paris. In some countries, the stan-
dards emanating from this office are exclusively legal ;
in others, as the United States and Great Britain, they
are optional in contracts, and are usual with physi-
cists. These standards are a standard of length and a
standard of mass (not weight.)

The unit of length is the International Metre, which
is defined as the distance at the melting point of ice
between the centres of two lines engraved upon the
polished surface of a platiniridium bar, of a nearly
X-shaped section, called the International Prototype
Metre. Copies of this, called National Prototype Me-
tres, are distributed to the different governments. The
international metre is authoritatively declared to be
identical with the former French metre, used until the
adoption of the international standard ; and it is im-

possible to ascertain any error in this statement, be-

rnass.

The inter-
national
unit of
length.

i

-
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Conditions tively deep, and the burr is rubbed off and the surface
son of the

11 rendered mat, by rubbing with charcoal. The centre
Yard with of such a line can easily be displaced by rubbing ; which
ures.rmeaS is probably not true of the lines on the Prototype me-

The temperature is, by law, ascertained by a

tures for many hours. The point which upon such a Relative

thermometer will appear as 62° will really be consider- theSmetre
ably hotter (perhaps a third of a centigrade degree)

and y
'
ard’

than if its melting- point were marked in the other way.
If this circumstance is not attended to in making com-
parisons, there is danger of getting the yard too short
by perhaps one two-hundred-thousandth part. General
Comstock finds the metre equal to 39 - 36985 inches.
Several less trustworthy determinations give nearly the
same value. This makes the inch 2 • 540014 centimetres.

At the time the United States separated from Eng- The Ameri-
can unit of

land, no precise standard of length was legal *; and length,

none has ever been established. We are, therefore,
without any precise legal yard ; but the United States
office of weights and measures, in the absence of any
legal authorisation, refers standards to the British Im-
perial Yard.

The regular British unit of mass is the Pound, de- The British
fined as the mass of a certain platinum weight, called
the Imperial Pound. This was intended to be so con-
structed as to be equal to 7000 grains, each the 5260th
part of a former Imperial Troy pound. This would be
within 3 grains, perhaps closer, of the old avoirdupois
pound. The British pound has been determined by
Miller to be 0 - 4535926525 kilogramme ; that is the kilo-
gramme is 2 - 204621249 pounds.

At the time the United States separated from Great
Britain, there were two incommensurable units of
weight, the avoirdupois pound and the Troy pound. Con-

gress has since established a standard Troy pound,
which is kept in the Mint in Philadelphia. It was a
copy of the old Imperial Troy pound which had been
adopted in England after American independence. It

* The so-called standard of 1758 had not been legalised.

très.
mercurial thermometer ; but it was not known, at the
time of the construction of the standard, that such
thermometers may give quite different readings, ac-
cording to the mode of their manufacture. The quality
of glass makes considerable difference, and the mode
of determining the fixed points makes still more. The
best way of marking these points is first to expose the
thermometer for several hours to wet aqueous vapor at
a known pressure, and mark on its stem the height of
the column of mercury. The thermometer is then
brought down to the temperature of melting ice, as
rapidly as possible, and is immersed in pounded ice
which is melting and from which the water is not
allowed to drain off. The mercury being watched
with a magnifying glass is seen to fall, to come to
rest, and to commence to rise, owing to the lagging
contraction of the glass. Its lowest point is marked
on the stem. The interval between the two marks is
then divided into equal degrees. When such a ther-
mometer is used, it is kept at the temperature to be
determined for as long a time as possible, and imme-
diately after is cooled as rapidly as it is safe to cool it,
and its zero is redetermined. Thermometers, so made
and treated, will give very constant indications. But
the thermometers made at the Kew observatory, which

used for determining the temperature of the yard,
otherwise constructed. Namely the melting-point

is determined first and the boiling-point afterwards ;
and the thermometers are exposed to both tempera-

X unit of
mass.

are
are
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and S for second,
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In this SVS- The abso-
lute systemgramme mass, of the
United
States and
Great Brit-ain.

TheAmcri- is a hollow brass weight of unknown volume ; and no
can unit of
mass.

system.
accurate comparisons of it with modern standards have
ever been published. Its mass is, therefore, unknown.
The mint ought by law to use this as the standard of
gold and silver. In fact, they use weights furnished
by the office of weights and measures, and no doubt
derived from the British unit ; though the mint officers
profess to compare these with the Troy pound of the
United States, as well as they are able to do. The old
avoirdupois pound, which is legal for most purposes,
differed without much doubt quite appreciably from
the British Imperial pound ; butas the Office of Weights
and Measures has long been, without warrant of law,
standardising pounds according to this latter, the legal
avoirdupois pound has nearly disappeared from use of
late years. The makers of weights could easily detect
the change of practice of the Washington Office.

Measures of capacity are not spoken of here, be-
cause they are not used in mechanics. It may, how-
ever, be well to mention that they are defined by the
weight of water at a given temperature which they

the unit of length is
the unit of mass is .
the unit of time is . .

C ;
. G ;

S;
the unit of velocity is
the unit of

C/S;acceleration (which might
be called a “ galileo, ” because Gali-
leo Galilei first measured an accele-
ration) is

the unit of density is
the unit of momentum is

T
• C/S 3 ;

• G/C « ;
- G C/S ;

• . G C/S 2 ;the unit of force (called a dyne) is
the unit of pressure (called one mil-

lionth of an absolute atmosphere) is ,

the unit of energy ( vis viva, or work,
called an erg) is .

. • G/CS2 ;

£ GC2 /S2;
etc.

The gravitational system of measurement of me- The Gravi-chanical quantities, takes the kilogramme or pound, or system!rather the attraction of these towards the earth, com-pounded with the centrifugal force,— which is the ac-celeration called gravity, and denoted by g, and is dif -ferent at different places,— as the unit of force, andthe foot-pound or kilogramme-metre, being the amountof gravitational energy transformed in the descent of a
pound through a foot or of a kilogramme through ametre, as the unit of energy. Two ways of reconcilingthese convenient units with the adherence to the usual
standard of length naturallysuggest themselves,namely,first, to use the pound weight or the kilogramme weightdivided by g as the unit of

measure.
The universal unit of time is the mean solar day or

its one 86400th part, which is called a second,

real time is only employed by astronomers for special
purposes.

Whether the International or the British units are
employed, there are two methods of measurement of
mechanical quantities, the absolute and the gravitational.
The absolute is so called because it is not relative to
the acceleration of gravity at any station. This method
was introduced by Gauss.

The special absolute system, widely used by physi-
cists in the United States and Great Britain, is called

The unit of
time. Side-

mass, and, second, to adopt
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such a unit of time as will make the acceleration of g,
Thus, at Washington, theat an initial station, unity,

acceleration of gravity is 980 • 05 galileos. If, then,
we take the centimetre as the unit of length, and the

m.

THE LAWS OF THE CONSERVATION OF MOMENTUM, OF THE

CONSERVATION OF THE CENTRE OF GRAVITY, AND

OF THE CONSERVATION OF AREAS.

1. Although Newton’s principles are fully adequate Specia i i sa-
to deal with any mechanical problem that may arise, mechanical

it is yet convenient to contrive for cases more frequently
occurring, particular rules, which will enable us to treat
problems of this kind by routine forms and to dis-

pense with the minute discussion of them. Newton
and his successors developed several such principles.
Our first subject will be NEWTON S doctrines
ing freely movable material systems.

2. If two free masses m and ///' are subjected in Mutual ac-
the direction of their line of junction to the action of masses,

forces that proceed from other masses, then, in the in-
terval of time /, the velocities v, v will be generated,
and the equation (/ p' ) t = m v + viv' will subsist.
This follows from the equations pt=mv and /7'=
m'7.1. The sum mv -f- is called the momentum of
the system, and in its computation oppositely directed
forces and velocities are regarded as having opposite
signs. If , now, the masses ;//, m' in addition to being
subjected to the action of the external forces /, p'
also acted upon by internal forces, that is by such as
are mutually exerted by the masses on one another, these
forces will, by Newton’s third law, be equal and op-
posite, <7, — q. The sum of the impressed impulses
is, then, (/ -fi /' q — q) / = (/ -)" /') A the same as
before ; and, consequently, also, the total momentum
of the system will be the same. The momentum of a

0 -031943 second as the unit of time, the acceleration

of gravity will be 1 centimetre for such unit of time

squared. The latter system would be for most pur-

the more convenient ; but the former is the moreposes
familiar.

In either system, the formula p=mg is retained ;

but in the former g retains its absolute value, while in

the latter it becomes unity for the initial station.' In

Paris, g is 980 -96 galileos ; in Washington it is 980 -05

galileos. Adopting the more familiar system, and

taking Paris for the initial station, if the unit of force

kilogramme’s weight, the unit of length a centi-

rCompar i-
son of the
absolute
and gravi-
ta t ional
sys tems.

concern-
IS a
metre, and the unit of time a second, then the unit of

will be 1/981 -0 kilogramme, and the unit of

energy will be a kilogramme-centimetre, or (1/2)-

(1000/981 -o) G C 2/S 2. Then, at Washington the

gravity of a kilogramme will be, not 1, as at Paris,

but 980 -1/981 -o= 0 -99907 units or Paris kilogramme-

weights. Consequently, to produce a force of one Paris

kilogramme-weight we
to act upon 981 -0/980 -1 = 1 -00092 kilogrammes.]

In mechanics, as in some other branches of physics

closely allied to it, our calculations involve but three

fundamental quantities, quantities of space, quantities

of time, and quantities of mass,

a source of simplification and power in the science

which should not be underestimated.

mass

must allow Washington gravity

are

This circumstance is
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2AD. The point S will still remain the position of the
centre of gravity, as CS — 2DS. Therefore, two masses
cannot, by mutual action, displace their common centre
of gravity.

If our considerations involve several masses, dis- This law

tributed in any way in space, the same result will also systems of

be found to hold good for this case. For as no two of
the masses can displace their centre of gravity by mu-
tual action, the centre of gravity of the system as a
whole cannot be displaced by the mutual action of its
parts.

system is thus determined exclusively by external forces,
that is, by forces which masses outside of the system
exert on its parts.

Imagine a number of free masses m, m\ m". . . .
Son1SotfMo- distributed in any manner in space and acted on by
mentum.

Law of the

external forces p, p\ p" • • • • whose lines have any di-
These forces produce in the masses in the masses.

rections.
interval of time t the velocities v, v' , v” . . • . Resolve
all the forces in three directions xy y, z at right angles
to each other, and do the same with the velocities.
The sum of the impulses in the ^-direction will be equal
to the momentum generated in the ^-direction ; and
so with the rest,

between the masses m, m', m". . . ., pairs of equal and

Imagine freely placed in space a system of masses
in, m’, m". . . . acted on by external forces of any kind.
We refer the forces to a system of rectangular coordi-
nates and call the coordinates respectively x, r, z, xf ,
y, z , and so forth. The coordinates of the centre of
gravity are then

If we imagine additionally in action

opposite internal forces q, — q, r, — r, s,
these forces, resolved, will also give in every direction
pairs of equal and opposite components, and will con-
sequently have on the sum-total of the impulses no in-
fluence.
termined by external forces,

this fact is called the law of the conservation of women-

— s, etc.,

2m x
V =2my _

'ST* > d2, m
2m z
2m ’Once more the momentum is exclusively de-

The law which states
in which expressions x, y, z may change either by uni-
form motion or by uniform acceleration or by any other
law, according as the mass in question is acted on by
no external force, by a constant external force, or by a
variable external force. The centre of gravity will have
in all these cases a different motion, and in the first
may even be at rest. If now internal forces, acting be-
tween every two masses, iri and ///", come into play in
the system, opposite displacements w\ w” will thereby
be produced in the direction of the lines of junction
of the masses, such that, allowing for signs, viw' -(-
m"w" = 0. Also with respect to the components x 1
and x 2 of these displacements the equation m' x 1 -|-
m" x2 — 0 will hold. The internal forces consequently

turn.
3. Another form of the same principle, which New-

ton likewise discovered, is called the law of the conscr-
Law of the
Conserva-
tion of the
Centre of
Gravity. vation of the centre of grav-

Q ity. Imagine in A and B
(Fig. 149) two masses, 2 m
and m, in mutual action,

say that of electrical repulsion ; their centre of gravity
is situated at S, where J3S= 2 AS. The accelerations
they impart to each other are oppositely directed and
in the inverse proportion of the masses.

of the mutual action, 2 m describes a dis-

2 m m
D A S

Fig. 149-

If , then, in
consequence
tance AD, m will necessarily describe a distance BC=
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produce in the expressions <J, //, 5 only such additions
as mutually destroy each other. Consequently, the
motion of the centre of gravity of a system is determined
by external forces only.

If we wish to know the acceleration of the centre of
gravity of the system, the accelerations of the system's
farts must be similarly treated. If cp, <//, <p". . . . de-
note the accelerations of ///, ///', m". . . . in any direc-
tion, and cp the acceleration of the centre of gravity in
the same direction, ç)= 2?n cp/ 2m, or putting the
total mass 2 ni = M, (p = 2m cp/ M. Accordingly, we
obtain the acceleration of the centre of gravity of a
system in any direction by taking the sum of all the
forces in that direction and dividing the result by the
total mass. The centre of gravity of a system moves
exactly as if all the masses and all the forces of the
system were concentrated at that centre. Just as a
single mass can acquire no acceleration without the
action of some external force, so the centre of gravity
of a system can acquire no acceleration without the
action of external forces.

4. A few examples may now be given in illustra-
tion of the principle of the conservation of the centre
of gravity.

Imagine an animal free in space. If the animal
move in one direction a portion m of its mass, the re-
mainder of it M will be moved in the opposite direction,
always so that its centre of gravity retains its original
position. If the animal draw back the mass the
motion of M also will be reversed. The animal is un-
able, without external supports or forces, to move itself
from the spot which it occupies, or to alter motions im-
pressed upon it from without.

A lightly running vehicle A is placed on rails and

loaded with stones. A m a n stationed in the vehicle of a v e-
. r . . . h i d e, from

casts out the stones one after another, m the same di- which

rection. The vehicle, supposing the friction to be suf - cast,

ficiently slight, will at once be set in motion in the op-
posite direction. The centre of gravity of the system
as a whole (of the vehicle -f- the stones) will, so far as
its motion is not destroyed by external obstacles, con-
tinue to remain in its original spot. If the same man
were to pick up the stones from without and place
them in the vehicle, the vehicle in this case would also
be set in motion ; but not to the same extent as before,
as the following example will render evident.

A projectile of mass m is thrown with a velocity v Motion of a
. cannon and

from a cannon of mass AI. In the reaction, M also re- its projec-
tile.

ceives a velocity, Vf such that, making allowance for
the signs, MV + mv= 0. This explains the so-called
recoil. The relation here is V = — ([m/ M ) v ; or, for
equal velocities of flight, the recoil is less according as
the mass of the cannon is greater than the mass of the
projectile. If the work done by the powder be expressed
by A, the vires viva will be determined by the equation
A f V2 / 2 -|- m v2 /2= A ; and, the sum of the momenta
being by the first-cited equation = 0, we readily obtain
V=V 2Am)M ( M -|- ni).
the mass of the exploded powder, the recoil vanishes
when the mass of the projectile vanishes. If the mass
m were not expelled from the cannon but sucked into
it, the recoil would take place in the opposite direc-
tion. But it would have no time to make itself visible
since before any perceptible distance had been trav-
ersed, m would have reached the bottom of the bore.
As soon, however, as M and m are in rigid connection
with each other, as soon, that is, as they are relatively
at rest to each other, they must be absolutely at rest,

Accelera-
tion of the
centre of
gravity of a
system.

Consequently, neglecting
Movement
of an ani-
mal free in
space.
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for the centre of gravity of the system as a whole has
no motion. For the same reason no considerable mo-

Of the motion of the fragments of a bursting bomb A bursting

we know nothing. But it is plain, by the law of the
conservation of the centre of gravity, that, making al-
lowance for the resistance of the air and the obstacles
the individual parts may meet, the centre of gravity of
the system will continue after the bursting to describe
the parabolic path of its original projection.

5. A law closely allied to the law of the centre of Law of the
. . . Conserva-

gravity, and similarly applicable to free systems, is thetionof
Areas.

principle of the conservation of areas. Although Newton

tion can take place when the stones in the preceding
example are taken into the vehicle, because on the
establishment of rigid connections between the vehicle
and the stones the opposite momenta generated are
destroyed. A cannon sucking in a projectile would
experience a perceptible recoil only if the sucked in
projectile could fly through it.

Imagine a locomotive freely suspended in the air, tOscilla-
tions of the
body of a or, what will subserve the same purpose, at rest with
locomotive. insufficient friction on the rails. By the law of the

conservation of the centre of gravity, as soon as the
heavy masses of iron in connection with the piston- *
rods begin to oscillate, the body of the locomotive will
be set in oscillation in a contrary direction— a motion
which may greatly disturb its uniform progress. To
eliminate this oscillation, the motion of the masses of
iron worked by the piston-rods must be so compensated
for by the contrary motion of other masses that the
centre of gravity of the system as a whole will remain
in one position. In this way no motion of the body of
the locomotive will take place. This is done by affix-

ing masses of iron to the driving-wheels.
The facts of this case may be very prettily shown

by Page’s electromotor (Fig. 150). When the iron
core in the bobbin AB is projected by the internal forces
acting between bobbin and core to the right, the body
of the motor, supposing it to rest on lightly movable
wheels rr, will move to the left. But if to a spoke of
the fly-wheel R we affix an appropriate balance-weight
a, which always moves in the contrary direction to the
iron core, the sideward movement of the body of the
motor may be made totally to vanish.

had, so to say, this principle within his very grasp, it
was nevertheless not enunciated until a long time after-
wards by EULER, D ARCY, and DANIEL BERNOULLI.
Euler and Daniel Bernoulli discovered the law almost
simultaneously (1746), on the occasion of treating a
problem proposed by Euler concerning the motion of
balls in rotatable tubes, being led to it by the consider-
ation of the action and reaction of the balls and the
tubes. D’Arcy (1747) started from Newton’s investiga-
tions, and generalised the law of sectors which the
latter had employed to explain Kepler’s laws.

Illustration
of the last
case.
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any point to the several masses, and project on any
plane the areas the radii describe, the sum of the
products of these areas into the respective masses will
be independent of the action of internal forces. This
is the law of the conservation of areas.

Two masses m, m' (Fig. 151) are in mutual action.
By virtue of this action the masses describe the dis-
tances AH , CD in the direction of their line of junction.
Allowing for the signs, then, m . AH -f- w' • CD= 0.
Drawing radii vectores to the moving masses from any

point O, and regarding
the areas described in
opposite senses by the

. radii as having opposite
signs, we further obtain
m.OAH ni .OCD= 0.
Which is to say, if two
masses mutually act on
each other, and radii vec-
tores be drawn to these
masses from any point,
the sum of the areas
described by the radii
multiplied by the respec-

If the masses are also acted on
by external forces and as the effect of these the areas
OAE and OCF are described, the joint action of the
internal and external forces, during any very small
period of time, will produce the areas OAG and OCH.
But it follows from Varignon’s theorem that

Deduction
of the law.

If a single mass not acted on by forces is moving intcrp

^
rctn-

uniformly forward in a straight line and we draw a law.
radius vector to the mass from any point O, the area
described by the radius increases proportionally to the
time. The same law holds for 2mf in cases in which
several masses not acted on by forces are moving,
where we signify by the summation the algebraic sum
of all the products of the areas (/) into the moving
masses— a sum which we shall hereafter briefly refer
to as the sum of the mass-areas. If internal forces
come into play between the masses of the system, this
relation will remain unaltered. It will still subsist,
also, if external forces be applied whose lines of action
pass through the fixed point O, as we know from the
researches of Newton.

If the mass be acted on by an external force, the
area f described by its radius vector will increase in
time by the law f= at 2 jo. -)- hi -(- c, where a depends
on the accelerative force, b on the initial velocity, and
c on the initial position. The sum 2mf increases by
the same law, where several masses are acted upon by
external accelerative forces, provided these may be re-

garded as constant, which for sufficiently small inter-

vals of time is always the case. The law of areas in
this case states that the internal forces of the system
have ?w influence on the increase of the sum of the mass-
areas.

tive masses is = 0.

inOAG -f- 111 OCH — in OAE -|- 111 OCF -f-
mOAH + nil OCD = mOAE + in OCF;

in other words, the sum of the products of the areas so de-
scribed into the respective masses which compose a system
is unaltered by the action of internal forces.

If we have several masses, the same thing may be
asserted, for every two masses, of the projection on any
given plane of the motion. If we draw radii from

9

A free rigid body may be regarded as a system
whose parts are maintained in their relative positions'
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Uniform ro- by internal forces. The law of areas is applicable there
tation of a .
free rigid fore to this case also.
body.

axis, a free system. The sum of the mass-areas gen- itscxpiana-
erated, for the case of rest, is = 0. But the wheel of ia°?. bythe

the motor being set in rotation by the action of the in-
ternal electro-magnetic forces, a sum of mass-areas is

A simple instance is afforded
by the uniform rotation of a rigid body about an axis
passing through its centre of gravity. If we call m a
portion of its mass, r the distance of the portion from
the axis, and a its angular velocity, the sum of the
mass-areas produced in unit of time will be 2 m
(/'/2) ra= ( a/ 2) 2nir2 , or, the product of the moment
of inertia of the system into half its angular velocity.
This product can be altered only by external forces.

6. A few examples may now be cited in illustration
of the law. '

i
Illustrative
examples.

If two rigid bodies K and K' are connected, and K
is brought by the action of internal forces into rotation
relatively to K ’ , immediately K' also will be set in ro-
tation, in the opposite direction. The rotation of K
generates a sum of mass-areas which, by the law, must
be compensated for by the production of an equal, but
opposite, sum by AT'.

This is very prettily exhibited by the electromotor
of Fig. 152. The fly-wheel of the motor is placed in

ÇT

Opposite
rotation of
the wheel

£nfree°eiec-f a horizontal plane, and the motor thus attached to a
tro-motor.

«

vertical axis, on which it can freely turn. The wires
conducting the current dip, in order to prevent their
interference with the rotation, into two conaxial gutters
of mercury fixed on the axis. The body of the motor
(A"') is tied by a thread to the stand supporting the
axis and the current is turned on. As soon as the fly-
wheel (A"), viewed from above, begins to rotate in the
direction of the hands of a watch, the string is drawn
taut and the body of the motor exhibits the tendency
to rotate in the opposite direction— a rotation which im-
mediately takes place when the thread is burnt away.

The motor is, with respect to rotation about its

1

produced which, as the total sum must remain = 0, is
compensated for by the rotation in the opposite direc-
tion of the body of the motor. If an index be attached
to the body of the motor and kept in a fixed position
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sucked into the spokes must participate in the motion Expiana-
of the latter and therefore can produce no reactional variations,

rotation, but it also partly results from the difference
of the motion which the air outside the tube assumes
in the two cases. In blowing, the air flows out in jets,
and performs rotations. In sucking, the air comes in
from all sides, and has no distinct rotation.

The correctness of this view is easily demonstrated.
If we perforate the bottom of a hollow cylinder, a closed
band-box for instance, and
place the cylinder on the steel
pivot of the tube R, after the
side has been slit and bent in
the manner indicated in Fig.
154, the box will turn in the
direction of the long arrow
when blown into and in the
direction of the short arrow when sucked on. The air,

Fig. 154.

here, on entering the cylinder, can continue its rotation
unimpeded, and this motion is accordingly compensated
for by a rotation in the opposite direction.

7. The following case also exhibits similar condi- Reaction-
Imagine a tube ( Fig. 155a) which, runningtions.

straight from a to b, turns at right angles
to itself at the latter point, passes to e,
describes the circle edef \ whose plane ^is at right angles to ab, and whose cen-
tre is at b, then proceeds from / to g,
and, finally, continuing the straight line
ab, runs from g to /1. The entire tube
is free to turn on an axis ah. If we
pour into this tube, in the manner in-
dicated in Fig. 155 />, a liquid, which flows in the di-
rection edef , the tube will immediately begin to turn

7

h
Fig. 155 a.

r
!
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angular velocity ensues. The principle might
ceivably be employed, instead of Foucault’s method,
to demonstrate the rotation of the earth, [in fact, some
attempts at this have been made, with no very marked
success].

A phenomenon which substantially embodies the Rotating

conditions last suggested is the following,

funnel, with its axis placed in a vertical position, is
rapidly filled with a liquid in such a manner that the
stream does not enter in the direction of the axis but
strikes the sides. A slow rotatory motion is thereby
set up in the liquid which as long as the funnel is full, is
not noticed. But when the fluid retreats into the neck
of the funnel, its moment of inertia is so diminished
and its angular velocity so increased that a violent
eddy with considerable axial depression is created.
Frequently the entire effluent jet is penetrated by an
axial thread of air.

8. If we carefully examine the principles of the Both prin-
centre of gravity and of the areas, we shall discover in simply spV

pin ] P'lQPQnf

both simply convenient the law of, r . f action andmodes of expression, for reaction,

practical purposes, of
a well -known property
of mechanical phenom-
ena. To the accelera-
tion cp of one mass m
there always corresponds a contrary acceleration cp' of
a second mass in' , where allowing for the signs m <p -f -
m' cp’ = 0. To the force m cp corresponds the equal
and opposite force m' q/ . When any masses rn and

describe with the contrary accelerations 2 cp and qj
the distances 'iw and 7u (Fig. 156), the position of
their centre of gravity S remains unchanged, and the

in the direction fcdc. This impulse, however, ceases,
the moment the liquid reaches the point f and flowing
out into the radius fg is obliged to join in the motion
of the latter. By the use of a constant stream of liquid,

therefore, the rotation
of the tube may soon
be stopped. But if the
stream be interrupted,
the fluid, in flowing off
through the radius fg,
will impart to the tube
a motional impulse in
the direction of its own
motion, edef and the
tube will turn in this di-
rection. All these phe-
nomena are easily ex-
plained by the law of
areas.

con-

. l iquid in a
A glass funnel.

V

The trade-winds, the
deviation of the oceanic
currents and of rivers,
Foucault’ s pendulum
experiment, and the
like, may also be treated
as examples of the law

Another pretty illustration is afforded by
bodies with variable moments of inertia. Let a body
with the moment of inertia © rotate with the angular
velocity a and, during the motion, let its moment
of inertia be transformed by internal forces, say by
springs, into ©', a will then pass into a' , where aG=
a’ Q’ , that is a' = a (©/©'). On any considerable dimi-
nution of the moment of inertia, a great increase of

Additional of areas.
illustra-
tions.

2 m
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tion and their source, we only half comprehend them,
and shall scarcely recognise actual phenomena
amples of the theory. We are in a position like that
of a person who is suddenly placed on a high tower
but has not previously travelled in the district round
about, and who therefore does not know how to inter-
pret the objects he sees.

305
sum of their mass-areas with respect to any point O

Thisis, allowing for the signs, 2 m . f -\- in . if = 0.
simple exposition shows us, that the principle of the
centre of gravity expresses the same thing with respect
to parallel coordinates that the principle of areas ex-
presses with respect to polar coordinates. Both contain
simply the fact of reaction.

The principles in question admit of still another
simple construction. Just as a single body cannot,

satfons ofh without the influence of external forces, that is, without
the law of
inertia.

as ex-• *

But they
may also he
construed I V.

THE LAWS OF IMPACT.
the aid of a second body, alter its uniform motion of
progression or rotation, so also a system of bodies can-
not, without the aid of a second system, on which it

to speak, brace and support itself , alter what

1. The laws of impact were the occasion of the Historical. . . . position ofenunciation of the most important principles of me- the Laws of
chanics, and furnished also the first examples of the
application of such principles.can, so

may properly and briefly be called its mean velocity of
progression or rotation. Both principles contain, thus,
a generalised statement of the law of inertia, the correct-
ness of which in the present form we not only sec but

As early as 1639, a
contemporary of Galileo, the Prague professor, MARCUS
MARCI (born in 1595), published in his treatise De Pro-portionc Motus (Prague) a few results of his investiga-
tions on impact.
elastic percussion another of the same size at rest, loses
its own motion and communicates an equal quantity

He also enunciates, though not always
with the requisite precision, and frequently mingled
with what is false, other propositions which still hold
good. Marcus Marci was a remarkable man. He pos-
sessed for his time very creditable conceptions regard-
ing the composition of motions and “ impulses.” In
the formation of these ideas he pursued a method sim -
ilar to that which Roberval later employed. He speaks
of partially equal and opposite motions, and of wholly
opposite motions, gives parallelogram constructions,
and the like, but is unable, although he speaks of
accelerated motion of descent, to reach perfect clear-
ness with regard to the idea of force and consequently
also with regard to the composition of forces. In spite

He knew that a body striking infeel.
This feeling is not unscientific ; much less is it

detrimental. Where it does not replace conceptual in-
sight but exists by the side of it, it is really the funda-
mental requisite and sole evidence of a complete mastery

We are ourselves a fragment of

Importance
of an in-
stinctive
grasp of
mechanical
facts.

to the other.

of mechanical facts,

mechanics, and this fact profoundly modifies our mental
life.* No one will convince us that the consideration
of mechanico-physiological processes, and of the feel-

and instincts here involved, must be excluded from
If we know principles like those

* •

ings
scientific mechanics,

of the centre of gravity and of areas only in their ab-
stract mathematical form, without having dealt with the
palpable simple facts, which are at once their applica- an

* For the development of this view, see E. Mach, Grundlinien der Lehre
den Be-djcgiingsempfi.ndungen. (Leipsic: Engelmann, 1875.)von

1
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of this, however, he discovers Galileo’s theorem re-
garding the descent of bodies in the chords of circles,

year previously, we cannot, in view of the condition of
things produced in Central Europe by the Thirty Years’

The re-
searches of
Marcus
Marci. I

»

«
I
1

T

War, assume that Marci was acquainted with them.
Not only would the many errors in Marci’s book thus
be rendered unintelligible, but it would also have to

also a few propositions relating to the motion of the
pendulum, and has knowledge of centrifugal force and

Although Galileo’s Discourses had appeared a
I

so on.
1
t
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in a jet into vessel II. A portion of the pressure due Galileo’s
to the resting weight of the water in I is lost and
placed by an action of impact on vessel II. Galileo
expected a depression of the whole scale, by which he
hoped with the assistance of a counter-weight to de-
termine the effect of the impact. He was to some ex-
tent surprised to obtain no depression, and he was un-
able, it appears, perfectly to clear up the matter in his
mind.

Thesources be explained how Marci, as late as 1648, in a continu-
of Marci’s . . . . . .
knowledge, ation of his treatise, could have found it necessary to

defend the theorem of the chords of circles against the
Jesuit Balthasar Conradus. An imperfect oral com-
munication of Galileo’s researches is the more reason-

experi-re- ment.

able conjecture.* When we add to all this that Marci
was on the very verge of anticipating Newton in the
discovery of the composition of light, we shall recog-

His tnise in him a man of very considerable parts,

writings are a worthy and as yet but slightly noticed
object of research for the historian of physics. Though
Galileo, as the clearest-minded and most able of his
contemporaries, bore away in this province the palm,
we nevertheless see from writings of this class that he
was not by any means alone in his thought and ways
of thinking.

2. GALILEO himself made several experimental at-
tempts to ascertain the laws of impact ; but he was not
in these endeavors wholly successful. He principally
busied himself with the force of a body in motion, or
with the ‘‘force of percussion, ” as he expressed it,
and endeavored to compare this force with the pressure
of a weight at rest, hoping thus to measure it. To this
end he instituted an extremely ingenious experiment,
which we shall now describe.

3. To-day, of course, the explanation is not diffi-
cult. By the removal of the plug there is produced,

1

)*4 I?®
The re-
searches of
Galileo.

ZC'J
II

FÎR - 157-
first, a diminution of the pressure. This consists of Expiana-
two factors : (1) The weight of the jet suspended in experf

lhc

the air is lost ; and (2) A reaction-pressure upwards is
exerted by the effluent jet on vessel I (which acts like
a Segner’s wheel). Then there is an increase of pres-
sure (Factor 3) produced by the action of the jet on the
bottom of vessel II. Before the first drop has reached
the bottom of II, we have only to deal with a diminu-
tion of pressure, which, when the apparatus is in full
operation, is immediately compensated for. This initial

A vessel I (Fig. 157) in whose base is a plugged
orifice, is filled with water, and a second vessel II is
hung beneath it by strings ; the whole is fastened to
the beam of an equilibrated balance. If the plug is
removed from the orifice of vessel I, the fluid will fall

* ment.

* I have been convinced, since the publication of the first edition of this
work, (see E. Wohlwill’s researches, Die Entdcckung des Beharrungsgesctzes,
in the ZeitschriftfHr Vôlkcrpsychologic, 1884, XV, page 387,) that Marcus Marci
derived his information concerning the motion of falling bodies, from Galileo’s
earlier Dialogues.— Author' s Appendix to Second Edition.
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Mathemat-
ical devel-
opment of
the result.'

Détermina- depression was, in fact, all that Galileo could observe.
tion of the
mechanical Get us imagine the apparatus in operation, and denote
factors in-
volved.

a S V 2g /l V 2g(h 4- /’)
&

The total variation of the pressure is accordinglythe height the fluid reaches in vessel I by h, the corre-
sponding velocity of efflux by v, the distance of the
bottom of I from the surface of the fluid in II by k , the
velocity of the jet at this surface by w, the area of the
basal orifice by a, the acceleration of gravity by g, and
the specific gravity of the fluid by s. To determine
Factor (1) we may observe that v is the velocity ac-
quired in descent through the distance h. We have,
then, simply to picture to ourselves this motion of de-
scent continued through k. The time of descent of
the jet from I to II is therefore the time of descent
through h 4- k less the time of descent through h.
During this time a cylinder of base a is discharged
with the velocity v. Factor (1), or the weight of the
jet suspended in the air, accordingly amounts to

as

— 2 a h s

+ a S C2 g h l/2g { h+ k )g
or, abridged,

— 2 as\y h (// -j- k) — //] — 2 ahs

-|- 2 as}/ h {Ji -j- /'),

— which three factors completely destro}' each other. In
the very necessity of the case, therefore, Galileo could
only have obtained a negative result.

We must supply a brief comment respecting Fac- A comment

tor (2). It might be supposed that the pressure on the by the ex-
basal orifice which is lost, is ahs and not 2 a h s. But
this statical conception would be totally inadmissible
in the present, dynamical case. The velocity v is not
generated by gravity instantaneously in the effluent
particles, but is the outcome of the mutual pressure
between the particles flowing out and the particles left
behind ; and pressure can only be determined by the
momentum generated. The erroneous introduction of
the value ahs would at once betray itself by self -con-
tradictions.

If Galileo’s mode of experimentation had been less
elegant, he would have determined without much diffi-
culty the pressure which a continuous fluid jet exerts.
But he could never, as he soon became convinced,
have counteracted by a pressure the effect of an instan -
taneous impact. Take— and this is the supposition of

^ (h+h)V 2 gh as.
To determine Factor (2) we employ the familiar

equation mv — pt. If we put t — 1, then mv= p, that
is the pressure of reaction upwards on I is equal to the
momentum imparted to the fluid jet in unit of time.
We will select here the unit of weight as our unit of
force, that is, use gravitation measure. We obtain for
Factor (2) the expression [pv {s/g)\v= p, (where the
expression in brackets denotes the mass which flows
out in unit of time,) or

a'\ / 2 gh . — . 1/2 gh = 2 ahs.
«5

Similarly we find the pressure on II to be

a v . ] w= q, or factor 3 :
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Galileo’s Galileo— a freely falling, heavy body. Its final veloc-
ity, we know, increases proportionately to the time.
The very smallest velocity requires a definite portion
of time to be produced in (a principle which even Mari-
otte contested). If we picture to ourselves a body
moving vertically upwards with a definite velocity, the
body will, according to the amount of this velocity,
ascend a definite time, and consequently also a definite
distance. The heaviest imaginable body impressed
in the vertical upward direction with the smallest im-
aginable velocity will ascend, be it only a little, in
opposition to the force of gravity. If , therefore, a
heavy body, be it ever so heavy, receive an instan-
taneous upward impact from a body in motion, be the
mass and velocity of that body ever so small, and such
impact impart to the heavier body the smallest imagin-
able velocity, that body will, nevertheless, yield and

We compare the momentum de-jet by a pressure,

stroyed per second of time with the pressure actingreasoning.

per second of time, that is, homogeneous quantities of
the form ft.

4. The first systematic treatment of the laws ofThesyste-
impact was evoked in the year 1668 by a request of the mem of the. . . laws of im-Royal Society of London. Three eminent physicists pact.

WALLIS (Nov. 26, 1668), WREN (Dec. 17, 1668), and
HUYGENS (Jan. 4, 1669) complied with the invitation of
the society, and communicated to it papers in which,
independently of each other, they stated, without de-
ductions, the laws of impact. Wallis treated only of
the impact of inelastic bodies, Wren and Huygens only
of the impact of elastic bodies. Wren, previously to
publication, had tested by experiments his theorems,
which, in the main, agreed with those of Huygens.
These are the experiments to which Newton refers in
the Principia. The same experiments were, soon after
this, also described, in a more developed form, byMa-
riotte, in a special treatise, Sur le Choc des Corps. Ma-
riotte also gave the apparatus now known in physical
collections as the percussion-machine.

1
Compari- move somewhat in the upward direction. The slightest
son of the
ideas im-
pact and
pressure.

Vimpact, therefore, is able to overcome the greatest pres-
sure ; or, as Galileo says, the force of percussion com-
pared with the force of pressure is infijiitely great. This
result, which is sometimes attributed to intellectual ob-
scurity on Galileo’s part, is, on the contrary, a bril-
liant proof of his intellectual acumen. We should say
to-day, that the force of percussion, the momentum,
the impulse, the quantity of motion mv, is a quantity
of different dimensions from the pressure p. The dimen-
sions of the former are mlt ~1 , those of the latter mlt ~2 .
In reality, therefore, pressure is related to momentum
of impact as a line is to a surface. Pressure is /, the
momentum of impact i sp t. Without employing mathe-
matical terminology it is hardly possible to express the
fact better than Galileo did. We now also see why it
is possible to measure the impact of a continuous fluid

According to Wallis, the decisive factor in impact Wallis’s re-
is momentum, or the product of the mass ( pondus) into
the velocity (celeritas). By this momentum the force
of percussion is determined. If two inelastic bodies
which have equal momenta strike each other, rest will
ensue after impact. If their momenta are unequal,
the difference of the momenta will be the momentum

1

i after impact. If we divide this momentum by the sum
of the masses, wre shall obtain the velocity of the mo-
tion after the impact. Wallis subsequently presented
his theory of impact in another treatise, Mechanica sive
de Motu, London, 1671. All his theorems may be

r
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brought together in the formula now in common use,
u= ( m v -f in v' ) / ( in -f~ m' )} in which in, 111 denote the
masses, v, v' the velocities before impact, and u the

Huygens, now, imagines two equal elastic masses, First, equal
Q|

which meet with equal and opposite velocities v. After masses ex-
the impact they rebound from each other with exactly Focities.ve

the same velocities. Huygens is right in assuming and
not deducing this. That elastic bodies exist which re-
cover their form after impact, that in such a transac-

tion no perceptible vis viva is lost, are facts which ex-
perience alone can teach us. Huygens, now, conceives
the occurrence just described, to take place on a boat
which is moving with the velocity v. For the specta-
tor in the boat the previous case still subsists ; but for
the spectator on the shore the velocities of the spheres
before impact are respectively 2 v and 0, and after im-
pact 0 and 2 v. An elastic body, therefore, impinging
on another of equal mass at rest, communicates to the
latter its entire velocity and remains after the impact
itself at rest. If we suppose the boat affected with any
imaginable velocity, u, then for the spectator on the
shore the velocities before impact will be respectively
u -\- v and u — v, and after impact u — v and u v.
But since u + v and u — v may have any values what-
soever, it may be asserted as a principle that equal
elastic masses exchange in impact their velocities.

A body at rest, however great, is set in motion Second, the. . relative ve-
by a body which strikes it, however small ; as Ga- locity of ap-... . . TT

proach and
liieo pointed out. Huygens, now, recession is

the same.
shows, that the approach of the
bodies before impact and their
recession after impact take place
with the same relative velocity. A
body m impinges on a body of mass M at rest, to which
it imparts in impact the velocity, as yet undetermined,
w. Huygens, in the demonstration of this proposition,
supposes that the event takes place on a boat moving

velocity after impact.
5. The ideas which led Huygens to his results, areHuygens's

and results, to be found in a posthumous treatise of his, De Motu
Corporum ex Percussione, 1703. We shall examine these

detail. The assumptions from which Huygensin some

mo
Fig. is»-

An Illustration from De Percussione (Huygens).

proceeds are : (1) the law of inertia ; (2) that elastic
bodies of equal mass, colliding with equal and oppo-

site velocities, separate after impact with the same ve-
locities ; (3) that all velocities are relatively estimated ;
(4) that a larger body striking a smaller one at rest
imparts to the latter velocity, and loses a part of its
own ; and finally (5) that when one of the colliding
bodies preserves its velocity, this also is the case with
the other.

mo
v *

Fig. 160.

r
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from M towards vi with the velocity wji. The initial
velocities are, then, v — w ji and — «//2 ; and the final
velocities, x and w/2. But as M has not altered
the value, but only the sign, of its velocity, so ni, if a
loss of vis viva is not to be sustained in elastic impact,

the velocities of the impinging bodies are not inversely This propo-
proportional to the masses, they may be made such by the°fiction

the fiction of a boat in motion. The proposition thus boatload?
to apply to
all cases.includes all imaginable cases.

The conservation of vis viva in impact is asserted
by Huygens in one of his last theorems (n), which he
subsequently also handed in to the London Society.
But the principle is unmistakably at the foundation of
the previous theorems.

can only alter the sign of its velocity. Hence, the final
velocities are — ( v — wj'i ) and -\- wji. As a fact,
then, the relative velocity of approach before impact
is equal to the relative velocity of separation after im-
pact. Whatever change of velocity a body may suffer,
in every case, we can, by the fiction of a boat in mo-
tion, and apart from the algebraical signs, keep the
value of the velocity the same before and after impact.
The proposition holds, therefore, generally.

If two masses M and m collide, with velocities V

6. In taking up the study of any event or phenom- Typical
. . . . . inodes of

enon A, we may acquire a knowledge of its component natural in-
elements by approaching it from the point of view of a
different phenomenon /?, which we already know; in
which case our investigation of A will appear as the
application of principles before familiar to us. Or, we
may begin our investigation with A itself , and, as na-
ture is throughout uniform, reach the same principles
originally in the contemplation of A. The investiga-
tion of the phenomena of impact was pursued simul-
taneously with that of various other mechanical pro-
cesses, and both modes of analysis were really pre-
sented to the inquirer.

To begin with, we may convince ourselves that the impact in
the ^6\V”

problems of impact can be disposed of by the New- tonian
. . . . - . . . point of

toman principles, with the help of only a minimum of view.
new experiences. The investigation of the laws of im-
pact contributed, it is true, to the discovery of New-
ton’s laws, but the latter do not rest solely on this foun-
dation. The requisite new experiences, not contained
in the Newtonian principles, are simply the informa-
tion that there are elastic and inelastic bodies. Inelastic
bodies subjected to pressure alter their form without
recovering it ; elastic bodies possess for all their forms
definite systems of pressures, so that every alteration

quiry.

Third ,if the

of approach and v inversely proportional to the masses, M after im-
are inverse-
ly propor-
tional to the
masses, so

“ ciUesof impact are Vx and vx ; then by the preceding proposi-
recession.

pact will rebound with the velocity V and ni with the
Let us suppose that the velocities aftervelocity v.

tion we must haveVv = V 1 + v 19 and by the prin-
ciple of vis viva

MV 2 .

2 2
Let us assume, now, that vx = v + w ; then, neces-
sarily, Vx = V — w ; but on this supposition

mv2 MVj 2 m v12
2
"" ’+2

1 7 ) 2 7£J 27 + (d/ + ,«) .
~J Ci

MV 2MVf m v j
2

2 2 ô— +Ci

And this equality can, in the conditions of the case,
only subsist if w = 0 ; wherewith the proposition above
stated is established.

Huygens demonstrates this by a comparison, con-
structively reached, of the possible heights of ascent
of the bodies prior and subsequently to impact. If
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of form is associated with an alteration of pressure, and
Elastic bodies recover their form ; and the

forces that induce the form-alterations of bodies do not

tells us has no influence on the occurrence,) also readily
perceive additional cases. For equal inelastic masses
with velocities v and 0 or v and v' the velocity after
impact is vt/2 or ( v -)- z'')/2. It stands to reason that
we can pursue such a line of reflection only after ex-
perience has informed us what the essential and de-
cisive features of the phenomena are.

If we pass to unequal masses, we must not only The expe-. . riential
know from experience that mass generally is of conse- conditions, . of this
quence, but also in what manner its influence is effec- method,

tive. If, for example, two bodies of masses 1 and 3
with the velocities v and V collide, we might reason

vice versa.

come into play until the bodies are in contact.
Let us consider two inelastic masses M and m mov-

ing respectively with the velocities V and v. If these
masses come in contact while possessed of these un-

equal velocities, internal form-altering forces will be

First , in-
elastic
masses.

1set up in the system AT, m. These forces do not alter
the quantity of motion of the system, neither do they
displace its centre of gravity. With the restitution of
equal velocities, the form -alterations cease and in in-
elastic bodies the forces which produce the alterations
vanish. Calling the common velocity of motion after
impact u, it follows that Mu -f- mu = MV + Mv, or
u= ( MV + mv ) / ( M -f- vi), the rule of Wallis.

Now let us assume that we are investigating the
y.

Impact in

lent point phenomena of impact without a previous knowledge of
of view. 77V771

Newton’s principles. We very soon discover, when
we so proceed, that velocity is not the sole determina-
tive factor of impact ; still another physical quality is
decisive— weight, load, mass, pondus, moles, massa. The
moment we have noted this fact, the simplest case is
easily dealt with. If two bodies of equal weight or

equal mass collide with equal and
opposite velocities ; if , further, the
bodies do not separate after impact
but retain some common velocity,
plainly the sole uniquely deter-

mined velocity after the collision is the velocity 0. If,
further, we make the observation that only the dif-
ference of the velocities, that is only relative velocity,
determines the phenomenon of impact, we shall, by
imagining the environment to move, (which experience

Fig. 163.

thus. We cut out of the mass 3 the mass 1 (Fig. 162),
and first make the masses 1 and 1 collide : the result-
ant velocity is {y -\- V )/ 2. There are now left, to
equalise the velocities ( v -\- V )/ 2 and V , the
1 + 1 = 2 and 2, which applying the same principle
gives

masses

O O
777 m

Fig. 161.

v + V
2 + F v + 3V v + 3V

~ 1 + 3
"

Let us now consider, more generally, the masses
m and m' , which we represent in Fig. 163 as suitably
proportioned horizontal lines. These masses are af -
fected with the velocities v and v , which we represent
by ordinates erected on the mass-lines. Assuming that

2 4
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the motion of the centre of gravity of the system re-
main unchanged, the common equalised velocity will be

MC -|- m c
M -f - m

its points of /// we cut off from in a portion m. The offsettingcontact . 0

of m and m gives the mass 2 /// with the velocity ( v -)-
?/)/2. The dotted line indicates this relation. We
proceed similarly with the remainder 111 — m. We cut
off from 2 m a portion vi — ///, and obtain the mass
2m — (///' — vi ) with the velocity (go -|- v' )/ 2 and the
mass 2 (/// ' — m ) with the velocity [ fv 4- ?/)/2 4- z/]/2.
In this manner we may proceed till we have obtained
for the whole mass vi vi the same velocity u. The
constructive method indicated in the figure shows very
plainly that here the surface equation (;;/ -|- vi ) u —
mv -f- niv subsists. We readily perceive, however,
that we cannot pursue this line of reasoning except the
sum mv 7)i v , that is the form of the influence of m
and v, has through some experience or other been pre-
viously suggested to us as the determinative and de-
cisive factor. If we renounce the use of the Newtonian
principles, then some other specific experiences
corning the import of mv which are equivalent to those
principles, are indispensable.

Second , the 7. The impact of elastic masses may also be treatedimpact ol . J

elastic by the Newtonian principles. The sole observationmasses in .Newton’s here required is, that a deformation of elastic bodiesview.
calls into play forces of restitution, which directly de-
pend on the deformation. Furthermore, bodies pos-
sess impenetrability ; that is to say, when bodies af -
fected with unequal velocities meet in impact, forces
which equalise these velocities are produced. If two
elastic masses M, m with the velocities C, c collide, a
deformation will be effected, and this deformation will
not cease until the velocities of the two bodies
equalised. At this instant, inasmuch as only internal
forces are involved and therefore the momentum and

with the
Newtonian.

U = -

Consequently, up to this time, M 1s velocity has suf -
fered a diminution C — u ; and ;//’s an increase u — c.

But elastic bodies being bodies that recover their
forms, in perfectly elastic bodies the very same forces
that produced the deformation, will, only in the in-
verse order, again be brought into play, through the
very same elements of time and space. Consequently,
on the supposition that m is overtaken by M, M will a
second time sustain a diminution of velocity C — u, and
m will a second time receive an increase of velocity

Hence, we obtain for the velocities V\ v afteru — c.
impact the expressions V — 2 it — C and v — 2 u — c, or

C )
m
_ m c + M ( 2C — c)

’ V M -(- m
M C + m (2 c

M fl- m
V=con-

If in these formulae we put M = m, it will follow The £edH?'

that V=c and v= C ; or, if the impinging masses are jjew^
of an

equal, the velocities which they have will be inter-
changed. Again, since in the particular case M j m=— c j C or MC -\- mc= 0 also u= 0, it follows that
V= 2 u — C — — C and v= 2 u — c= — c\ that is,
the masses recede from each other in this case with the
same velocities (only oppositely directed ) with which
they approached. The approach of any two masses
Af m affected with the velocities C, c, estimated as
positive when in the same direction, takes place with
the velocity C — c \ their separation with the velocity
V —

are
But it follows at once from V= 2 u — C,

v= 2 u — c, that V — v= — (C— c )\ that is, the rela-
tive velocity of approach and recession is the same.

v.
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the reversal of the alteration, is done by it, provided al-
ways the bodies develop forces wholly determined by
the shapes they assume, and that they regain their
original form by means of the same forces employed to
effect its alteration. That the latter process takes
place, definite experience alone can inform us. This law
obtains, furthermore, only in the case of so-called per-

By the use of the expressions V= 2 u — C and v=
2 u — e, we also very readily find the two theorems

MV 4- mv = MC + vic and
MV 2 4- mv 2 = MC 2 me2 ,

which assert that the quantity of motion before and
after impact, estimated in the same direction, is the
same, and that also the vis viva of the system before
and after impact is the same. We have reached, thus,
by the use of the Newtonian principles, all of Huy-
gens’s results.

8. If we consider the laws of impact from Huygens’s

fectly elastic bodies.
Contemplated from this point of view, the majority The deduc-

of the Huygenian laws of impact follow at once. Equal laws of mi-
masses, which strike each other with equal but oppo- notion of

. . visviva and
site velocities, rebound with the same velocities. The work,

velocities are uniquely determined only when they are
equal, and they conform to the principle of vis viva
only by being the same before and after impact. Fur-
ther it is evident, that if one of the unequal masses in
impact change only the sign and not the magnitude of
its velocity, this must also be the case with - the other.
On this supposition, however, the relative velocity of
separation after impact is the same as the velocity of
approach before impact. Every imaginable case can
be reduced to this one. Let c and c be the velocities

The impli-
cations of . .
Huygens’s point of view, the following reflections immediately

claim our attention. The height of ascent which the
centre of gravity of any system of masses can reach is
given by its vis viva, ^ 2mv 2. In every case in which
work is done by forces, and in such cases the masses
follow the ’forces, this sum is increased by an amount
equal to the work done. On the other hand, in every
case in which the system moves in opposition to forces,
that is, when work, as we may say, is done upon the
system, this sum is diminished by the amount of work
done. As long, therefore, as the algebraical sum of
the work done on the system and the work done by the
system is not changed, whatever other alterations may
take place, the sum ^ 2mv2 also remains unchanged.
Huygens now, observing that this first property of ma-
terial systems, discovered by him in his investigations
on the pendulum, also obtained in the case of impact,
could not help remarking that also the sum of the
vires vivee must be the same before and after im-

of the mass m before and after impact, and let them be
of any value and have any sign. * We imagine the whole
system to receive a velocity u of such magnitude that
u c= — (// -|- e ) or u= (c — e )/2. It will be seen
thus that it is always possible to discover a velocity of
transportation for the system such that the velocity of
one of the masses will only change its sign. And so
the proposition concerning the velocities of approach
and recession holds generally good.

As Huygens’s peculiar group of ideas was not fully
perfected, he was compelled, in cases in which the ve-
locity-ratios of the impinging masses were not origin-

For in the mutually effected alteration of thepact.
forms of the colliding bodies the material system con-

sidered has the same amount of work done on it as, on
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Huygens's aLly known, to draw on the Galileo-Newtonian system
priationof for certain conceptions, as was pointed out above,

mass. Such an appropriation of the concepts mass and mo-
mentum, is contained, although not explicitly ex-
pressed, in the proposition according to which the ve-
locity of each impinging mass simply changes its sign
when before impact M /m= — c/ C. If Huygens had
wholly restricted himself to his own point of view, he
would scarcely have discovered this proposition, al-
though, once discovered, he was able, after his own
fashion, to supply its deduction. Here, owing to the
fact that the momenta produced are equal and oppo-
site, the equalised velocity of the masses on the com-
pletion of the change of form will be u=0. When the
alteration of form is reversed, and the same amount of
work is performed that the system originally suffered,
the same velocities with opposite signs will be restored.

If we imagine the entire system affected with a ve-
parison of locity of translation, this particular case will simulta-

andgeneral neously present thegcneralca.se.
case of mi-

^
H Let the impinging masses be

^ K represented in the figure by
£ M= BC and m= AC (Fig.

164), and their respective velo-
cities by C= AD and c= BE.
On AB erect the perpendicular
CF, and through F draw IK

parallel to AB. Then ID = ( jn.C — c) j{M -f- ni) and
KF= ( M . C~

ĉ ) / ( M + m). On the supposition now
that we make the masses M and m collide with the
velocities ID and KF, while we simultaneously impart
to the system as a whole the velocity

u= AI= KB C — (;// . C — c)/ ( M -{- ni) —
c -F (M . C — c) j( M + m) ( J I C + m c)/ ( J f + m),

the spectator who is moving forwards with the velocity
u will see the particular case presented, and the spec-
tator who is at rest will see the general case, be the
velocities what they may. The general formulæ of im-
pact, above deduced, follow at once from this concep-
tion. We obtain :

9 m ( C-~ c ) __ M C+ m ( 2 c — C )V= A G= C — M 4~ m

— c) m e 4- M ( 2C — c)
M f m

v= B I I — + M m
Huygen’s successful employment of the fictitious s i g n i f i -. . . . c a n c e o f t h emotions is the outcome of the simple perception that fictitious

bodies not affected with differences of velocities do not
act on one another in impact. All forces of impact are
determined by differences of velocity (as all thermal
effects are determined by differences of temperature).
And since forces generally determine, not velocities,
but only changes of velocities, or, again, differences of
velocities, consequently, in every aspect of impact the
sole decisive factor is differences of velocity. With re-
spect to which bodies the velocities are estimated, is
indifferent. In fact, many cases of impact which from
lack of practice appear to us as different cases, turn
out on close examination to be one and the same.

Construc-

c
L

Similarly, the capacity of a moving body for work, Velocity, a
whether we measure it with respect to the time of its ieveî!cal

action by its momentum or with respect to the distance
through which it acts by its vis viva, has no signifi-
cance referred to a single body. It is invested with
such, only when a second body is introduced, and, in
the first case, then, it is the difference of the veloci-
ties, and in the second the square of the difference that
is decisive.

C B
Fig. 164.

Velocity is a physical level, like tempera-
ture, potential function, and the like.

.
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fore impact, and u their common velocity after impact ; Conserva-
, . , . tion of vis

then the loss ol VIS viva IS viva in im-. pact inter-
\MC 2 + ]/// C 2 \{ M + ///) 7/2, (1) preted.

which in view of the fact that u = { APC -+- f- ;//)
may be expressed in the form ( Jf in/ M m) (6" — r) 2.
Carnot has put this loss in the form

\M (C — it )2 + ]/// { it — c )2

If we select the latter form, the expressions\M{ C — it)2

and ^m {u — c )2 will be recognised as the vis viva gen-
erated by the work of the internal Jorces. The loss of
vis viva in impact is equivalent, therefore, to the work
done by the internal or so-called molecular forces. If
we equate the two expressions (1) and (2), remember-
ing that { M 7?i) u= M C + m e, we shall obtain an
identical equation. Carnot’s expression is important
for the estimation of losses- due to the impact of parts
of machines.

It remains to be remarked, that Huygens could
have reached, originally, in the investigation of the
phenomena of impact, the same results that he pre-
viously reached by his investigations of the pendulum.
In every case there is one thing and one thing only to

be done, and that is, to discover in all the facts the same
elements, or, if we will, to rediscover in one fact the
elements of another which we already know. From
which facts the investigation starts, is, however, a
matter of historical accident.

Conserva- g. Let us close our examination of this part of the
mentum in- subject with a few general remarks. The sum of the

momenta of a system of moving bodies is preserved in
impact, both in the case of inelastic and elastic bodies.
But this preservation does not take place precisely in

The momentum of a body is

Possible
different
origin of
Huygens’s
ideas.

(2)

il

the sense of Descartes,

not diminished in proportion as that of another is in-
creased ; a fact which Huygens was the first to note.
If , for example, two equal inelastic masses, possessed
of equal and opposite velocities, meet in impact, the
two bodies lose in the Cartesian sense their entire mo-

In all the preceding expositions we have treated oblique

the impinging masses as points which moved only in the
direction of the lines joining them. This simplifica-

tion is admissible when the centres of gravity and the
point of contact of the impinging masses lie in one
straight line, that is, in the case of so-called direct im-

If , however, we reckon all velocities in amentum.
given direction as positive, and all in the opposite as
negative, the sum of the momenta is preserved. Quan-
tity of motion, conceived in this sense, is always pre- The investigation of what is called oblique im-pact.

pact is somewhat more complicated, but presents
especial interest in point of principle.served. no

The vis viva of a system of inelastic masses is al-
tered in impact ; that of a system of perfectly elastic

The diminution of vis viva pro-

A question of a different character was treated by The centre
of percus-WALLIS. If a body rotate about an axis and its motion sion.masses is preserved,

duced in the impact of inelastic masses, or produced
generally when the impinging bodies move with a com-
mon velocity, after impact, is easily determined. Let
M, m be the masses, C, c their respective velocities be-

be suddenly checked by the retention of one of its
points, the force of the percussion will vary with the
position (the distance from the axis) of the point ar- .
rested. The point at which the intensity of the impact
is greatest is called by Wallis the centre of percussion.
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If it is not permissible to regard the ballistic pen- A different
, , . . , . . deduction.
dulum as a simple pendulum, our reasoning, in con-
formity with principles before employed, will take the
following shape. The projectile m with the velocity v
has the momentum mv, which is diminished by the
pressure p due to impact in a very short interval of
time r to mV. Here, then, m (v — V ) =/ r, or, if V
compared with v is very small, mv= pr. With Pon-
celet, we reject the assumption of anything like in-
stantaneous forces, which generate instanter velocities.
There are no instantaneous forces. What has been

If this point be checked, the axis will sustain no pres-
We have no occasion here to enter in detailsure.

into these investigations ; they were extended and de-
veloped by Wallis’s contemporaries and successors in
many ways.

10. We will now briefly examine, before concluding
this section, an interesting application of the laws of
impact ; namely, the determination of the velocities of
projectiles by the ballistic pendulum. A mass M is sus-

pended by a weightless and massless
string (Fig. 165), so as to oscillate as a
pendulum. While in the position of
equilibrium it suddenly receives the hori-
zontal velocity V. It ascends by virtue
of this velocity to an altitude h = (/)
(1 — cos a) =V 2 /2 g, where l denotes the
length of the pendulum, a the angle of
elongation, and g the acceleration of

gravity. As the relation T= nVl/g subsists between
the time of oscillation T and the quantities /, g, we
easily obtain V= (gT/ n) 1/ 2 (1 — cos o'), and by the
use of a familiar trigonometrical formula, also

2 . a
V^- gT sin

7t Ct

If now the velocity F is produced by a projectile of
the mass m which being hurled with a velocity v and
sinking in M is arrested in its progress, so that whether
the impact is elastic or inelastic, in any case the two
masses acquire after impact the common velocity Vf it
follows that mv= ( M + m )V ; or, if m be sufficiently
small compared with J/, also v= (M/m )V ; whence
finally

The ballis-
tic pendu-
lum.

called such are very great forces that produce per-
ceptible velocities in very short intervals of time, but
which in other respects do not differ from forces that
act continuously. If the force active in impact cannot
be regarded as constant during its entire period of ac-
tion, we have only to put in the place of the expression
pr the expression j'pdt. In other respects the reason-
ing is the same.

A force equal to that which destroys the momentum The vis

of the projectile, acts in reaction on the pendulum. If work of the
pendulum.

a

J

t

VI ,V
AI,V — >

Fig. 165.

we take the line of projection of the shot, and conse-
quently also the line of the force, perpendicular to the
axis of the pendulum and at the distance b from it, the
moment of this force will be bp, the angular accelera-
tion generated bpj'Smr'*, and the angular velocity pro-
duced in time r

Its formula.

b m v
2m 7*2 2mr 2 *

b . pr
<P= -

The vis viva which the pendulum has at the end of
time r is therefore

b2m2v2

2 2mr22 M . a
- . - -gTsin -5-.

TC m 2
m ?' 2 — 1

v
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5h y virtue of this vis viva the pendulum performs
e excursion a, and its weight Mg, ( a being the dis-

tance of the centre of gravity from the axis,) is lifted
the distance ^ (1 — cos <r). The work performed here
is Mga (1— cos a), which is equal to the above-men-
tioned vis viva. Equating the two expressions we
readily obtain

The result,
same.“ le

V.

D’ALEMBE RT’S PRINCIPLE.

i. One of the most important principles for the History of

rapid and convenient solution of the problems of me- cipie.

chanics is the principle of D' Alembert. The researches
concerning the centre of oscillation on which almost all
prominent contemporaries and successors of Huygens
had employed themselves, led directly to a series of
simple observations which D ALEMBERT ultimately gen-
eralised and embodied in the principle which goes by
his name. We will first cast a glance at these prelim-
inary performances. They were almost without excep-
tion evoked by the desire to replace the deduction of
Huygens, which did not appear sufficiently obvious, by
one that was more convincing. Although this desire was
founded, as we have already seen, on a miscompre-
hension due to historical circumstances, we have, of
course, no occasion to regret the new points of view
which were thus reached.

V 2 Mga2mr2 (1 — cos <*)
m b

and remembering that the time of oscillation is

12mr2
71

and employing the trigonometrical reduction which
was resorted to immediately above, also

2 M a
n m b

This formula is in every respect similar to that ob-
tained for the simple case. The observations requisite
for the determination of v, are the mass of the pendu-
lum and the mass of the projectile, the distances of
the centre of gravity and point of percussion from the
axis, and the time and extent of oscillation. The form-
ula also clearly exhibits the dimensions of a velocity.
The expressions 2 jn and sin (ar/2) are simple num-

bers, as are also Mjm and alb, where both numerators
and denominators are expressed in units of the same
kind. But the factor gT has the dimensions It-1, and
is consequently a velocity. The ballistic pendulum
was invented by ROBINS and described by him at length
in a treatise entitled New Principles of Gunnery, pub-
lished in 1742.

T=

rrt • &
gl . sin — .

2
v=

Interpreta-
tion of the
result.

2. The first in importance of the founders of the James Ber-. . noulli 's
theory of the centre of oscillation, after Huygens, is contribu-
TAMES BERNOULLI, who sought- as early as 1686 to ex- theory of
J

#
the centre

plain the compound pendulum by the lever. He ar- of osciiia-
rived , however, at results which not only were obscure
but also were at variance with the conceptions of Huy-

The errors of Bernoulli were animadverted on! gens.
by the Marquis de L HOPITAL in the Journal de Rotte?'-
dam, in 1690. The consideration of velocities acquired
in infinitely small intervals of time in place of velocities
acquired in finite times— a consideration which the last-
named mathematician suggested— led to the removal

L
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the lever by which they are joined, the upward force The law of
upon the one and the downward force upon the other bution of
must satisfy the law of the lever. If m in conse- of theim-
quence of its being connected with the lever is held foreign
back by a force/ from the motion which it would take, nouiH’ s ex

'

if free, it will also exert the same force/ on the lever- Jinplc'

arm r by reaction. It is this reaction pull alone that
can be transferred to in' and be balanced there by a
pressure/'= ( r /r' ) f and is therefore equivalent to the
latter pressure. There subsists, therefore, agreeably
to what has been above said, the relation g ( P~— ~

x/ x )
m = r / r' . g ( x — r/x ) m or, ( x — r) mr= (r’ — x ) m'r\
from which we obtain = fur 2 inr' 2 ) / (inr -f »/V),
exactly as Huygens found it. The generalisation of
this reasoning, for any number of masses, which need
not lie in a single straight line, is obvious.

3. JOHN BERNOULLI (in 1712) attacked in a different The prin-
manner the problem of the centre of oscillation. HisjcSnBer-
performances are easiest consulted in his Collected Fution of°"

Works (Opera, Lausanne and Geneva, 1762, Vols. II onhecen?1

and IV). We shall examine in detail here the main îation.°scl1’

ideas of this physicist. Bernoulli reaches his goal by
conceiving the masses and forces separated.

First, let us consider two simple pendulums of dif - The first
ferent lengths /, l' whose bobs are affected with gravi- Bern"Vin ” 1

tational accelerations proportional to the lengths of the deductlon-
pendulums, that is, let us put ///' — gjg\ As the time
of oscillation of a pendulum is T= nVlJg, it follows
that the times of oscillation of these pendulums will be
the same. Doubling the length of a pendulum, ac-
cordingly, while at the same time doubling the accel-
eration of gravity does not alter the period of oscilla-
tion.

of the main difficulties that beset this problem ; and in
1691, in the Acta Eruditorum, and, later, in 1703, in the
Proceedings of the Paris Academy James Bernoulli cor-
rected his error and presented his results in a final and
complete form. We shall here reproduce the essential
points of his final deduction.

A horizontal, massless bar AB (Fig. 166) is free toJames Ber-
duction of rotate about A; and at the distances r, r from A the
the law of
the com-
pound pen-
dulum from
the princi-
ple of the u
lever.

masses vipn are attached. The accelerations with which
these masses as thus connected

x m.rm.r'

^4 will fall must be different from
the accelerations which they
would assume if their connec-
tions were severed and the)7 fell

freely. There will be one point and one only, at the
distance x, as yet unknown, from A which will fall
with the same acceleration as it would have if it were
free, that is, with the acceleration g. This point is
termed the centre of oscillation.

If m and m were to be attracted to the earth, not
proportionally to their masses, but m so as to fall when
free with the acceleration cp = gr / x and vi with the
acceleration qf = grf / x, that is to say, if the natural
accelerations of the masses were proportional to their
distances from A, these masses would not interfere with
one another when connected. In reality, however, m
sustains, in consequence of the connection, an upward
component acceleration g — cp, and in' receives in virtue
of the same fact a downward component acceleration
cp’ — g ; that is to say, the former suffers an upward
force of m ( g — cp)=g( x — r/ x ) m and the latter a
downward force of m' ( <7/ — g)= g (/ — x/ x ) m' .

Since, however, the masses exert what influence
they have on each other solely through the medium of

Fig. 166.

Second, though we cannot directly alter the accel-
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The second eration of gravity at any one spot on the earth, we
step in John
Bernoulli’s Call
deduction.

the time of oscillation of the pendulum. If a force f
act on a lever-arm a (Fig. 168) while at the distance r
from the axis a mass m is attached, f will be equiva-
lent to a force afjr impressed on
m and will impart to it the linear ^acceleration affnr and the angu-
lar acceleration af /mr2. Hence,
to find the angular acceleration
of a compound pendulum, we
divide the sum of the statical moments by the sum of
the moments of inertia.

BROOK TAYLOR, an Englishman,* also developed The re-
tins idea, on substantially the same principles, but Brook Tay- *

quite independently of John Bernoulli. His solution, lo,
‘

however, was not published until some time later, in
1715, in his work, Methodus Incrementorum.

The above are the most important attempts to solve
the problem of the centre of oscillation. We shall see
that they contain the very same ideas that D’Alembert
enunciated in a generalised form.

4. On a system of points M, M' , M". . . . connected Motion of a

with one another in any way,f the forces P, P, P". . . . poliftssub-
are impressed. (Fig. 169.) These forces would im- straints.0” '
part to the free points of the system certain determinate
motions. To the connected points, however, different
motions are usually imparted— motions which could
be produced by the forces W\ W , W". . . . These
last are the motions which we shall study.

Conceive the force P resolved into W and V, the
force P' into W and V\ and the force P” into W”

* Author of Taylor’s theorem, and also of a remarkable work on perspec-
tive.— Trans.

Ï In precise technical language, they are subject to constraints, that is,
forces regarded as infinite, which compel a certain relation between their
motions.— Trans.

do what amounts virtually to this. Thus, imagine/

a straight massless bar of length 2a, free to rotate about
its middle point ; and attach to the one ex-

m* tremity of it the mass m and to the other the
a mass 7//'. Then the total mass is m -|- ni at

the distance a from the axis. But the force f

a which acts on it is ( in — m' ) g, and the ac-
m celeration, consequently, ( m — 111 / m + 111 ) g.

Fig. 167. Hence, to find the length of the simple pen-
dulum, having the ordinary acceleration of

gravity g, which is isochronous with the present pen-
dulum of the length a, we put, employing the preced-
ing theorem,

Fig. 168.

m -f - ml g , or l =1 a m — inm — m
Sm + in'

Third, we imagine a simple pendulum of length 1

détermina- with the mass in at its extremity. The weight of m
tion of the
centre of
gyration.

The third

produces, by the principle of the lever, the same ac-
celeration as half this force at a distance 2 from the

Half the mass m placed at thepoint of suspension,

distance 2, therefore, would suffer by the action of the
force impressed at 1 the same acceleration, and a fourth
of the mass m would suffer double the acceleration ; so
that a simple pendulum of the length 2 having the orig-
inal force at distance 1 from the point of suspension
and one-fourth the original mass at its extremity would
be isochronous with the original one. Generalising
this reasoning, it is evident that we may transfer any
force / acting on a compound pendulum at any dis-
tance 7', to the distance 1 by making its value rf \ and
any and every mass
distance 1 by making its value r2 m, without changing

placed at the distance r to the
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statement and V" , and so on.of D’ Alem-
bert’s prin- only the components TV, TV , TV". . . . are effective,ciplc.

Since, owing to the connections, forces, the two, owing to the connections, will balance.
The principle of virtual displacements may also be ap-
plied to the system P, — TV. This LAGRANGE did in his
Mécanique analytique, 1788.

The fact that equilibrium subsists between the sys- An equiva-. lent princi-tem P and the system — TV, may be expressed in still pjcem-
^another way. We may say that Hermann. and Euler.the system TV is equivalent to the

system P. In this form HER-
MANN ( Phoronomia, 1716) and
EULER (Comment. Acad. Petrop. ,
Old Series, Vol. VII, 1740) employed the principle.
It is substantially not different from that of D’Alembert.

5. We will now illustrate D’ Alembert’ s principle by

therefore, the forces V\ V ' , V". . . . must be equilib-
rated by the connections. We will call the forces P, P’ ,

P" the impressed forces,
the forcesW, TV ,W".. .
which produce the ac-
tual motions, the effective
forces, and the forces V,

V’ . . . . the forces

•>

*V ,
Fig. 170.gained and lost, or the

equilibrated forces. We
perceive, thus, that if we

resolve the impressed forces into the effective forces
and the equilibrated forces, the latter form a system
balanced by the connections. This is the principle of
D’Alembert. We have allowed ourselves, in its expo-
sition, only the unessential modification of putting
forces for the momenta generated by the forces. In this
form the principle was stated by D ALEMBERT in his
Traité de dynamique, published in 1743.

As the system V, V , V” . . . . is in equilibrium, the
principle of virtual displacements is applicable thereto.
This gives a second form of D'Alembert’s principle.
A third form is obtained as follows : The forces P, P'. . . .
are the resultants of the components TV, W . . . . and
V, V . . . . If, therefore, we combine with the forces
TV, TV . . . . and V, V' . . . . the forces — P, — P'. . .
equilibrium will obtain. The force-system — P, IV, V
is in equilibrium. But the system V is independently
in equilibrium. Therefore, also the system — P, TV is
in equilibrium, or, what is the same thing, the system
P, — Wis in equilibrium. Accordingly, if the effective
forces with opposite signs be joined to the impressed

one or two examples.
On a massless wheel and axle with the radii R, r the illustration

ofD’Alem-loads P and Q are hung, which are not in equilibrium, bert’sprin-^ ° ciple by the
motion of a
wheel and
axle.

We resolve the force P into (1) TV
(the force which would produce the
actual motion of the mass if this were R
free) and (2) V, that is, we put
P= TV + Land also Q = TV+ V ;
it being evident that we may here
neglect all motions that are not in QT»

the perpendicular. We have, accord-
ingly, P — TV and V= Q — TV ,
and, sinde the forces V, V are in equilibrium, also
V. R = V' . r. Substituting for V, Vf in the last equa-
tion their values in the former, we get

Various
forms in
which the
principle- may be ex-
pressed. Q

Fig. 171.
• I *

• ?

(1)(/> _ l V ) R = ( Q — T V ) r

which may also be directly obtained by the employ-
ment of the second form of D’Alembert’s principle.
From the conditions of the problem we readily perceive
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lem in this form is an indeterminate one, and may be
solved in an infinite number of different ways.

The following may serve as a second example.
A weight P (Fig. 172) free to move on a vertical A second ii-
• I T

_ . , . , lustration
straight line ABy is attached to a cord oftheprin-
passing over a pulley and carrying a
weight Q at the other end. The cord ,

makes with the line AB the variable

that we have here to deal with a uniformly accelerated
motion, and that all that is therefore necessary is to
ascertain the acceleration. Adopting gravitation meas-
ure, we have the forces W and W\ which produce in
the masses P/g and Q/g the accelerations y and y' ;
wherefore, W={ P/g') y and W’= { Q/g') y' . But we
also know that y'= — y{r/R). Accordingly, equation
(1) passes into the form X X P

The motion of the present Wangle a.
case cannot be uniformly accelerated.p

Q + Q g N ) rP — P= • (2) w
But if we consider only vertical mo-
tions we can easily give for every
value of a the momentary accelera-
tion { y and y' ) of P and Q. Proceeding exactly as
we did in the last case, we obtain

r Bwhence the values of the two accelerations are ob-
tained Fig. 172.

PR — Qr
PR2 + Qr

PR — Qr
PR*TQr2 Rg, and y’ = —y= 2 r&

p= w+ v f
Q=‘

W' + V '
These last determine the motion.

It will be seen at a glance that the same result canEmploy-
ideas stat- be obtained by the employment of the ideas of statical
ment and moment and moment of inertia. We get by this method
moment of .
inertia, to for the angular acceleration
obtain this
result.

also
V cos a= V, or, since y' = — y cos a,

y\ whence
<r '
PQQ -f- -p cos a yJ cosa — P —

— Q cosa
Q cos 2 ( X P 05

P — Çcoso'
Q cos 2 (x -+- P

Again the same result may be easily reached by the solution of

employment of the ideas of statical moment and mo- also by the
ment of inertia in a more generalised form,

lowing reflexion will render this clear,

statical moment, that acts on P is P — Q cos a.
the weight Q moves cos a times as fast as P; conse-
quently its mass is to be taken cos 2 a times. The ac-
celeration which P receives, accordingly is,

PR — Qr PR — Qr
. ÇT •V = * Ô ) Pr ^2 PR* + Qr 2

R2 -\- E
<r cr r=

and as y=Rcp and y'= — r cp we re-obtain the pre-
ceding expressions.

When the masses and forces are given, the problem
of finding the motion of a system is determinate. Sup-
pose, however, only the acceleration y is given with
which P moves, and that the problem is to find the loads
P and Q that produce this acceleration. We obtain
easily from equation (2) the result P= Q {R g + ry )
r/ { g — y ) R2 , that is, a relation between P and Q.
One of the two loads therefore is arbitrary. The prob-

/

Y = cos a g.

. . ideas ofI he loi- statical
f ment and1he force, or moment of

, inertia gen-But eralised.

mo-
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other methods. The principle fulfils in the solution
of problems, the office of a routine-form which, to a

P — Q cos a P — Q cos a
P Qcos 2 a -|- Pr= QL cos 2a A

<r cr certain extent, spares us the trouble of thinking out
each new case, by supplying directions for the employ-
ment of experiences before known and familiar to us.
The principle does not so much promote our insight
into the processes as it secures us a practical mastery of
them. The value of the principle is of an economical
character.

In like manner the corresponding expression for ÿ may
be found.

The foregoing procedure rests on the simple re-
mark, that not the circular path of the motion of the
masses is of consequence, but only the relative veloci-
ties or relative displacements. This extension of the
concept moment of inertia may often be employed to r When we have solved a problem by D’Alembert’s The reia-. , . tion of

principle, we may rest satisfied with the experiences D’ Aiem-
previously made concerning equilibrium, the applica- cipie to the

• r t • t i i 1. other prin-
tion 01 which the principle implies. But if we wish cipies of

clearly and thoroughly to apprehend the phenomenon,
that is, to rediscover in it the simplest mechanical ele-
ments with which we are familiar, we are obliged to
push our researches further, and to replace our expe-
riences concerning equilibrium either by the Newtonian
or by the Huygenian conceptions, in some way similar
to that pursued on page 266. If we adopt the former
alternative, we shall mentally see the accelerated mo-

tions enacted which the mutual action of bodies on one
another produces ; if we adopt the second, we shall di-
rectly contemplate the work done, on which, in the
Huygenian conception, the vis viva depends. The latter
point of view is particularly convenient if we employ
the principle of virtual displacements to express the
conditions of equilibrium of the system V or P — W.
D’ Alembert’s principle then asserts, that the sum of
the virtual moments of the system V, or of the system
P — W, is equal to zero. The elementary work of the
equilibrated forces, if we leave out of account the strain-
ing of the connections, is equal to zero. The total
work done, then, is performed solely by the system P,

advantage.
6. Now that the application of D’Alembert’s prin-Import and

of D’Aiem- cipie has been sufficiently illustrated, it will not be diffi-
bert’s prin-
ciple. cult to obtain a clear idea of its significance. Problems

relating to the motion of connected points are here dis-
posed of by recourse to experiences concerning the
mutual actions of connected bodies reached in the in-
vestigation of problems of equilibrium. Where the last
mentioned experiences do not suffice, D’Alembert’s
principle also can accomplish nothing, as the examples
adduced will amply indicate. We should, therefore,
carefully avoid the notion that D’Alembert’s principle

general one which renders special experiences su-
perfluous. Its conciseness and apparent simplicity are
wholly due to the fact that it refers us to experiences
already in our possession. Detailed knowledge of the
subject under consideration founded on exact and mi-
nute experience, cannot be dispensed with. This knowl-
edge we must obtain either from the case presented,
by a direct investigation, or we must previously have
obtained it, in the investigation of some other subject,
and carry it with us to the problem in hand. We learn,
in fact, from D’ Alembert’s principle, as our examples
show, nothing that we could not also have learned by

1

is a

i-
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tion ; we have simply to express as many as possible
of the displacements âx, ây, âz by the others in terms
of their relations to the latter, and put the coefficients
of the remaining arbitrary displacements = 0, as was
illustrated in our applications of the principle of vir-
tual displacements.

The solution of a very few problems by D’Alem- Conve-
bert’s principle will suffice to impress us with a full utility of

sense of its convenience. It will also give us the con- bert’s prin-
viction that it is possible, in every case in which it mayC'pk

be found necessary, to solve directly and with perfect
insight the very same problem by a consideration of
elementary mechanical processes, and to arrive thereby
at exactly the same results. Our conviction of the
feasibility of this operation renders the performance of
it , in cases in which purely practical ends are in view,
unnecessary.

and the work performed by the system Wmust, accord-
ingly, be equal to the work done by the system P. All
the work that can possibly be done is due, neglecting
the strains of the connections, to the impressed forces.
As will be seen, D’Alembert’s principle in this form is
not essentially different from the principle of vis viva.

7. In practical applications of the principle of
D’ Alembert it is convenient to resolve every force P

Form of ap-
plication of
D’Alem-
cfpie!and impressed on a mass vi of the system into the mutually
the result-
ing equa-
tions of mo-
tion.

perpendicular components X, Y, Z parallel to the axes
of a system of rectangular coordinates ; every effective
force W into corresponding components vi%, virj, ;// <?,
where <?, ?/, <? denote accelerations in the directions of
the coordinates ; and every displacement, in a similar
manner, into three displacements âx, ôy, âz. As the
work done by each component forcd is effective only in
displacements parallel to the directions in which the
components act, the equilibrium of the system (.P,— IV )
is given by the equation

!

VI.
THE PRINCIPLE OF VIS VIVA.2\ (A” — m <Ç) âx -f- (Y — vnf ) ôy + (Z— ;;/ <?) âz }= () (1)

1. The principle of vis viva, as we know, was first The orig-
employed by HUYGENS. JOHN and DANIEL BERNOULLI i£aiVorm°of
had simply to provide for a greater generality of ex- cipie

1

pression ; they added little. If p, . . . are weights,
m, vi' , m". . . . their respective masses, h, hi, h"
distances of descent of the free or connected masses,
and v, v , v". . . . the velocities acquired, the relation
obtains

or
2{ Xôx -f - Yây Zôz ) — 2m ( £âx-j- rjôy -f- %ôz ) . . (2)
These two equations are the direct expression of the
proposition above enunciated respecting the possible
work of the impressed forces. If this work be = 0, the
particular case of equilibrium results. The principle
of virtual displacements flows as a special case from
this expression of D’Alembert’s principle ; and this is
quite in conformity with reason, since in the general
as well as in the particular case the experimental per-
ception of the import of work is the sole thing of con-
sequence.

Equation (1) gives the requisite equations of mo-

the

2ph= $2m v2.
If the initial velocities are not = 0, but are v0 vc' ,

vo". . . ., the theorem will refer to the increment of the
vis viva by the work and read

2ph= ^ 2m ( z>2 — vc2 ).

r
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tween s, v, g. If in free descent s=v 2 / 2 g, then here
a= (p 2 / 2 ÿ.

Introducing this value of a in equation (i), we get
for the angular acceleration of P, ?/; = ( PR — Qr/
PR2 -f- Qr2 ) g, and, consequently, for its absolute ac-
celeration y = (PR — Qr/ PR2 + Qr2) Rg, exactly as
in the previous treatment of the problem.

As a second example let us consider the case of a A roiling
^massless cvlinder of radius r, in the surface of which, an inclined

J plane.
diametrically opposite each other, are fixed two equal
masses m, and which in consequence of the weight of

The principle still remains applicable when p . . . .The princi-
ple applied
to forces of are, not weights, but any constant forces, and h . . .any kind.

not the vertical spaces fallen through, but any paths in
the lines of the forces. If the forces considered are
variable, the expressions ph, p' /i. . . . must be replaced
by the expressions J'p ds, j'p' ds' . . . in which p de-
notes the variable forces and ds the elements of dis-
tance described in the lines of the forces. Then

j' pds -\ Jp' ds' — i 2m ( v 2 — v 2 ) ior
I2 rp ds — £ 2m ( v 2 — 7\ 2 ) (1) A

2. In illustration of the principle of vis viva weThe princi-
ple illus-
trated by shall first consider the simple problem which we treatedthe motion A A

by the principle of D’Alembert. On
um

of a wheel
and axle. W

a wheel and axle with the radii R, r
hang the weights P, Q. When this
machine is set in motion, work is per-
formed by which the acquired vis viva
is fully determined. For a rotation of

Q the machine through the angle a, the
work is

u« r- m
R

CLOL
U

I'ig- 175-Fig. 174-
these masses rolls without sliding down an inclined
plane of the elevation a. First, we must convince our-
selves, that in order to represent the total vis viva of
the system we have simply to sum up the vis viva of
the motions of rotation and progression. The axis of
the cylinder has acquired, we will say, the velocity u
in the direction of the length of the inclined plane, and

will denote by v the absolute velocity of rotation of
the surface of the cylinder. The velocities of rotation v
of the two masses vi make with the velocity of progres-
sion u the angles 0 and 6' (Fig. 175), where 6 -1- 0'

= 180°. The compound velocities w and 5 satisfy
therefore the equations

1

?'U P . Rot
Calling the angular velocity which

corresponds to this angle of rotation, cp, the vis viva
generated will be

P { Rq>y

Q . ra — a( PR — Q r).Fig. 173.

Q ( rep )2 cp2
^ we+<r

Consequently, the equation obtains

« ( PR — Qr) — % (.PR^ + Qr'- ) (1)

Now the motion of this case is a uniformly accelerated
motion ; consequently, the same relation obtains here
between the angle a, the angular velocity cp, and the

w 2 = u 2 + v 2 — 2 u v cos 6
z 2 = u2 v 2 — 2 uv cos 6'.

'1

1
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But since cos 8= — cos #', it follows that

7v* + z 2 — 2 it 2 + 2 v3, or,
2

The law of
motion of
such a
cylinder.

For Rjr — i the acceleration of descent assumes its
previous value gj2. For very large values of Rjr the
acceleration of descent is very small. When R/r= oo
it will be impossible for the machine to roll down the

. inclined plane at all.
As a third example, we will consider the case of a The motion

chain, whose total length is /, and which lies partly on on an in-
a horizontal plane and partly on a plane having the plane,

angle of elevation a. If we imagine the surface on
which the chain
rests to be very
smooth, any very
small portion of
the chain left hang-
ing over on the in-
clined plane will draw the remainder after it. If p is
the mass of unit of length of the chain and a portion x
is hanging over, the principle of vis viva will give for
the velocity v acquired the equation

/i l v 2

\m w 2 -f -\rn z 2 == ± m 2 u 2 Jin 2 v
If the cylinder moves through the angle q), m describes
in consequence of the rotation the space r cp, and the
axis of the cylinder is likewise displaced a distance rep.
As the spaces traversed are to each other, so also
are the velocities v and //, which therefore are equal.
The total vis viva may accordingly be expressed by
2 mu2. If / is the distance the cylinder travels along
the length of the inclined plane, the work done is
2 mg . I sin a = 2 m u 2 ; whence u=V gl.sin a. If we
compare with this result the velocity acquired by a body
in sliding down an inclined plane, namely, the velocity
]/ 2 gl sin cr, it will be observed that the contrivance we
are here considering moves with only one-half the ac-
celeration of descent that (friction neglected) a sliding
body would under the same circumstances. The rea-
soning of this case is not altered if the mass be uni-
formly distributed over the entire surface of the cylin-
der. Similar considerations are applicable to the case
of a sphere rolling down an inclined plane. It will be
seen, therefore, that Galileo’s experiment on falling
bodies is in need of a quantitative correction.

Next, let us distribute the mass m uniformly over

in u2 m v 2 .

Fig. 176.

I
X 2 .X=?** 2

or v = xv g sin ct /l. In the present case, therefore,
the velocity acquired is proportional to the space de-
scribed. The very law holds that Galileo first con-
jectured was the law of freely falling bodies. The
same reflexions, accordingly, are admissible here as at
page 248.

3. Equation (1), the equation of vis viva, can always Extension
be employed, to solve problems of moving bodies, cip'eo? ©2i
when the total distance traversed and the force that
acts in each element of the distance are known. It was
disclosed, however, by the labors of Euler, Daniel Ber-
noulli, and Lagrange, that cases occur in which the

sin o'= Mg »
jLi

sin a2

1A modifica-
preceding the surface of a cylinder of radius R, which is coaxal
case.

with and rigidly joined to a massless cylinder of radius
r, and let the latter roll down the inclined plane. Since
here v/ ti= R/r, the principle of vis viva gives mgl
sina = -\- R2 /r2 ), whence ! viva.

2 gl sin a
R2

1 + 7T -
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tances from one another.
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principle of vis viva can be employed without a knowl-
edge of the actual path of the motion. We shall see

later on that Clairaut also rendered important services
in this field.

Galileo, even, knew that the velocity of a heavy
falling body depended solely on the vertical height de-
scended through, and not on the length or fonn of the

path traversed. Similarly, Huygens finds that the vis
viva of a heavy material system is dependent on the

vertical heights of the masses of
the system. Euler was able to
make a further step in advance.
If a body K (Fig. 177) is at-

tracted towards a fixed centre
C in obedience to some given
law, the increase of the vis viva
in the case of rectilinear ap-
proach is calculable from the
initial and terminal distances
(ro, /*,). But the increase is the
same, if K passes at all from the

position rQ to the position r„ independently of the
form of its path, KB. For the elements of the work
done must be calculated from the projections on the
radius of the actual displacements, and are thus ulti-
mately the same as before.

If K is attracted towards several fixed centres C,

The analytical treatment of
these problems was perfected by Lagrange. If we join
a point having the coordinates a, b, c with a point hav-
ing the coordinates x, y, z, and denote by r the length
of the line of junction and by a, /?, y the angles that
line makes with the axes of x, y, z, then, according to
Lagrange, because

The re-
searches of
Euler.

= O — «)2 + (y — by + 0 — cy ,
y — bx — a dr

r ~ dx’
drcos ft =

z — c dr
r dz

cos # = dÿr

cos y= —
Accordingly, if fir )= — dr is the repulsive force, or The force

compo-

the negative of the attractive force acting between the Said’iffer-
two points, the components will be ficientsof

the same
function of
coordi-
nates.

dF( r ) d r dF( r)*=/Mcos„=-±l-=-£2,
(lF( f ) dr dF(f )

Z =/(r) cos r = d-F}̂ dJ =J K J r dr dz dz
The force-components, therefore, are the partial

differential coefficients of one and the same function of
r, or of the coordinates of the repelling or attracting
points. Similarly, if several points are in mutual ac-
tion, the result will be

Fig. 177 - y= f ( r ) cos fi = dr dy

The re-
searches of
Daniel Ber- C', C". . . ., the increase of its vis viva depends on the

Lagrange, initial distances rc, rj, rf . . . . and on the terminal
that is on the initial and ter-

d UX =-.
distances rn ;*/, .
minai positions of K. Daniel Bernoulli extended this

dx• • ?

dUy= —idea, and showed further that where movable bodies
are in a state of mutual attraction the change of vis viva
is determined solely by their initial and terminal dis-

dy
dU
dz 9Z=-
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The force- where U is a function of the coordinates of the points.function. the form which mechanics lias historically assumed, dy- History of
• • r IT . . 1 . the princi-

namics is founded upon statics, (lor example, D’Alem- pie of least

bert’s principle on the principle of virtual displace-
ments,) whereas one naturally would expect that in
the highest stage of the science statics would appear
as a particular case of dynamics. Now, the principle
which Gauss supplied, and which we shall discuss in
this section, includes both dynamical and statical cases.
I t meets, therefore, the requirements of scientif ic and
logical aesthetics. We have already pointed out that this
is also true of D’Alembert’s principle in its Lagrangian
form and the mode of expression above adopted.
No essentially new principle, Gauss remarks, can now be
established in mechanics ; but this does not exclude
the discovery of new points of view, from which mechan-
ical phenomena may be fruitfully contemplated. Such
a new point of view is afforded by the principle of
Gauss.

This function was subsequently called by Hamilton*
the force-function.

Transforming, by means of the conceptions here
reached, and under the supposit ions given, equation
(1) into a form applicable to rectangular coordinates,
we obtain

2 f\X d x 4- yd y Z d z )= 2\m ( v2 — v f ) or,
since the expression to the left is a complete differen-
tial,

/d U d U dir2 d x 4— -,— d y -j— d za zd x d y
2 ( CTZ — Ua ) = -*„*),

where U1 is a function of the terminal values and U0

the same function of the init ial values of the coordi-
nates. This equation has received extensive applica-
t ions, but i t simply expresses the knowledge that under
the conditions designated the work done and therefore
also the vis viva of a system is dependent on the posi-
tions, or the coordinates, of the bodies consti tuting it.

If we imagine all masses fixed and only a single
one in motion, the work changes only as V changes.
The equation U= constant defines a so-called level
surface, or surface of equal work. Movement upon
such a surface produces no work. U increases in the
direction in which the forces tenu to move the bodies.

2. Let in, m. . . . . be masses, connected in any man- statement. of the prin-ner with one another. These masses, if free,would,under cipie.
the action of the forces im-
pressed on them,describe in a
very short element of t ime the
spaces a b, a, b, . . . .; but in ^consequence of their connec-
tions theydescribe in the same
element of t ime the spaces a c,
a , c, . . . . Now, Gauss’s principle asserts, that the mo-
tion of the connected points is such that, for the motion
actually taken, the sum of the products of the mass of
each material particle into the square of the distance of
i ts deviation from the posit ion it would have reached if
free, namely m(pc)2 4- m, (f x i)2 • • • •=2m(f c)2 y is
a minimum, that is, is smaller for the actual m ç/tion

/VII.
THE PRINCIPLE OF LEAST CONSTRAINT.

i . GAUSS enunciated (in Crelle’sJournalfiir Mathe-
matik , Vol. IV, 1829, p. 233) a new law of mechanics,
the principle of least constraint. He observes, that, in

* On a General Method in Dynamics, Phil. Trans, for '834. See also C. G.
J. Jacobi, Vorlesungen iiber Dynamik, edited by Clebsch, i860.

Î'J
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( 1 ) The deduc-y tion of the
principle
of least
constraint .

2cb . ey cos # < 0

But
( by') 2 = ( be) 2 -f- ( cy )2 — 2 be . cy cos t),
(by ) 2 — ( be )2 = ( ey )2 — 2 be . ey cos t), and
2in(b y)2 — 2m(bc)2=2m(ey)2— "12mbe.eycos0 (1)

Accordingly, since by (1) the second member of
the right-hand side of (2) can only be = 0 or negative,
that is to say, as the sum 2m( cy)2 can never be dimin-
ished by the subtraction, but only increased, therefore
the left -hand side of (2) must also always be positive
and consequently 2m(by)2 always greater than 2in

( be )2 , which is to say, every conceivable constraint
from unhindered motion is greater than the constraint
for the actual motion.

4. The declination, be, for the very small element Various
forms in

of time r, may, for purposes of practical treatment, be which the

designated by s, and following Scheffler (Schlomilch’s may be ex-
pressed.

Zeitschrift filr Mathematik and Physik, 1858, Vol. Ill,
p. 197), we may remark that s = yr 2 /2, where y de-
notes acceleration. Consequently, 21ns 2 may also be
expressed in the forms

than for any other conceivable motion in the same con-
nections. If this sum, 2m(be) 2 , is less for rest than
for any motion, equilibrium will obtain. The principle
includes, thus, both statical and dynamical

The sum 2m( bc ) 2 is called the “ constraint. ” * In
forming this sum it is plain that the velocities present
in the system may be neglected, as the relative posi-
tions of a, b, e are not altered by them.

3. The new principle is equivalent to that of
D’Alembert ; it may be used in place of the latter ; and,
as Gauss has shown, can also be deduced from it. The
impressed forces carry the free mass 111 in an element of
time through the space ab, the effective forces carry the
same mass in the same time in consequence of the
nections through the space

cases.
Definition
of “ con-
straint. ”

con-
We resolve ab into ac

and cb\ and do the same for all the
It is thus evident that

forces corresponding to the dis-

a e.

masses.

tances e b, e, b, . . . . and propor-
tional thereto, do not, owing to the
connections, become effective, but

form with the connections an equilibrating system. If,
accordingly, we erect at the terminal positions e, e,,
en .. . . the virtual displacements ey, e, y, . . . ., form-
ing with eb, e, b, . . . . the angles 6, 6, . .

T 2\2m y . s 2 = 2my2 ,
wherep denotes the force that produces the declination
from free motion. As the constant factor in no wise
affects the minimum condition, we may say, the actual
motion is always such that

2m s2

2m .s . s —
. . we may

apply, since by D’Alembert’s principle forces propor-
tional to cb, e, b, . . . . are here in equilibrium, the
principle of virtual velocities. Doing so, we shall have a)

* Professor Macli’s term is Abwcichungssumme. The Alnveichung is the
declination or departure from free motion, called by Gauss the Ablenlcung .
(See Dtthring, Principien dcr Mcchanik , §§ i68, 169 ; Routh, Rigid Dynamics ,
Part I , §§ 390-394.) The quantity Y, m [ b e p is called by Gauss the Zwang ; and
German mathematicians usually follow this practice. In English, the term

constraint is established in this sense, although it is also used with anothen
haiVlly quantitative meaning, for the force which restricts a body absolutely
to mcaving in a certain way.-— Trans.

or
(2)2ps

or
(3)2m y 2

is a minimum.
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5. We will first employ, in our illustrations, the
third form. Here again, as our first example, we se-

lect the motion of a wheel and axle by
the overweight of one of its parts
and shall use the designations above
frequently employed. Our problem
is, to so determine the actual accel-
erations y of P and y, of Qf that

The motion
of a wheel
and axle.

The following example will show that Gauss’s prin- A case of

ciple also embraces cases of equilibrium. On the armsnmb
a, a of a lever (Fig. 182) are hung the heavy masses
m, vî. The principle requires that m( g — y ) 2 -(-
7n' (g — y ') 2 shall be a minimum. But y’= — y(a' /a ).
Further, if the masses are in-

a'
versely proportional to the
lengths of the lever-arms, that • m
is to say, if m/m' = a /a, then

Conse-

A

«{J[> [JQ <P/ë ) ( s — r ) 2 + ( Q /g) ( g — r ,)2

shall be a minimum, or, since y f = Fig. 182.y ' = — y ( 771/711' ).
quently, m ( g — y ) 2 -f- m'( g -[- y . /// ////') 3 = N must
be made a minimum. Putting dN/dy = 0, we get
m ( 1 + m/m' ^ y= 0 or y= 0. Accordingljq in this case
equilibrium presents the least constraint from free mo-
tion.

Fig. 180. — y (r/R), so that P ( g — y)2 -f
Q( g + y- r/ P ) 2 = JV shall assume its smallest value.
Putting, to this end,

dN = — pL% — r ) + Q k + ydy R ) R
we get y = ( PR — Qr/PR2 -|- Qr2 ) Rg, exactly as in
the previous treatments of the problem.

As our second example, the motion of descent on
an inclined plane may be taken. In this case we shall

employ the first form, 2?ns 2.
Since wre have here only to
deal with one mass, our in-
quiry will be directed to find-
ing that acceleration of de-
scent y for the plane by
which the square of the de-

clination (J 2 ) is made a minimum. By Fig. 181 we
have

Every new cause of constraint, or restriction upon New causes

the freedom of motion, increases the quantity of con- straint in-
1 . . * crease the

straint, but the increase is always the least possible, departure
from free

If two or more systems be connected, the motion of motion,

least constraint from the motions of the unconnected
systems is the actual motion.

If, for example, we join together several simple
pendulums so as to form a compound linear pendulum,
the latter will oscillate with the motion
of least constraint from the motion of the
single pendulums. The simple pendulum,
for any excursion a, receives, in the di-
rection of its path, the acceleration ^Denoting, therefore, by y sin a the ^
acceleration corresponding to this excur-
sion at the axial distance 1 on the com-
pound pendulum, 2m (g sin a — ry sin à)2 or 2??i (g —
ry ) 2 will be the quantity to be made a minimum. Conse-
quently, 2??i( g — ry )r = 0, and y= g ( 27tir/ 27nr2 ).

Descent on
an inclined
plane.

y f

'QL

y,Fig. 181.

V*
sin a.

T 2 \ 2 T2 \ 3 r2 r 2

2" * y~
2

s2 = [gY + [r 2
and putting d( s 2 )/dy — 0,
constant factors, 2 y — 2g sin a — 0 or y=g.sin a, the
familiar result of Galileo’s researches.

cr - sin a, Fig. 183.

obtain, omitting allwe
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The problem is thus disposed of in the simplest man-
But this simple solution is possible only because

the experiences that Huygens, the Bernoullis, and oth-
ers long before collected, are implicitly contained in
Gauss’s principle.

6. The increase of the quantity of constraint, or

A number, of equal weights, /, lying on a smooth
horizontal surface, are attached to n small movable
pulleys through which a cord is drawn in the manner
indicated in the figure and loaded at its free extremity
with /. According as all the pulleys are movable or all
except one are fixed, we obtain for the motive weight /,
allowing for the relative velocities of the masses as re-
ferred to /, respectively, the accelerations (472/1-j-\ii)g
and (4/5) g. If all the n + 1 masses are movable, the
deviation assumes the valuepg/^ n -f - 1, which increases
as 7i, the number of the movable masses, is decreased.

ner.

Illustra-
tions of the . .
preceding decimation, from free motion by 7iew causes of con-
statement.

straint may be exhibited by the following examples.
Over two stationary pulleys A, B, and beneath a

movable pulley C (Fig. 184), a cord is passed, each

P,oh*C\4 w

WmQ
%cP IrSI P Fig. 186.

7. Imagine a body of weight <9, movable on rollers Treatment. of a me-
on a horizontal surface, and having an inclined plane chanical

. . . problem by
face. On this inclined face a body of weight P is different. mechanical
placed. We now perceive instinctively that P will de- principles,

scend with quicker acceleration when Q is movable
and can give way, than it will when Q is fixed and P’ s
descent more hindered. To any distance of descent h
of P a horizontal velocity v and a vertical velocity u of
P and a horizontal velocity w of Q correspond. Owing
to the conservation of the quantity of horizontal mo-
tion, (for here only internal forces act,) we have Pv =
Qw, and for obvious geometrical reasons (Fig. 186)
also

2P+ p
Fig. 184.

extremity of which is weighted with a load P\ and on
C a load 2P -f - / is placed. The movable pulley will
now descend with the acceleration ( p/\P +/) g. But
if we make the pulley A fast, we impose upon the
system a new cause of constraint, and the quantity of
constraint, or declination, from free motion will be in-
creased. The load suspended from B, since it now
moves with double the velocity, must be reckoned as
possessing four times its original mass. The mova-
ble pulley accordingly sinks with the acceleration
( p/6P T" /) g* A simple calculation will show that the
constraint in the latter case is greater than in the former.

u= (go -f- 70 ) tan a
The velocities, consequently, are

u=u

, it-
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Employing Gauss’s principle, Second, by
. . . . the pr in-To the velocities de- cipieof

Gauss.

principle of vis viva.
we should proceed as follows.

QFirs t, by the
pr inciples
of the con-
servat ion of
momentum
and of vis
viva.

COt Oi.U,

noted as u9 v, w the accelerations y, ô, s correspond.
Remarking that in the free state the only acceleration
is the vertical acceleration of P, the others vanishing,

P
cot a.u.w=P+ Q

For the work Ph performed, the principle of vis
viva gives the procedure required is, to make

rp
= N7 (f-r)a + -- r f, + >* o «b

P Q 2 ip— cot a r +g v ^ + y 2
As the problem possesses significancea minimum.

only when the bodies P and Q touch, that is only when
y= ( ô 4- t) tan a, therefore, also

Q P 2 u2— c o t ag\ P+ Q 2 ‘

Multiplying by PPwe obtain - Cf — (<* + 0 tan a] 2 +- tf 2 +
ô «b

N=P g
Q cos2a\u2

P
~

+
~

Q sin 2 ^7T*

To find the vertical acceleration y with which the
space h is described, be it noted that k = u2 fey. In-
troducing this value in the last equation, we get

Forming the differential coefficients of this expression
with respect to the two remaining independent vari-
ables ô and £, and putting each equal to zero, we ob-
tain

g'* = U +

— [g — ( ô -f- ) tan o'] P tan a -f - P ô= 0 and— [£ — (d -f- f) tan a~] P tan a -|- Q e = 0.
From these two equations follows immediately

Pô — Q ê= 0, and, ultimately, the same value for y
that we obtained before.

We will now look at this problem from another
point of view. The body P describes at an angle /3
with the horizon the space J, of which the horizontal
and vertical components are v and u, while simulta-
neously Q describes the horizontal distance w. The
force-component that acts in the direction of s is jPsin /3,
consequently the acceleration in this direction, allow-
ing for the relative velocities of P and Q, is

( P + (?) sin 2 o'
^ 7Jsin 2 ^ Q

For Q — co, y=g s m 2 a, the same
tionary inclined plane.
descent. For finite values of Q= viP, we get,

1 -f- m 1since -. > 1,
sin 2 # -f- m

(1 -)- m) sin 2 *?^ m + sin2 or
The making of Q stationary, being a newly imposed
cause of constraint, accordingly increases the quantity
of constraint, or declination, from free motion.

To obtain y, in this case, we have employed the
principle of the conservation of momentum and the

ir-
as on a sta-

For Q= 0, y = gf as in free

• g > gsin 2 a.

P . sin /3
--+m*
g g\s j
p
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and by means of the equation y == (d -|- T) tan a, ulti-
mately, as before,

Employing the following equations which are di -
tended con- rectly deducible,
cept of mo-
ment of in-
ertia.

Third, by
the ex-

Qw= Pv
v= s cos ft
u= v tan ft.

the acceleration in the direction of s becomes

( PA- (7)sin 3 rtr
v= — — — — p*

^ P sin2 a A~ Q a)

^
O sin a cos a

<Y - or
Psin2a -|- Q

(2)

Q sin ft /’sin a cos a
£ = JP sin* <x

~+ Qg (3)gQ + P cos2 ft rand the vertical acceleration corresponding thereto is
Q sin2 ftr= Q+ j> cos’ P

an expression, which as soon as we introduce by
of the equation u — (y -|- w ) tan a, the angle-func-
tions of a for those of ft, again assumes the form above
given. By means of our extended conception of
ment of inertia we reach, accordingly, the same result
as before.

Finally we will deal with this problem in a direct
The body P does not descend on the mova-

ble inclined plane with the vertical acceleration g, with
which it would fall if free, but with a different vertical
acceleration, y. It sustains, therefore, a vertical coun-
terforce ( P/g ) ( g — y ).
neglected, can only act on each other by means of a
pressure S, normal to the inclined plane, therefore

If we put P= Q and /*= 45°, we obtain for this Discussion
1 T-' 71 /

of the re
_

fg. r or P/g=suits.particular case y=% g, ô= Lg, e
Q/g= i we find the “ constraint,” or declination from
free motion, to bet̂ 2 /3. If we make the inclined plane
stationary, the constraint will be g 2 / 2. If /’ moved on
a stationary inclined plane of elevation ft, where
tan ft= y/6, that is to say, in the same path in which
it moves on the movable inclined plane, the constraint
would only be g 2 / S • And, in that case it would, in
reality, be less impeded than if it attained the same
acceleration by the displacement of Q.

8. The examples treated will have convinced us that Gauss’s. . . . principle
no substantially new insight or perception is afforded by affords

Gauss’s principle. Employing form (3) of the prin-
ciple and resolving all the forces and accelerations in
the mutually perpendicular coordinate-directions, giv-
ing here the letters the same significations as in equa -
tion (1) on page 342, we get in place of the declination,
or constraint, 27?iy 2 , the expression

• g,

means

mo-

Fourth , by
direct prin-
ciples. manner.

no

But as P and Q, friction

P
~ (g y )= S cos a and

.S’sin a= — e

g 21ZYX (4)— <5
m-a) +w-77 +wN — 2m

tg g
and by virtue of the minimum conditionFrom this is obtained

YP XQ. eus+ \ -- f,\£r,+(g — r )= (IN = 22m6cot a,g g
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Once we have recognised work as the factor deter- Rôle of the

. . . factor work.
minative of motion, once we have grasped the

ing of the principle of virtual displacements to be, that
motion can never take place except where work can be

truth also will in-
can

Z — Z \ d Z \ = 0. mean-m

or 2[(X — m$)dB, -f (Y — mi f)d v+ ( Z — m <2 )dg]=0.
If no connections exist, the coefficients of the (in

belt’s prin- that case arbitrary) d£, dr7, r/ <2, severally made = 0,ciples com- . . y

give the equations of motion.

Gauss’s and
D’ Alern- performed, the following

volve no difficulty, namely, that all the work that
be performed in an element of time actually is per-

Consequently, the total diminution of work

converse

mutable. But if connections do
exist, we have the same relations between d£,, drj, d8,
as above in equation (i), at page 342, between ô x, ôy,
â z. The equations of motion come out the same ; as
the treatment of the

formed.
due in an element of time to the connections of the

system’s parts is restricted to the portion annulled by

the counter-ivork of those parts. It is again merely a

pect of a familiar fact with which we have here
same example by D’Alembert’s

principle and by Gauss’s principle fully demonstrates.
The first principle, however, gives the equations of
motion directly, the second only after differentiation.
If we seek an expression that shall give by differentia-
tion D’Alembert’s equations, we are led perforce to the
principle of Gauss. The principle, therefore, is new
only in form and not in matter.

new as
to deal.

This relation is displayed in the very simplest cases. Thefoun-. dations of

Let there be two masses m and m at A, the one im- the princi-
•v . pie recog-

pressed with a force p, the other with nisabie in
tliesim-

the force q. If we connect the two, we , ^ piest cases,

shall have the mass 2 m acted on by a
resultant force r. Supposing the spaces
described in an element of time by the
free masses to be represented by AC, $

A B, the space described by the con-
joint, or double, mass will be AO — ç
\A D. The deviation, or constraint,
is m( 0 3 2 -j- O C 2 ). It is less than
it would be if the mass arrived at the end of the ele-

ment of time in M or indeed in any point lying out-

Nor does it, further,
possess any advantage over the Lagrangian form of
D’Alembert’s principle in respect of competency tocom-
prehend both statical and dynamical problems, as has
been before pointed out (page 342).

There is no need of seeking a mystical or metaphys-

N* M

b
ID

The phys-
ical basis

dpie
6 prin *Ca^ reason f°r Gauss’s principle. The expression “ least

constraint ” may seem to promise something of the
sort ; but the name proves nothing. The answer to the
question, “ In what does this constraint consist ? ”

Fig. 187.

can-
not be derived from metaphysics, but must be sought
in the facts.

side of B C, say JV} as the simplest geometrical con-
The deviation is proportionalThe expression (2) of page 353, or (4) of

page 361, which is made a minimum, represents the
work done in an element of time by the deviation of the
constrained motion from the free motion.

sidérations will show,

to the expression p2 -|- q2 2 fq cos 6/ 2, which in the

of equal and opposite forces becomes 2/ 2, and in
the case of equal and like-directed forces

Two forces p and q act on the same mass,

force q we resolve parallel and at right angles to the

case
This work,

the work due to the constraint, is less for the motion
actually performed than for any other possible motion.

zero.
The

n
1
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space, when the time is not stated in which the space
is described. If , however, unit of time be meant, the
distinction of space and velocity in the examples treated
by Maupertuis is, to say the least, peculiar. It appears
that Maupertuis reached this obscure expression by an
unclear mingling of his ideas of v i s v iva and the prin-
ciple of virtual velocities. Its indistinctness will be
more saliently displayed by the details.

2. Let us see how Maupertuis applies his principle. Determina-
If M, m be two inelastic masses, C and c their velocities laws of im-

. p a c t b y t h i s
before impact, and u their common velocity after im- principle,

pact, Maupertuis requires, (putting here velocities for
spaces,) that the “ action ” expended in the change of
the velocities in impact shall be a minimum. Hence,
M(C — u) 2 + m (c — 1Î) 2 is a minimum ;
M ( C — u) + m ( c — ?/) = 0 ; or

MC -f- me
M -f m

For the impact of elastic masses, retaining the same
designations, only substituting V and v for the two ve-
locities after impact, the expression M ( C — V )2

m( c — v )2 is a minimum ; that is to say,
M ( C — V ) dV m ( c — v ) dv= 0 (1)

In consideration of the fact that the velocity of ap-
proach before impact is equal to the velocity of reces-
sion after impact, we have

C — c= — (V — or
C + V — (c + r )= 0

Even in the direction of p in r and .r. The work done in an elementprinciple of . .
sk1on°ofPO- of time is proportional to the squares of the forces, and
forces its if there be no connections is expressible by f i 2 -1- q2 =properties J J \ ip2 -f- r 2 -f- s2. If now r act directly counter to the

force /, a diminution of work will be effected and the
sum mentioned becomes ( p — r)2 -f- s2 . Even in the
principle of the composition of forces, or of the mutual
independence of forces, the properties are contained
which Gauss’s principle makes use of. This will best
be perceived by imagining all the accelerations simul-
taneously performed. If we discard the obscure verbal
form in which the principle is clothed, the metaphysical
impression which it gives also vanishes,

simple fact ; we are disillusioned, but also enlightened.
The elucidations of Gauss’s principle here presented

are in great part derived from the paper of Scheffler
cited above. Some of his opinions which I have been
unable to share I have modified. We cannot, for ex-
ample, accept as new the principle which he himself
propounds, for both in form and in import it is identical
with the D’Alembert-Lagrangian.

are found.

We see the
that is

u =

V I I I.
T H E P R I N C I P L E O K L E A S T A C T I O N.

T h e o r i g- i . MAUPERTUIS enunciated, in 1747, a principle
i n a l , o b- . . 1 . . . . ' r
s c u r e f o r m which he called li le principe de la moindre quantité d’ac-o f t h e p r i n- . . . . . .
cîp i e o f tion, the principle of least action. He declared this
l e a s t a c t i o n. . . . . . . . . , ,principle to be one which eminently accorded with the

wisdom of the Creator. He took as the measure of
the “ action ” the product of the mass, the velocity,
and the space described, or mvs. Why, it must be
confessed, is not clear. By mass and velocity definite
quantities may be understood ; not so, however, by

(2)
and

. (3)dV — dv= 0
The combination of equations (1), (2), and (3)

readily gives the familiar expressions for V and v.
These two cases may, as we see, be viewed as pro-

1*

i
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cesses in which the least change of vis viva by reaction
takes place, that is, in which the least counter-work is
done. They fall, therefore, under the principle of
Gauss.

Tand
a v- bdv,

whence these equations correctly follow
Ma — mb Ma — mb

° Ma2 -f- mb2*’ 1 Ma2 -j- mb2

and for the case of equilibrium, where u= c —
M a — mb = 0.

u
a

du=
3. Peculiar is Maupertuis’s deduction of the hnv of

Two masses M and m (Fig. 188) rest on a
Mauper-
tuis’s de-
duction of the lever.
the law of .. . . .
the lever by bar a, which the fulcrum divides into the portions
this prin-ciple.

&
x and a — x. If the bar be set in rotation, the veloci-
ties and the spaces described will be proportional to
the lengths of the lever-arms, and Mx 2 -f - m ( a
is the quantity to be made a minimum, that is Mx —
m ( a — x) = 0 ; whence x= majM + mf — a condition

that in the case of equilib-
rium is actually fulfilled. In
criticism of this, it is to be
remarked, first, that masses
not subject to gravity or
other forces, as Maupertuis

here tacitly assumes, are always in equilibrium, and,
secondly, that the inference from Maupertuis’s deduc-
tion is that the principle of least action is fulfilled
only in the case of equilibrium, a conclusion which it
was certainly not the author’s intention to demonstrate.

If it were sought to bring this treatment into ap-
proximate accord with the preceding, we should have
to assume that the heavy masses M and m constantly
produced in each other during the process the least
possible change of vis viva. On that supposition, we
should get, designating the arms of the lever briefly by
a, b, the velocities acquired in unit of time by u, v, and
the acceleration of gravity by g, as our minimum ex-
pression, M( g — u ) 2 -(- m( g — v ) 2 ; whence M ( g — 11 )
du -f- m( g — v )dv= 0. But in view of the connection
of the masses as lever,

x ) 2 v
Thus, this deduction also, when we come to rectify

it, leads to Gauss’s principle.
4. Following the precedent of Fermat and Leib- Treatment

nitz, Maupertuis also treats by his method the motion tion ofii^ht
r by the prin-

ciple of
least ac-
tion.

M - M of light. Here again, however,
he employs the notion “ least ac-
tion ” in a totally different sense.
The expression which for the c
case of refraction shall be a min-

Ia-xx
Fig. 188. m R D

11
imum, is m . A R + n . RB,
where A R and R B denote the
paths described by the light in
the first and second media re-
spectively, and m and n the corresponding velo-
cities. True, we really do obtain here, if R be de-
termined in conformity with the minimum condition,
the result sinar /sin /3= njm = const. But before, the

“ action ” consisted in the change of the expressions
mass X velocity X distance ; now, however, it is con-
stituted of the sum of these expressions. Before, the
spaces described in unit of time were considered ; in
the present case the total spaces traversed are taken.
Should not m . A R — n . RB or gm — ii){ A R — RB)
be taken as a minimum, and if not, why not ? But

l
Fig. 189.

The correc-
tion of Mau-
pertuis’s
deduction.

*
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Euler finds the requisite expression in the formula The form
fv ds, where ds denotes the element of the path and principle^v the corresponding velocity. 1his expression is smaller Euler’s

for the path actually taken than for any other infinitely
adjacent neighboring path between the same initial
and terminal points, which the body may be constrained
to take. Conversely, therefore, by seeking the path that
makes Çv ds a minimum, we can also determine the
path. The problem of minimising Çv ds is, of course,
as Euler assumed, a permissible one, only when v de-
pends on the position of the elements ds, that is to
say, when the principle of vis viva holds for the forces,
or a force-function exists, or what is the same thing,
when v is a simple function of coordinates. For
tion in a plane the expression would accordingly as-
sume the form

369
even if we accept Maupertuis’s conception, the recip-
rocal values of the velocities of the light are obtained,
and not the actual values.

It will thus be seen that Maupertuis really had no
principle, properly speaking, but only a vague form -
ula, which was forced to do duty as the expression of
different familiar phenomena not really brought under
one conception. I have found it necessary to enter
into some detail in this matter, since Maupertuis’s per-
formance, though it has been unfavorably criticised by
all mathematicians, is, nevertheless, still invested with
a sort of historical halo. It would seem almost as if
something of the pious faith of the church had crept
into mechanics. However, the mere endeavor to gain
a more extensive view, although beyond the powers of
the author, was not altogether without results. Euler,
at least, if not also Gauss, was stimulated by the at-

hands.Characteri-
sation of
Mauper-
tuis’s prin-
ciple.

a mo-

7 dyyf c p ( X , 7) yj 1 . dx

In the simplest cases Euler’s principle is easily veri-
If no forces act, v is constant, and the curve of

motion becomes a straight line, for which Çv ds —v Ç ds is unquestionably shorter than for any other
curve between the same terminal points.
Also, a body moving on a curved surface
without the action of forces or friction,
preserves its velocity, and describes
the surface a shortest line.

The consideration of the motion of a
projectile in a parabola ABC (Fig. 190)
will also show that the quantity Çv ds 0
is smaller for the parabola than for any
other neighboring curve ; smaller, even,
than for the straight line ABC between the
minai points. The velocity, here, depends solely on the

tempt of Maupertuis.
5. Euler’s view is, that the purposes of the phe- dx

Euler’scon-
to this sub- nomena of nature afford as good a basis of explana-
ject. fied.

If this position be taken, it willtion as their causes.
be presumed a priori that all natural phenomena pre-

Of what character thissent a maximum or minimum,

maximum or minimum is, can hardly be ascertained
by metaphysical speculations. But in the solution of
mechanical problems by the ordinary methods, it is
possible, if the requisite attention be bestowed on the
matter, to find the expression which in all cases is
made a maximum or a minimum. Euler is thus not

A\

on

Euler’s
principle
applied to

,£* the motion
^ of a projec-

tile.
led astray by any metaphysical propensities, and pro-
ceeds much more scientifically than Maupertuis. He
seeks an expression whose variation put = 0 gives the
ordinary equations of mechanics.

For a single body moving under the action of forces

Fig. 190

same ter-
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vertical space described by the body, and is therefore where C and C' denote constants of integration that
pass into C=V 2ga and C'= 0, if for x= 0, dx/dy=0
and y — 0 be taken. Therefore, y= 2Vax. By this
method, accordingly, the path of a projectile is shown
to be of parabolic form.

6. Subsequently, Lagrange drew express attention The addi-
to the fact that Euler’s principle is applicable only in grange and

cases in which the principle of vis viva holds. JacobiJacobl'

pointed out that we cannot assert that Çv ds for the ac-
tual motion is a minimum, but simply that the variation of
this expression, in its passage to an infinitely adjacent
neighboring path, is = 0. Generally, indeed, this con-
dition coincides with a maximum or minimum, but it
is possible that it should occur without such ; and the
minimum property in particular is subject to certain
limitations. For example, if a body, constrained to
move on a spherical surface, is set in motion by some
impulse, it will describe a great circle, generally a
shortest line. But if the length of the arc described
exceeds i8o°, it is easily demonstrated that there exist
shorter infinitely adjacent neighboring paths between
the terminal points.

7. So far, then, this fact only has been pointed out, Euler’s

that the ordinary equations of motion are obtained by but on^o?
equating the variation of Çv ds to zero. But since the 3veythehlch
properties of the motion of bodies or of their paths may of mot?on.
always be defined by differential expressions equated
to zero, and since furthermore the condition that the
variation of an integral expression shall be equal to
zero is likewise given by differential expressions equated
to zero, unquestionably various otticr integral expres-
sions may be devised that give by variation the ordi-
nary equations of motion, without its following that the

Mathemat-
opment of the same for all curves whose altitude above OC is the
this case. If we divide the curves by a system of horizontalsame.

straight lines into elements which severally correspond,
the elements to be multiplied by the same v’ s, though
in the upper portions smaller for the straight line AD
than for A B, are in the lower portions just the reverse ;
and as it is here that the larger Es, come into play, the

upon the whole is smaller for ABC than for the
•straight line.

Putting the origin of the coordinates at A, reckon-
ing the abscissas x vertically downwards as positive,
and calling the ordinates perpendicular thereto y, we
obtain for the expression to be minimised

5

;sum

f C2 f (a + x )^ l + ( f f . d x,

where g denotes the acceleration of gravity and a the
distance of descent corresponding to the initial velocity.
As the condition of minimum the calculus of variations
gives

dy

= Cor
dy . 2
dx

Cdy ordx \/ 2 g (a -f x) — C 2

Cdxfy =
]/2 g {a + x ) — C 2

and, ultimately,
Cy =-1/2 g ( a + x) — C 2 + c>

\g

4*
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account any particular physical significance.

8. The striking fact remains, however, that so simple
an expression as Çv ds does possess the property

icai import, tioned, and we will now endeavor to ascertain its phys-
ical import. To this end the analogies that exist be-
tween the motion of masses and the motion of light, as
well as between the motion of masses and the equilib-
rium of strings— analogies noted by John Bernoulli
and by Môbius— will stand 11s in stead.

A body on which no forces act, and which there-
fore preserves its velocity and direction constant, de-
scribes a straight line. A ray of light passing through
a homogeneous medium (one having everywhere the
same index of refraction) describes a straight line. A
string, acted on by forces at its extremities only, as-
sumes the shape of a straight line.

A body that moves in a curved path from a point

BC,BD (Fig. 191), are in equilibrium. If now, a body, The motion
with a velocity v represented in magnitude and direc- deduced*5

tion by AB, enter the element of the path ds, and re- equTiibrîum
ceive within the same the velocity component BF =°f a strmg*— BD, the body will proceed on-
ward with the velocity v' — BC.
Let Q be an accelerating force
whose action is directly opposite
to that of P; then for unit of time *

the acceleration of this force will
be Q, for unit of length of the
string Q/v, and for the element
of the string ( Q/v^ ds. The body will move, therefore,
in the curve of the string, if we establish between the
forces P and the tensions S, in the case of the string,
and the accelerating forces Q and the velocity v in the
case of the mass, the relation

P : — ®=r- S : v.

*Yet the ex-
pression
must pos- men-

r

B
N*

D F
Fig. 191.

Elucidation

port; by the A to a point B and whose velocity v — <p( x, y, z) is a
motion of a
mass, the
motion of a . . - .. r , . . • Aray of light, curve for which generally f v ds is a minimum. A ray
equilibrium of light passing from A to B describes the same curve,
of a string.

Vfunction of coordinates, describes between A and B a a The minus sign indicates that the directions of P and
Q are opposite.

A closed circular string is in equilibrium when be- The equi-
1 „ . . librium oftween the tension S of the string, everywhere ednstant, closed

strings.and the force P falling radially outwards on unit of
length, the relation P= S/r obtains, where r is the
radius of the circle. A body will move with the con-
stant velocity v in a circle, when between the velocity
and the accelerating force Q acting radially inwards
the relation

if the refractive index of its medium, n= cp ( x, y, z ),
is the same function of coordinates ; and in this case

\J" /ids is a minimum. Finally, a string passing from
A to B will assume this curve, if its tension S =
cp (pc, y, z ) is the same above-mentioned function of co-
ordinates ; and for this case, also, ÇSds is a minimum.

The motion of a mass may be readily deduced from
the equilibrium of a string, as follows. On an element
//5 of a string, at its two extremities, the tensions S, S'
act, and supposing the force on unit of length to be P,
in addition a force P. ds. These three forces, which
we shall represent in magnitude and direction by BA,

!

r Q V 7’2- = — or Q = — obtains.v r r
A body will move with constant velocity v in any curve
when an accelerating force Q=v*1 ]r constantly acts

I

J
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tion n into a medium having the index of refraction n' , Deveiop-
where n/ n' — v / v' , this ray of light will describe the illustration,

same path as the body in the case above. If , there-
fore, we wish to imitate the motion of a mass by the
motion of a ray of light (in the same curve), we must
everywhere put the indices of refraction, n, proportional
to the velocities. To deduce the indices of refraction
from the forces, we obtain for the velocity

„. v 2

on it in the direction of the centre of curvature of each
A string will lie under a constant tension Selement.

in any curve if a force P= S/r acting outwardly from
the centre of curvature of the element is impressed on
unit of length of the string.

No concept analogous to that of force is applicable
to the motion of light. Consequently, the deduction of

The deduc-
tion of the
motion of

thehmot°ions the motion of light from the equilibrium of a string or
of masses
and the
equilibrium . . . - \ • A T>of strings, mass, let us say, is moving with the velocity An = v.

(Fig. 192.) A force in the direction
BD is impressed on the mass which
produces an increase of velocity BE,

A so that by the composition of the ve-
locities BC= AB and BE the new

the motion of a mass must be differently effected. A = Pdq, and

for the index of refraction, by analogy,
'lav

HA 112d — Pdq,9
B

where P denotes the force and dq a distance-element
in the direction of the force. If ds is the element of
the path and a the angle made by it with the direction
of the force, we have then

velocity BE= v is produced. If we
resolve the velocities 71, v' into com-
ponents parallel and perpendicular to
the force in question, we shall per-
ceive that the parallel components alone
are changed by the action of the force.
This being the case, we get, denoting

by k the perpendicular component, and by a and a'
the angles v and v make with the direction of the
force,

G

E

= Pcosa . ds«F
( n2

Fig. 192. d = Pcosa . ds.
\ 2

For the path of a projectile, under the conditions above
assumed, we obtained the expression y — 2V ax. This
same parabolic path will be described by a ray of light,
if the law n=V 2 g ( a -j- jr) be taken as the index of
refraction of the medium in which it travels.

k — v sin a

k = 7/ sin a or

g. We will now more accurately investigate the Relation of

manner in which this minimum property is related to mum prop-
the form of the curve. Let us take, first, (Fig. 193) aforînofhe
broken straight line ABC, which intersects the straight
line MN, put AB= s, BC= s' , and seek the condition
that makes vs

v'sin a
vsin a

À
If , now, we picture to ourselves a ray of light that

penetrates in the direction of v a refracting plane at
right angles to the direction of action of the force, and
thus passes from a medium having the index of refrac-

curves.

v*s' a minimum for the line that passes

r



l ü
! THE EXTENSION OF THE PRINCIPLES. 375

THE SCIENCE OF MECHANICS.374 #%

tion n into a medium having the index of refraction rt , Deveiop-
where n/ri= v/v', this ray of light will describe the illustration,

same path as the body in the case above. If , there-
fore, we wish to imitate the motion of a mass by the
motion of a ray of light (in the same curve), we must
everywhere put the indices of refraction, ;/, proportional
to the velocities.
from the forces, we obtain for the velocity

. . v2

on it in the direction of the centre of curvature of each
A string will lie under a constant tension S H

*element.
in any curve if a force P — S/r acting outwardly from
the centre of curvature of the element is impressed on

unit of length of the string.
No concept analogous to that of force is applicable

the motion of light. Consequently, the deduction of
the motions the motion of light from the equilibrium of a string or
of masses .
and the the motion of a mass must be differently effected. A
equilibrium . . .
of strings, mass, let us say, is moving with the velocity AB = v.

(Fig. 192.) A force in the direction
BD is impressed on the mass which
produces an increase of velocity BE,

K so that by the composition of the ve-
locities BC= AB and BE the new

^
velocity BE — v is produced. If we
resolve the velocities v, v' into com-
ponents parallel and perpendicular to
the force in question, we shall per-

P ceive that the parallel components alone
changed by the action of the force.

This being the case, we get, denoting

by k the perpendicular component, and by a and of

the angles v and v' make with the direction of the
force,

The deduc-
tion of the
motion of to

To deduce the indices of refraction

I

T Pdq, and

for the index of refraction, by analogy,

= Edq,
where P denotes the force and dq a distance-element
in the direction of the force,

the path and a the angle made by it with the direction
of the force, we have then

_ (v2\df - )= P cosa. ds

HA

B

If ds is the element of

«
(n*are

Fig. 192. d — -Pcos a .ds .
For the path of a projectile, under the conditions above
assumed, we obtained the expression y= 2V ax. This
same parabolic path will be described by a ray of light,
if the law n=V 2 g ( a + x) be taken as the index of
refraction of the medium in which it travels.

k = v sin a

k = v sin a or

sin a
sin a

If , now, we picture to ourselves a ray of light that

penetrates in the direction of v a refracting plane at

right angles to the direction of action of the force, and

thus passes from a medium having the index of refrac-

9. We will now more accurately investigate the Relation of. . . . . . . . ' . , the mini-manner in which this minimum property is related to mum prop-
the form of the curve. Let us take, first, (Fig. 193) a form of

curves.broken straight line ABC, which intersects the straight
line MN, put AB — s, BC= s' , and seek the condition
that makes vs -f- vs' a minimum for the line that passes

v
v *



THE EXTENSION OF TI1E PRINCIPLES.THE SCIENCE OF MECHANICS.376 377

through the fixed points A and B, where v and v are
supposed to have different, though constant, values
above and below MN. If we displace the point B an
infinitely small distance to B>, the new line through A
and C will remain parallel to the original one, as the
drawing symbolically shows. The expression vs -f- v's’
is increased hereby by an amount

— 7’ m sin a v m sin a ,
where ni= DB, or by an amount — v sin ** -f v sin a .
The condition of the minimum, consequently, is that

— 7' sin ** -\- v sin a = 0
sin at

sin **'

string stretched once between A and B and thrice be-
tween B and C, and finally a weight P attached. Then
S = P and S' = 3 P. If we displace the point B a dis-
tance ///, any diminution of the expression Ss S's’
thus effected, will express the increase of work which
the attached weight P performs. If — Sm sin or -f-
S' m sin a'= 0, no work is performed. Hence, the mini-
mum of Ss -|- S's' corresponds to a maximum of work.
In the present case the principle of least action is sim-
ply a different form of the principle of virtual displace-
ments.

First, de-
duction of
the mini-
mum condi-
tion.

Now suppose that ABC is a ray of light, whose ve- Third, the
. . application

locities v and v above and below MN are to each other of this con-
dition to the
motion of a
ray of light.

v9

V The motion of light bé-as 3 to 1.
tween two points A and B is such kAA A
that the light reaches B in a mini-
mum of time. The physical reason
of this is simple. The light travels
from A to B, in the form of ele-
mentary waves, by different routes.
Owing to the periodicity of the light,
the waves generally destroy each
other, and only those that reach the
designated point in equal times, that is, in equal phases,
produce a result. But this is true only of the waves
that arrive by the minimum path and its adjacent neigh-
boring paths. Hence, for the path actually taken by
the light s/v -f - s' jv is a minimum. And since the in-
dices of refraction n are inversely proportional to the
velocities v of the light, therefore also ns -f- n' s' is a

O k N
M

B E
Fig. 195.o

19,.
If the expression s/7’ + s' / v' is to be made a minimum,
we have, in a similar way,

sin **
sin a'

v
v

If, next, we consider the case of a string stretchedSecond , the

of this con- in the direction ABC, the tensions of which S and S '

equilibrium are different above and below MN, in this case it is
of a string.

minimum.
In the consideration of the motion of a mass the con-

dition that vs -fi- v' s' shall be a minimum, strikes us as
something novel. (Fig. 195.) If a mass, in its passage

the minimum of Ss -j- S's' that is to be dealt with. To
obtain a distinct idea of this case, we may imagine the

4ft*
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Fourth, its through, a plane M2V, receive, as the result of the action
application
to the mo-
tion of a
mass.

its simple physicalsignificance. If we picture to ourselves illustration

a string whose tension is S — V 2g ( a -|- x ), an arrange- typical
CQS S by

ment which might be effected by fixing frictionless curvilinear
1 1 1 . 1 1 1 1 1 1 • - 1 motions.

pulleys on horizontal parallel rods placed m a vertical
plane, then passing the string through these a sufficient
number of times, and finally attaching
a weight to the extremity of the string,
we shall obtain again, for equilibrium,
the preceding condition, the phys-
ical significance of which is now ob-
vious. When the distances between
the rods are made infinitely small the
string assumes the parabolic form.
In a medium, the refractive index of
which varies in the vertical direction
by the law n=1/2 g( a -(- x), or the velocity of light in
which similarly varies by the law v = I /]/ 2 g(a -|- x ) ,
a ray of light will describe a path which is a parabola.
If we should make the velocity in such a medium
v=V 2£(#+*), the ray would describe a cycloidal path,
for which, not J' ]/ 2g( a -f- x ) . ds, but the expression

J'ds jV 2g(af- x ) would be a minimum.
11. In comparing the equilibrium of a string with

the motion of a mass, we may employ in place of a
string wound round pulleys,
a simple homogeneous cord,
provided we subject the cord
to an appropriate system of
forces. We readily observe
that the systems of forces
that make the tension, or,
as the case may be, the ve-
locity, the same function of coordinates, are differ-
ent. If we consider, for example, the force of gravity,

of a force impressed in the direction DB, an increase of
velocity, by which v, its original velocity, is made 7/, we
have for the path actually taken by the mass the equa-
tion v sin a.= 7/ sin a ' = k. This equation, which is also
the condition of minimum, simply states that only the ve-
locity-component parallel to the direction of the force is
altered, but that the component Jz at right angles thereto re-
mains unchanged. Thus, in this case also, Euler’s prin-
ciple simply states a familiar fact in a new form.

10. The minimum condition — v sin a -)- v' sin a'=0
may also be written, if we pass from a finite broken
straight line to the elements of curves, in the form— v sin a ( v + dv ) sin(ar -|~ da)= 0

Form of the
minimum
condition
applicable
to curves.

Fig. 196.or
d( v sin <*) == 0

or, finally,
v sin a — const.

In agreement with this, we obtain for the motion
of light

d (yi sin a) = 0, n sin a= const,
sin a Y sin a

d = 0, = const,v V

and for the equilibrium of a string
d ( S sina) == 0, S si n a — co?ist.

To illustrate the preceding remarks by an ex-
ample, let us take the parabolic path of a projectile,
where a always denotes the angle that the element of
the path makes with the perpendicular. Let the ve-
locity be v= v 2 g ( a -f- x ), and let the axis of the^-or-
dinates be horizontal. The condition v . sin a = const,
or V 2 g ( a .r) . dy/ds = const, is identical with that
which the calculus of variation gives, and we now know

Hi

Fig. 197.

a*
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â f\u+ T ) dt

frôC/+ ôT ) dt= 0,
*0

where ôU and âT denote the variations of the work
and the vis viva, vanishing for the initial and terminal
epochs. Hamilton’s principle is easily deduced from
D’Alembert’s, and, conversely, D’Alembert’s from
Hamilton’s ; the two are in fact identical, their differ-
ence being merely that of form.*

2. We shall not enter here into any extended in- Hamilton’s
J _ principle

vestigation of this subject, but simply exhibit the iden- appiied

^
to

^tity of the two principles by an example—
the same that served to illustrate the prin-
ciple of D’Alembert: the motion of a wheel
and axle by the over- weight of one of its
parts. In place of the actual motion, we
may imagine, performed in the same inter- p
val of time, a different motion, varying in-
finitely little from the actual motion, but
coinciding exactly with it at the beginning
and end. There are thus produced in every element
of time dt, variations of the work (ÔU ) and of the vis
viva (dT1); variations, that is, of the values U and T
realised in the actual motion. But for the actual mo-
tion, the integral expression, above stated, is = 0, and
may be employed, therefore, to determine the actual
motion. If the angle of rotation performed varies in
the element of time dt an amount a from the angle of
the actual motion, the variation of the work corre-
sponding to such an alteration will be

6U = ( PR — Qr') a= Ma.
* Compare, for example, Kirchhoff, Vorlesungen iiber mathematische Phy-

sik, Mechanik , p. 25 et seqq., and Jacobi, Vorlesungen iiber Dynamik , p. 58.
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The
^
condi- v= ]/2g( a x ). A string, however, subjected to the

action of gravity, forms a catenary, the tension of
= 0, or The points

of identity
of Hamil-
ton’s and
D’Alem-.bert’s prin -
ciples.

conse-
quences of . . . .
inganak>

d" whlch 1S 8lven hy the formula S=m — nx, where m
gies. and n are constants. The analogy subsisting between

the equilibrium of a string and the motion of
substantially conditioned by the fact that for a string
subjected to the action of forces possessing a force-
function U, there obtains in the case of equilibrium
the easily demonstrable equation U -j- S= const. This
physical interpretation of the principle of least action
is here illustrated only for simple cases ; but it may
also be applied to cases of greater complexity, by
imagining groups of surfaces of equal tension, of equal
velocity, or equally refractive indices constructed which
divide the string, the path of the motion, or the path
of the light into elements, and by making a in such a
case represent the angle which these elements make
with the respective surface-normals. The principle of
least action was extended to systems of masses by La-
grange, who presented it in the form

a mass is

v

of a wheel
and axle.

^0

Q

Fig. 198.u
ô vds= 0.

If we reflect that the principle of vis viva, which is the
real foundation of the principle of least action, is not
annulled by the connection of the masses, we shall
comprehend that the latter principle is in this case also
valid and physically intelligible.

ix.
iHAMILTON S PRINCIPLE.

1. It was above remarked that varions expressions
can be devised whose variations equated to zero give
the ordinary equations of motion. An expression of
this kind is contained in Hamilton’s principle
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Substituting for the symbols the values they represent,
we obtain the familiar equation

d CD

Mathemat- The vis viva, for any given angular velocity CD, is
ica l devel- J

opinent of
th is case. 1 ( PR2 + Q r2 ) * ,T= P R — Q r

It — PJR* + Qr* g'
g

and for a variation ôGO of this velocity the variation of
the vis viva is D’Alembert’s principle gives the equation

dN\— — Ia
dt J

The same
resul ts ob-
ta ined by
the use of
D’ Alem-
ber t's pr in-
c ip le.

1
ÔT= — (PR2 + Qr2 ) cod GO. - 0,M —g

But if the angle of rotation varies in the element dt an
amount a, which holds for every possible displacement. We might,

in the converse order, have started from this equation,
have thence passed to the expression

da ,ô GO= anddt
1 da da /(

*0

dN6T= — { PR2 -f Qr2') GO
<s

The form of the integral expression, accordingly, is

= N adt = 0,Ni-di'dt dt

and, finally, from the latter proceeded to the same re-
sult

t

f I Mot + N
*0

da
dt= 0.dt

to

to

11
dt — (TV a) =But as tod dN da(.Na) a N

dt’dt dt
dt= 0.therefore,

11

/ 11dN\a . at + ( Not ) 3. As a second and more simple example let us illustration. . . . . . . „ of this point
consider the motion of vertical descent, r or every by the mo-
, . . . . . t ion of ver-lnnnitely small displacement 3- the equation subsists t ica i de-

scout*

[mg — m ( dv/dty] s= 0, in which the letters retain
their conventional significance. Consequently, this
equation obtains

= 0.M — dt toto
The second term of the left -hand member, though,
drops out, because, by hypothesis, at the beginning
and end of the motion a — 0. Accordingly, we have

11

/(
to

dN 11adt= 0,M dvdt s . dt = 0,
dt

an expression which, since a in every element of time
is arbitrary, cannot subsist unless generally

dN

to
which, as the result of the relations

d
{jnvs ) dv ds ands T- m vM — = 0. = m —dt dtdtdt

J«
A



3«4 THE SCIENCE OF MECHANICS. THE EXTENSION OE THE PRINCIPLES. 385

2. First, let us imagine a weightless liquid mass The work of. T 1 1 r 1 1 moleculartree in space. Its molecular torces, we know, act only forces de-
at very small distances. Taking as our radius the dis- a change in

tance at which the molecular forces cease to exert a superficial

measurable influence, let us describe about a particle
a, b, c in the interior of the mass a sphere— the so-
called sphere of action. This sphere of action is regu-
larly and uniformly filled with other particles. The
resultant force on the central particles a, b, c is there-
fore zero. Those parts only that lie at a distance from
the bounding surface less than the radius of the sphere
of action are in different dynamic conditions from the
particles in the interior. If the radii of curvature of

(l ( m vs )s dt=( furs')d t to'o
provided s vanishes at both limits, passes into the form

area.

dt= 0

'0

that is, into the form of Hamilton’s principle.
Thus, through all the apparent differences of the

mechanical principles a common fundamental same-
These principles are not the expression

of different facts, but, in a measure, are simply views
of different aspects of the same fact.

*
ness is seen.

x.

®SOME APPLICATIONS OF THE PRINCIPLES OF MECHANICS TO
HYDROSTATIC AND HYDRODYNAMIC QUESTIONS. ©

®i . We will now supplement the examples whichMethod of

the action we have given of the application of the principles
of gravity
on liquid ol median ICS,
masses. as they applied to rigid bodies, by a

few hydrostatic and hydrodynamic illustrations. We
shall first discuss the laws of equilibrium of a weightless
liquid subjected exclusively to the action of so-called
molecular forces. The forces of gravity we neglect in
our considerations. A liquid may, in fact, be placed
in circumstances in which it will behave as if no forces

Fig. 199.

the surface-elements of the liquid mass be all regarded
as very great compared with the radius of the sphere
of action, we may cut off from the mass a superficial
stratum of the thickness of the radius of the sphere of
action in which the particles are in different physical
conditions from those in the interior. If we convey
a particle a in the interior of the liquid from the posi-
tion a to the position b or e, the physical condition
of this particle, as well as that of the particles which
take its place, will remain unchanged. No work can
be done in this way. Work can be done only when a
particle is conveyed from the superficial stratum into
the interior, or, from the interior into the superficial
stratum. That is to say, work can be done only by a

of gravity acted. The method of this is due to PLA-
TEAU.* It is effected by immersing olive oil in a mix-
ture of water and alcohol of the same density as the
oil. By the principle of Archimedes the gravity of the
masses of oil in such a mixture is exactly counterbal-
anced, and the liquid really acts as if it were devoid of
weight.

* Statique expérimentale et théorique des liquider, 1873.

I
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of form may be regarded as virtual which the liquid
admits without alteration of its volume. Consequently,
equilibrium subsists for all liquid forms for which an
infinitely small deformation produces a superficial va-
riation — 0. For a given volume a minimum of super-
ficial area gives stable equilibrium ; a maximum un-
stable equilibrium.

Among all solids of the same volume, the sphere
has the least superficial area. Hence, the form which
a free liquid mass will assume, the form of stable equi-
librium, is the sphere. For this form a maximum of
work is done ; for it, no more can be done
liquid adheres to rigid bodies, the form assumed is de-
pendent on various collateral conditions, which render
the problem more complicated.

3. The connection between the size and the form of Mode of c

the liquid surface may be investigated as follows. We the comu

imagine the closed outer sur- size and
• form of a

face of the liquid to receive An liquid sur

without alteration of the li-
quid’s volume an infinitely
small variation. By two sets of
mutually perpendicular lines
of curvature, we cut up the
original surface into infinitely small rectangular ele-
ments. At the angles of these elements, on the original
surface, we erect normals to the surface, and determine
thus the angles of the corresponding elements of the
varied surface. To every element dO of the original
surface there now corresponds an element dO' of the
varied surface ; by an infinitely small displacement, ân,
along the normal, outwards or inwards, dO passes into
dO' and into a corresponding variation of magnitude.

Let dp, dq be the sides of the element dO. For the

change of size of the surface. The consideration whether
the density of the superficial stratum is the same as
that of the interior, or whether it is constant through-
out the entire thickness of the stratum, is not primarily
essential. As will readily be seen, the variation of the
surface-area is equally the condition of the perform-
ance of work when the liquid mass is immersed in a
second liquid, as in Plateau’s experiments.

We now inquire whether the work which by the
transportation of particles into the interior effects a

Diminution
of super-
ficial area ,
due to posi- .
tivework. diminution of the surface-area is positive or negative,

that is, whether work is performed or work is ex-
pended. If we put two fluid drops in contact, they

will coalesce of their own accord;
and as by this action the area
of the surface is diminished, it
follows that the work that

If the

/ o
pro-

duces a diminution of superfi-
cial area in a liquid mass is post-Fig. 201.
troc. Van der Mensbrugghe has

demonstrated this by a very pretty experiment. A
square wire frame is dipped into a solution of soap and
water, and on the soap-film formed a loop of moistened
thread is placed. If the film within the loop be punc-
tured, the film outside the loop will contract till the
thread bounds a circle in the middle of the liquid
face. But the circle, of all plane figures of the
circumference, has the greatest area ; consequently,
the liquid film has contracted to a minimum.

The following will now be clear. A weightless

sur-
same

Consequent
condition
°f Hquid liquid, the forces acting on which are molecular forces,equilibrium . . . . .will be in equilibrium in all forms in which a system of

virtual displacements produces no alteration of the
liquid’s superficial area. But all infinitely small changes

i 4
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The mathe- sides dp', dq of the element d0\ then, these relations
matical de-
velopment obtain
of this
method.

the superficial elements (in the latter case reckoned as
negative) shall be equal to zero, or the volume remain
constant.

Accordingly, expressions (1) and (2) can be put A condition
simultaneously = 0 only if 1/ r 1 //*' has the same value thegenerai-
for all points of the surface. This will be readily seen pressions*

from the following consideration. Let the elements depends.’
dO of the original surface be symbolically represented
by the elements of the line AX (Fig. 204) and let the
normal displacements ân be erected as ordinates
thereon in the plane JS , the outward displacements up-

wards as positive and the inward displacements down-
wards as negative.
Join the extremities
of these ordinates so
as to form a curve,
and take the quadra- ^
ture of the curve,
reckoning the sur-
face above AX as positive and that below it as nega-
tive. For all systems of dn for which this quadra-
ture = 0, the expression (2) also = 0, and all such
systems of displacements are admissible, that is, are
virtual displacements.

Now let us erect as ordinates, in the plane the
values of 1 jr + 1 jr that belong to the elements dO. A
case may be easily imagined in which the expressions
(1) and (2) assume coincidently the value zero. Should,
however, i/r + 1// have different values for different
elements, it will always be possible without altering
the zero-value of the expression (2), so to distribute
the displacements ô n that the expression (1) shall be
different from zero. Only on the condition that 1//' -f-

1 jr' has the same value for all the elements, is expres-

ô ndp' =dp 1+ r
ô n

dq =.dq i 1-f- —
where r and r are the radii of curvature of the princi-
pal sections toaching the elements of the lines of cur-
vature /, q, or the so-called principal radii of curva-
ture.* The radius of curvature of an outwardly convex
element is reckoned as positive, that of an outwardly
concave element as negative, in the usual manner. For
the variation of the element we obtain, accordingly,

=dpdq{l + -

r") (l +
Neglecting the higher powers of ô n we

ô n E— dp dq.0 . d O=d a — d o
1

X

get
6n 1 . 3 Fig. 204.ô n .dO.ô .dO — + 7r

The variation of the whole surface
then, is expressed by

ôn.dO . . . . {! )Ô O=
Furthermore, the normal displacements
must be so chosen that

f â n.d O= 0

that is, they must be such that the sum of the spaces
produced by the outward and inward displacements of

(2)

* The normal at any point of a surface is cut by normals at infinitely neigh-
boring points that lie in two directions on the surface from the original point,
these two directions being at right angles to each other ; and the distances
from the surface at which these normals cut are the two principal, or extreme,
radii of curvature of the surface.— Trans.
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vex and the other concave, the meridian curve assumes
the form of the catenary. Plateau visibly demonstrated
these cases by pouring oil on two circular rings of wire
fixed in the mixture of alcohol and water above men-
tioned.

sion (1) necessarily and universally equated to zero
with expression (2).

Accordingly, from the two conditions (1) and (2) itThe sum
equilibrium follows that 1/r -j- 1 /r *= const ; that is to say, the sum
constant for of the reciprocal values of the principal radii of curva-
the whole
surface. Now 'let us picture to ourselves a liquid mass Liquid mas-

S6S whose
bounded by surface-parts for which the expression surfacesare

partly con-
1/r -f- 1/r has a positive value, and by other parts cave and

for which the same expression has a negative value, vex.
or, more briefly expressed, by convex and concave sur-
faces. It will be readily seen that any displacement
of the superficial elements outwards along the normal
will produce in the concave parts a diminution of the
superficial area and in the convex parts an increase.
Consequently, work is performed when concave surfaces
move outwards and convex surfaces inwards. Work
also is performed when a superficial portion moves
outwards for which 1/r -f- 1 jr '= -|- a, while simulta-
neously an equal superficial portion for which 1 jr -f-
1/r' > a moves inwards.

Hence, when differently curved surfaces bound a
liquid mass, the convex parts are forced inwards and
the concave outwards till the condition 1/ r - f 1/r'=
const is fulfilled for the entire surface. Similarly, when
a connected liquid mass has several isolated surface-
parts, bounded by rigid bodies, the value of the ex-
pression 1/r -f - 1/r' must, for the state of equilibrium
be the same for all free portions of the surface.

For example, if the space between the two circular Experi-
* * i • mental

rings in the mixture of alcohol and water above re- illustration
of these

ferred to, be filled with oil, it is possible, by the use conditions,

of a sufficient quantity of oil, to obtain a cylindrical
surface whose two bases are spherical segments. The
curvatures of the lateral and basal surfaces will accord-

ture, or of the radii of curvature of the principal nor-
mal sections, is, in the case of equilibrium, constant
for the whole surface. By this theorem the dependence
of the area of a liquid surface on its superficial form is
defined. The train of reasoning here pursued was
first developed by GAUSS,* in a much fuller and more
special form. It is not difficult, however, to present
its essential points in the foregoing simple manner.

4. A liquid mass, left wholly to itself , assumes, asApplication

erai condi- we have seen, the spherical form, and presents an ab-
interrupted solute minimum of superficial area. The equation
ses?* "ias

1/r -f- 1/r'= const is here visibly fulfilled in the form
2 jR = const, R being the radius of the sphere. If the
free surface of the liquid mass be bounded by two solid
circular rings, the planes of which are parallel to each
other and perpendicular to the line joining their mid-
dle points, the surface of the liquid mass will assume
the form of a surface of revolution. The nature of the
meridian curve and the volume of the enclosed mass
are determined by the radius of the rings R, by the
distance between the circular planes, and by the value
of the.expression 1/r -f- 1/r' for the surface of revolu-
tion. When

R’r cc

the surface of revolution becomes a cylindrical surface.
For 1/ r + 1 / r'= 0, where one normal section is con-

* Principia Generalia Theories Figurée Fluidorum in Statu Æquilibrii,
Güttingen, 1830 ; Werkey Vol. V, 29, Gottingen, 1867.
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be the total amount of work to be compensated for
by the work of compression p.4r 2 it dr expended by
the pressure p on the inclosed contents. From this
follows 4 A/r=p ; from which A may be easily calcu-
lated if the measure of r is obtained and p is found by
means of a manometer introduced in the bubble.

An open spherical bubble cannot subsist,
open bubble is to become a figure of equilibrium, the
sum Hr + 1 jr' must not only be constant for each of
the two bounding surfaces, but must also be equal for
both. Owing to the opposite curvatures of the sur-

0. Consequently, r= — r 9

for all points. Such a surface is called a minimal sur-
face ; that is, it has the smallest area consistent with
its containing certain closed contours. It is also a sur-
face of zero-sum of principal curvatures ; and its ele-
ments, as we readily see, are saddle-shaped. Surfaces
of this kind are obtained by constructing closed space-
curves of wire and dipping the wire into a solution of
soap and water.* The soap-film assumes of its own
accord the form of the curve mentioned.

6. Liquid figures of equilibrium, made up of thin Plateau ’s
1 . . liquid iig-

films, possess a peculiar property. 1he work of the uresofequi-
. .. . . .. . , librium.

forces of gravity affects the entire mass 01 a liquid ;
that of the molecular forces is restricted to its super-
ficial film. Generally, the work of the forces of grav-
ity preponderates. But in thin films the molecular
forces come into very favorable conditions, and it is
possible to produce the figures in question without
difficulty in the open air. Plateau obtained them by
dipping wire polyhedrons into solutions of soap and
water. Plane liquid films are thus formed, which meet

ingly fulfil the condition I /R -|- 1/00 = 1/p -(- 1/p, or
p= 2 R, where p is the radius of the sphere and R that
of the circular rings. Plateau verified this conclusion
by experiment.

5. Let us now study a weightless liquid mass whichLiquid mas-
ses enclos- ,
ing a hoi- encloses a hollow space. The condition that 1/r -4- 1tr
low space. . .shall have the same value for the interior and exterior If an Open

bubbles.
surfaces, is here not realisable. On the contrary, as
this sum has always a greater positive value for the
closed exterior surface than for the closed interior sur- <»

face, the liquid will perform work, and, flowing from
the outer to the inner surface, cause the hollow space
to disappear. If, however, the hollow space be occu -
pied by a fluid or gaseous substance subjected to a de-
terminate pressure, the work done in the last-men-
tioned process can be counteracted by the work ex-
pended to produce the compression, and thus equilib-
rium may be produced.

Let us picture to ourselves a liquid mass confined

faces, then, 1//' + 1 jr’

The rae-
properties between two similar and similarly situated surfaces
of bubbles. very near each other. A bubble is such

a system. Its primary condition of equi-
librium is the exertion of an excess of
pressure by the inclosed gaseous con-
tents. If the sum 1 jr 1/r' has the
value + a for the exterior surface, it will
have for the interior surface very nearly

the value — a. A bubble, left wholly to itself , will al-
ways assume the spherical form. If we conceive such
a spherical bubble, the thickness of which we neglect,
the total diminution of its superficial area, on the
shortening of the radius r by dr, will be 16 r n d r. If,
therefore, in the diminution of the surface by unit
of area the work A is performed, then A . 16r n d r will

* The mathematical problem of determining such a surface, when the
forms of the wires are given, is called Plateau' s Problem.— Trans.

\



TIIE SCIENCE OF MECHANICS.394 TIIE EXTENSION OF THE PRINCIPLES. 395

one another at the edges of the framework. When
thin plane films are so joined that they meet at a hol-
low edge, the law 1 jr + 1!r'= const no longer holds
for the liquid surface, as this sum has the value zero
for plane surfaces and for the hollow edge a very large
negative value. Conformably, therefore, to the views
above reached, the liquid should run out of the films,
the thickness of which would constantly decrease, and
escape at the edges. This is, in fact, what happens.
But when the thickness of the films has decreased to a
certain point, then, for physical reasons, which are, as
it appears, not yet perfectly known, a state of equilib-
rium is effected.

The explanation is obvious.metry and regularity ?
In every symmetrical system every deformation that
tends to destroy the symmetry is complemented by an
equal and opposite deformation that tends to restore it.
In each deformation positive or negative work is done.
One condition, therefore, though not an absolutely
sufficient one, that a maximum or minimum of work
corresponds to the form of equilibrium, is thus sup-
plied by symmetry. Regularity is successive symme-

There is no reason, therefore, to be astonished* try.
that the forms of equilibrium are often symmetrical
and regular.

8. The science of mathematical hydrostatics arose The figure
of the earth

in connection with a special problem— that ot the figureYet, notwithstanding the fact that the fundamental
equation 1/r+l/r'= const is not fulfilled in these fig-
ures, because very thin liquid films, especially films of
viscous liquids, present physical conditions somewhat
different from those on which our original suppositions
were based, these figures present, nevertheless, in all
cases a minimum of superficial area. The liquid films,
connected with the wire edges and with one another,
always meet at the edges by threes at approximately
equal angles of 1200, and by fours in corners at approxi-
mately equal angles. And it is geometrically dem
strable that these relations correspond to a minimum
of superficial area. In the great diversity of phenom-
ena here discussed but one fact is expressed, namely
that the molecular forces do work, positive work, when
the superficial area is diminished.

«

Physical and astronomical data had ledof the earth.
Newton and Huygens to the view that the earth is an
oblate ellipsoid of revolution. NEWTON attempted to

calculate this oblateness by conceiving the rotating

earth as a fluid mass, and assuming that all fluid fila-

on-

ments drawn from the surface to the centre exert the
HUYGENS S assumptionsame pressure on the centre.

that the directions of the forces are perpendicularwas
to the superficial elements. BOUGUER combined both
assumptions.
de la terre, Paris, 1743), pointed out that the fulfilment
of both conditions does not assure the subsistence of

7. The figures of equilibrium which Plateau ob-The reason

equilibrium tained by dipping wire polyhedrons in solutions of
are sym-
metrical.

CLAIRAUT, finally ( Théorie de la figure
soap, form syscems of liquid films presenting a re-
markable symmetry. The question accordingly forces
itself upon us, What has equilibrium to do with sym- equilibrium.

A
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ordinates. Let the fluid have the constant density p Mathemat-. ical expres-and let the force-components A, J , Z acting on unit ofsionof. . these con-
maSS of the fluid in the coordinate directions, be func- ditions, and

the conse-t ions of the coordinates x, y, 2 of this mass. Let the quent gen-
i i ’ e r a ^ c o n d i-element of length of the canal be called ds, and let its tion of

7 7 r liquid equi-projections on the axes be dx, dy, dz. The force-corn- librium,

ponents acting on unit of mass in the direction of the
canal are then X {dx/ds'), Yfly/ds), Z {dzjds). Let
q be the cross-section ; then, the total force impelling
the element of mass pqds in the direction ds, is

Clairaut’s starting-point is this. If the fluid earth
is in equilibrium, we may, without disturbing its equi-
librium, imagine any portion of it solidified. Accord-
ingly, let all of it be solidified but a canal AB, of any
form. The liquid in this canal must also be in equilib-
rium. But now the conditions which control equilib-
rium are more easily investigated. If equilibrium exists
in every imaginable canal of this kind, then the entire
mass will be in equilibrium. Incidentally Clairaut re-
marks, that the Newtonian assumption is realised when
the canal passes through the centre (illustrated in Fig.
206, cut 2), and the Huygenian when the canal passes
along the surface (Fig. 206, cut 3).

But the kernel of the problem, according to Clai-
raut, lies in a different view. In all imaginable canals,

Clairaut’s
point of
view.

dy dzdx + Ll + Zpqds [ AT ds )’

This force must be balanced by the increment of pres-
sure through the element of length, and consequently
must be put equal to q . dp. We obtain, accordingly,
dp= p ( Xdx -J- Ydy + Zdz). The difference of pres-
sure (/) between the two extremities M and N is found
by integrating this expression from Mto N. But as this
difference is not dependent on the form of the canal
but solely on the position of the extremities M and N,
i t follows that pfXdxff Ydy + Zdz ), or, the density
being constant, Xdx -\- Ydy + Zdz, must be a com-
plete differential. For this it is necessary that

dU
dz y

ds

Conditions
of equilib-
rium of
Clairaut’s
canals. z Ar

ds?

M
0

Fig. 208.
even in one which returns into itself, the fluid must be
in equilibrium. Hence, if cross-sections be made at
any two points M and N of the canal of Fig. 207, the
two fluid columns MPN and MQN must exert on the
surfaces of section at M and N equal pressures. The
terminal pressure of a fluid column of any such canal
cannot, therefore, depend on the length and the form
of the fluid column, but must depend solely on the po-
sition of i ts terminal points.

Imagine in the fluid in question a canal MN of any
form (Fig. 208) referred to a system of rectangular co-

dUdU
dx’

where U is a function of coordinates. Hence, according
to Clairaut, the general condition of liquid equilibrium is,
that the liquid be controlled by forces which can be ex-

pressed as the partial differential coefficients of one and
the same function of coordinates.

9. The Newtonian forces of gravity, and in fact all
central forces,— forces that masses exert in the direc-
tions of their lines of junction and which are functions

Y= - , z=x= dy

A
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Character of the distances between these masses,— possess this
of the
forces
requisite to
produce
equilibrium

other point, indifferently chosen, for which U — C2 , Character-
or, more generally, from the surface U= C 1 to the force-func-

surface U= C2 , we perform, no matter by what path
the conveyance has been effected, the saine amount of
work. All the points of the first surface present, with

respect to those of the second, the same difference of
pressure ; the relation always being such, that

property. Under the action of forces of this character

the equilibrium of fluids is possible. If we know U,
we may replace the first equation by

dUdU dU
dx -f- dy + d z

Cl Zdp — P y dx dy
or

dp= pdU and p= pU + const.
The totality of all the points for which U — const

is a surface, a so-called level surface. For this surface

also p = const. As all the force-relations, and, as we

now see, all the pressure-relations, are determined by

the nature of the function U, the pressure-relations,
accordingly, supply a diagram of the force-relations,
as was before remarked in page 98.

ciairaut’s In the theory of Clairaut, here presented, is con-
Kermofhthctained, beyond all doubt, the idea that underlies the

potential, doctrine of force-function or potential\ which was after-
wards developed with such splendid results by La-
place, Poisson, Green, Gauss, and others. As soon

as our attention has been directed to this property of

certain forces, namely, that they can be expressed as

derivatives of the same function U, it is at once recog-
nised as a highly convenient and economical course to

investigate in the place of the forces themselves the

function U.
If the equation

dp= p ( Xdx -\- Ydy -f- Zdz ) — pdU

be examined, it will be seen that Xdz -\- Ydy + Zdz

is the element of the work performed by the forces on

unit of mass of the fluid in the displacement ds, whose

projections are dx, dy, dz. Consequently, if we trans-

port unit mass from a point for which U = C1 to an-

/ 2 — / l = P ( C2 — C1)

where the quantities designated by the same indices
belong to the same surface.

10. Let us picture to ourselves a group of such Character-

very closely adjacent surfaces, of which every two sue- level, or

cessive ones differ from each other by the same, very tia"sur-
n

faces.
small, amount of work required to transfer a mass from
one to the other ; in other words, imagine the surfaces

U = C, U= C + d Cy U= C + 2 dC, and so forth.
A mass moving on a level surface evidently per-

forms no work. Hence, every component force in a

direction tangential to the
surface is= 0 ; and the di-
rection of the resultant

*

forceis everywhere normal
to the surface. If we call dn
the element of the normal
intercepted between two
consecutive surfaces,and/
the force requisite to con-
vey unit mass from the
one surface to the other
through this element, the
work done is/, dn=dC. As dC is by hypothesis every-
where constant, the force f=dC/dn is inversely pro-

portional to the distance between the surfaces consid-

'\C+ldC
\C+2 dC
C+ dC

C

Fig. 209.

A
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The level surfaces are cylindrical surfaces, whose
generating lines are at right angles to the plane of the
paper, and whose directrices, xy= cons t, are equi-
lateral hyperbolas. The lines of force are obtained by
turning the first mentioned system of curves through
an angle of 45

1 in the plane of the paper about 0. If
a unit of mass pass
from the point r to 0
by the route rpO, or
rqO, or by any other
route, the work done
is always Op X O q.
If we imagine a
closed canal OprqO
filled with a liquid,
the liquid in the ca-
nal will be in equi-
librium. If transverse
sections be made at
any two points, each
section will sustain at both its surfaces the same
pressure.

We will now modify the example slightly. Let the A modifica
r . ,, . . tion of thisforces b e l= — y, Y= — a, where a has a constant example,

value. There exists now no function U so constituted
that X — dU/dx and Y= dU/dy ; for in such a case it
would be necessary that dX / dy= d Y/dx, which is ob-

viously not true. There is therefore no force-function,
and consequently no level surfaces. If unit of mass
be transported from r to O by the way of p, the work
done is a X Oq. If the transportation be effected by
the route rqO, the work done is a X Oq -f- Op X Oq.
If the canal OprqO were filled with a liquid, the liquid
could not be in equilibrium, but would be forced to

ered. If , therefore, the surfaces U are known, the
directions of the forces are given by the elements of a
system of curves eve^where at right angles to these
surfaces, and the inverse distances between the sur-
faces measure the magnitude of the forces.* These sur-

faces and curves also confront us in the other depart-
ments of physics. We meet them as equipotential
surfaces and lines of force in electrostatics and mag-

netism, as isothermal surfaces and lines of flow in the
theory of the conduction of heat, and as equipotential
surfaces and lines of flow in the treatment of electrical
and liquid currents.

11. We will now illustrate the fundamental idea of

-
Illustration

raut’s doc- Clairaut’s doctrine by another, very simple example.
trine by a
simple
example.

X• 1

Imagine two mutually perpendicular planes to cut the
paper at right angles in the straight lines OX and O Y
(Fig. 210). We assume that a force-function exists
U = — xy, where x and y are the distances from the
two planes. The force-components parallel to OX and
OY are then respectively

Fig. 210.

'
dUX= px =-y

and
dUY= = — x.dy

* The same conclusion may be reached as follows. Imagine a water pipe
laid from New York to Key West, with its ends turning up vertically, and of
glass. Let a quantity of water be poured into it, and when equilibrium is
attained, let its height be marked on the glass at both ends. These two marks
will be on one level surface. Now pour in a little more water and again mark
the heights at both ends. The additional water in New York balances the
additional water in Key West. The gravity of the two are equal. But their
quantities are proportional to the vertical distances between the marks.
Hence, the force of gravity on a fixed quantity of water is inversely as those
vertical distances, that is, inversely as the distances between consecutive,

level surfaces.— Trans.

i
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rotate constantly in the direction OprqO. Currents of
this character, which revert into themselves but con-
tinue their motion indefinitely, strike us as something

Our attention, how-

of efflux is the final velocity of a body freely falling
through the height //, or liquid-head ; for only with
this velocity can the liquid just rise again to the sur-
face.*quite foreign to our experience,

ever, is directed by this to an important property of

the forces of nature, to the property, namely, that the
work of such forces may be expressed as a function of

Whenever exceptions to this principle
observed, we are disposed to regard them as appa-

rent, and seek to clear up the difficulties involved.
12. We shall now examine a few problems of liquid

Torricelli’s theorem consorts excellently with the Varignon’s
rest of our knowledge of natural processes ; but we of the veio-feel, nevertheless, the need of . city ofa more exact insight, efflux.
VARIGNON attempted to deduce the principle from the
relation between force and the

coordinates.
momentum generated by

The familiar equation pt= mv gives, if by a
we designate the area of the basal orifice, by h the
pressure-head of the liquid, by s its specific gravity,
by g the acceleration of a freely falling body, by v the
velocity of efflux, and by r a small interval of time,
this result

are
force.

Torricelli’s

on the veio- motion. The founder of the theory of hydrodynamics is
quid’efflux. TORRICELLI. Torricelli,* by observations on liquids dis-

charged through orifices in the bottom of vessels, dis-
covered the following law. If the time occupied in the

complete discharge of a vessel be divided into n equal
intervals, and the quantity discharged in the last, the
nth , interval be taken as the unit, there will be dis-
charged in the (ji — l)th , the (n — 2)th , the ( n— 3) th . . . .
interval, respectively, the quantities 3, 5, 7 . . . .

An analogy between the motion of falling

(X V T Sa /1 s . T = . v or v 2 = ç /i.g -
Here alis represents the pressure acting during the

on the liquid mass avrs/g. Remembering that
v is a final velocity, we get, more exactly,
time r 9. and !

so forth.
bodies and the motion of liquids is thus clearly sug-
gested. Further, the perception is an immediate one,
that the most curious consequences would ensue if the
liquid, by its reversed velocity of efflux, could rise
higher than its original level. Torricelli remarked,
in fact, that it can rise at the utmost to this height,
and assumed that it would rise exactly as high if all

Hence, neglecting all

at-- . rsixhs . r • v,
g

and thence the correct formula
v2 = 2gh.

13. DANIEL BERNOULLI investigated the motions of
We will now treat

from this point of view, only
dering the idea more modern. The equation which
employ is ps = mv2 /2.
tion q (Fig. 211), into which a liquid of the specific

* The early inquirers deduce their propositions in the incomplete form ofproportions, and therefore usually put z> proportional to\gh or Vh.

fluids by the principle of vis viva.
the preceding caseresistances could be removed,

resistances, the velocity of efflux, v, of a liquid dis-
charged through an orifice in the bottom of a vessel is

nected with the height h of the surface of the liquid
by the equation v=V 2gh ; that is to say, the velocity

ren-
we* In a vessel of transverse sec-

con

\* De Motu Craviunt Projectornm, 1643.
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Daniel Ber- gravity s is poured till the head h is reached, the surface
noulli’s
treatment
of the same
problem.

Wherefore, under the same pressure, different liquids
discharged with velocities inversely proportional to

the square root of their density.
posed that this theorem is directly applicable to gases.
Its form, indeed, is correct ; but the deduction fre-
quently employed involves an error, which we shall
now expose.

14. Two vessels (Fig. 212) of equal cross-sections The aPPii-
placed side by side and connected with each other this last re

by a small aperture in the base of their dividing walls
For the velocity of flow through this aperture we ob-
tain, under the same suppositions as before,

dh . S V 2 /- r-—
T> > or v=V * g (Ji 1— h2 ).

sinks, say, the small distance dh, and the liquid mass

q . dh . s/g is discharged with the velocity v. The work

done is the same as though the weight q . dh . s had
The path of the motion in

It makes no

are
It is generally sup

T

descended the distance h.
the vessel is not of consequence here.

difference whether the stratum q . dh

T~ [[^ is discharged directly through the
basal orifice, or passes, say, to a

position a, while the liquid at a is
displaced to that at b displaced to
c, and that at c discharged. The work
done is in each case q . dh . s . h.

0! are
suit to the. flow of
gases.

Fig. 211.
q . dh . s (Ji1

«b

If we neglect the gravity of the liquid and imagine
the pressures pY and p2 produced by pistons, we shall
similarly have v=V 2 — /2)/p. For example, if the
pistons employed be loaded with the weights P and
P/ 2, the weight P will sink the distance h and P/2
will rise the distance h.

Equating this work to the vis viva of the discharged

liquid, we get
q . dh . s v2

q . dh . s . h= , or2Ar

v =V - g h .
The sole assumption of this argument is that all

the work done in the vessel appears as vis viva in the

liquid discharged, that is to say, that the velocities

within the vessel and the work spent in overcoming

friction therein may be neglected. This assumption is

not very far from the truth if vessels of sufficient width
employed, and no violent rotatory motion is set up.
Let us neglect the gravity of the liquid in the ves-

The work (P/2)// is thus left,
to generate the vis viva of the effluent fluid.

4
A gas under such circumstances would behave dif- The behav-

ferently. Supposing the gas to flow from the vessel gas under

containing the load Pinto that contain- sumed con-
ing the load P/2, the first weight will ^ n ^
fall a distance //, the second, however,
since under half the pressure a gas dou-
bles its volume, will rise a distance 2 h,
so that the work Ph — (P/2) 2 // — 0
would be performed,

gases, accordingly,
work,competent to produce the flow between the vessels
must be performed. This work the gas itself performs,
by expanding, and by overcoming by its force of expan-.

hi dh
are

The law of

whendPro-1X sel, and imagine it loaded by a movable piston, on

whose surface-unit the pressure p falls. If the piston

be displaced a distance dh, the liquid volume q . d h

will be discharged. Denoting the density of the liquid

by p and its velocity by v, we then shall have

fém—
duced by
the pres-
sure of
pistous. In the case of Fig. 212.

some additional

2PV 2

= q . dh . p ,jq . p . dh , or v
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this is not also true of compressed liquids. As a mat- Relative
. .. . , , • 1 volumes of

ter of fact, every liquid under pressure is compressed, compressed

To effect compression work is requisite, which reap- Squids?4

pears the moment the liquid expands. But this work,
in the case of the mobile liquids, is very small. Imag-
ine, in Fig. 213, a gas and a mobile liquid of the same
volume, measured by OA, subjected to the same pres-
sure, a pressure of one atmosphere, designated by AB.
If the pressure be reduced to one-half an atmosphere,
the volume of the gas will be doubled, while that of
the liquid will be increased by only about 25 millionths.
The expansive work of the gas is represented by the
surface ABDC, that of the liquid by ABLE, where

The result sion a pressure. The expansive force p and the volume
the same in
form but

magnitude , pw = k, where k, so long as the temperature of the
gas remains unchanged, is a constant. Supposing the
volume of the gas to expand under the pressure p by
an amount dw, the work done is

w of a gas stand to each other in the familiar relation

fpdw=k$d .
For an expansion from w0 to w, or for an increase of
pressure from p0 to p, we get for the work

PQk l o g 1 — k l o g p
Conceiving by this work a volume of gas wQ of

density p, moved with the velocity v, we obtain

// -A l0*l . )'
V 30p AKJ E

The velocity of efflux is, accordingly, in this case also
inversely proportional to the square root of the density;
Its magnitude, however, is not the same as in the case
of a liquid.

But even this last view is very defective. Rapid
changes of the volumes of gases are always accom-
panied with changes of temperature, and, consequently
also with changes of expansive force. For this reason,
questions concerning the motion of gases cannot be
dealt with as questions of pure mechanics, but always
involve questions of heat. [Nor can even a thermo-
dynamical treatment always suffice : it is sometimes
necessary to go back to the consideration of molecular
motions.]

15. The knowledge that a compressed gas contains
stored- up work, naturally suggests the inquiry, whether

Fig. 213.

AK= 0 -000025OA. If the pressure decrease till it
become zero, the total work of the liquid is represented
by the surface AB1, where AJ = 0 *0 0 0 0 5 a n d ^he
total work of the gas by the surface contained between
AB, the infinite straight line ACEG . . . ., and the
infinite hyperbola branch BDFH . . . . Ordinarily,
therefore, the work of expansion of liquids may be
neglected. There are however phenomena, for ex-
ample, the soniferous vibrations of liquids, in which
work of this very order plays a principal part. In such
cases, the changes of temperature the liquids undergo
must also be considered. We thus see that it is only
by a fortunate concatenation of circumstances that we
are at liberty to consider a phenomenon with any close

4

Incom-
pleteness of
tliis view.

Î

I
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approximation to the truth as a mere matter of molar
mechanics.

16. We now come to the idea which DANIEL BER-

This equation was employed by Bernoulli in the solu- The parai-
tion of various problems. It will be easily seen, that
Bernoulli’s principle can be employed with success
only when the relative velocities of the single parts of
the liquid are known. Bernoulli assumes,— an assump-
tion apparent in the formulae,— that all particles once
situated in a horizontal plane, continue their motion
in a horizontal plane, and that the velocities in the
different horizontal planes are to each other in the in-
verse ratio of the sections of the planes. This is the
assumption of the parallelism of strata. It does not, in
many cases, agree with the facts, and in others its
agreement is incidental. When the vessel as compared
with the orifice of efflux is very wide, no assumption
concerning the motions within the vessel is necessary,
as we saw in the development of Torricelli’s theorem.

17. A few isolated cases of liquid motion were The water-
treated by NEWTON and JOHN BERNOULLI. We shall of Newton,

consider here one to which a
familiar law is directly applic-
able. A cylindrical U-tube with
vertical branches is filled with
a liquid (Fig. 215). The length
of the entire liquid column is /.
If in one of the branches the
column be forced a distance x
below the level, the column in
the other branch will rise the distance AT, and the
difference of level corresponding to the excursion x
will be 2 x. If a is the transverse section of the tube
and s the liquid’s specific gravity, the force brought
into play when the excursion x is made, will be 2 asx,
which, since it must move a mass aIs/g will determine
the acceleration (2 asx)/ ( als/g ) — (2 g/l ) x, or, for unit

lelism of
strata.

The hydro-
dynamic
principle
of Daniel
Bernoulli, de Viril)us et Motibus Fluidorum Commentarii (1738).

NOULLi sought to apply in his work Hydrodynamica, sive

When a liquid sinks, the space through which its cen-
tre of gravity actually descends ( descensus actualis) is
equal to the space through which the centre of gravity
of the separated parts affected with the velocities ac-

quired in the fall can ascend ( ascensus potaitialis). This
idea, we see at once, is identical with that employed
by Huygens. Imagine a vessel filled with a liquid

(Fig. 214) ; and let its horizontal cross-
section at the distance x from the plane
of the basal orifice, be called f ( x ). Let
the liquid move and its surface descend
a distance d x. The centre of gravity,
then, descends the distance x f ( x ) . d x/ M,
where M = f f ( x ) d x. If k is the space of
potential ascent of the liquid in a cross-
section equal to unity, the space of po-

tential ascent in the cross-section f ( x ) will b e h j f ( x ) 2 ,
and the space of potential ascent of the centre of
gravity will be

T
f (x)

4
X

d x

&± = kN. Fig. 215.M’M
where

d xfN = /O)
For the displacement of the liquid’s surface through a
distance d x, we get, by the principle assumed, both
J V and k changing, the equation

— .r f ( x ) d x= N d k -)- 1’ d N.
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excursion, the acceleration 2 g/l. We perceive that
pendulum vibrations of the duration

tion is only apparent. One example is Hero’s fountain. Hero’s
This apparatus, as we know, consists of three \ essels,
which may be designated in the descending order as
A, B, C. The water in the open vessel A
falls through a tube into the closed vessel
C ; the air displaced in C exerts a pressure
on the water in the closed vessel 3, and
this pressure forces the water in B in a
jet above A whence it falls back to its
original level. The water in B rises, it is
true, considerably above the level of B,
but in actuality it merely flows by the
circuitous route of the fountain and the
vessel A to the much lower level of C.

Another ap-
parent exception fi 11 , Kg;:.

to the principle
in question is
that of Montgol-
fier’s hydraulic
ram,in which the
liquid by its own
g r a v i t a t i o n al
work appears to
rise considerably
aboveitsoriginal
level. The liquid
flows (Fig. 217)
from a cistern A
through a long
pipe RR and a valve V, which opens inwards, into a
vessel Ad When the current becomes rapid enough, the
valveV is forced shut, and a liquid mass m affected with
the velocity v is suddenly arrested in RR, which must

fountain.

T= 7t

will take place. The liquid column, accordingly, vi-
brates the same as a simple pendulum of half the length
of the column.

A similar, but somewhat more general, problem was
treated by John Bernoulli. The two branches of a
cylindrical tube (Fig. 216), curved in any manner, make

with the horizon, at the
points at which the
surfaces of the liquid
move, the angles a
and /3. Displacing one
of the surfaces the dis-
tance x, the other sur-
face suffers an equal

displacement. A difference of level is thus produced
x (sin a -f- sin /3), and we obtain, by a course of reason-

ing similar to that of the preceding case, employing
the same symbols, the formula

The liquid
pendulum
of John
Bernoulli. 1

: Montgol-
fier’s hy-
draulic
ram.

s

Fig. 216.

I
lT=

t^(sin a -fi sin fi') *

The laws of the pendulum hold true exactly for the
liquid pendulum of Fig. 215 (viscosity neglected), even
for vibrations of great amplitude ; while for the filar
pendulum the law holds only approximately true for
small excursions.

18. The centre of gravity of a liquid as a whole can
rise only as high as it would have to fall to produce its
velocities. In every case in which this principle appears
to present an exception, it can be shown that the excep-
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is equivalent to the descent of the contents of the funnel
from the centre of gravity .S’ of the superficial stratum
to the centre of gravity S' of the contents of the fun-
nel. If the vessel is sufficiently wide the velocities in
it are all very small, and almost the entire vis viva is
concentrated in the contents of the funnel. If all the
parts of the contents had the same velocities, they
could all rise to the original level, or the mass as a
whole could rise to the height at which its centre of
gravity was coincident with S. But in the narrower
sections of the funnel the velocity of the parts is
greater than in the wider sections, and the former
therefore contain by far the greater part of the vis
viva. Consequently, the liquid parts above are vio-
lently separated from the parts below and thrown
out through the neck of the funnel high above the
original surface. The remainder, however, are left
considerably below that point, and the centre of grav-
ity of the whole never as much as reaches the original
level of S.

19. One of the most important achievements of Hydrostatic

Daniel Bernoulli is his distinction of hydrostatic and dynamic

hydrodynamic pressure. The pressure
which liquids exert is altered by motion ;
and the pressure of a liquid in motion
may, according to the circumstances, be
greater or less than that of the liquid at rest
with the same arrangement of parts. We
will illustrate this by a simple example.
The vessel A,which has the form of a body
of revolution with vertical axis, is kept
constantly filled with a frictionless liquid, so that its
surface at mn does not change during the discharge
at kl. We will reckon the vertical distance of a particle

If this be done in thebe deprived of its momentum,

time /, the liquid can exert during this time a pressure
q=mv//, to which must be added its hydrostatical
pressure p. The liquid, therefore, will be able, during
this interval of time, to penetrate with a pressurep q
through a second valve into a pita Heronis, FI, and in
consequence of the circumstances there existing will
rise to a higher level in the ascension-tube SS than
that corresponding to its simple pressure p. It is
to be observed here, that a considerable portion of the
liquid must first flow off into B, before a velocity requi-
site to close V is produced by the liquid’s work in RR.
A small portion only rises above the original level ;
the greater portion flows from A into B. If the liquid
discharged from SS were collected, it could be easily
proved that the centre of gravity of the quantity thus
discharged and of that received in B lay, as the result
of various losses, actually below the level of A.

An illustra- The principle of the hydraulic ram, that of the
elucidates transference of work done by a large liquid mass to a
the action
of the hy-
draulic ram

4

4
smaller whichone,
thus acquires a great
vis viva, may be illus-
trated in the following
very simple manner.
Close

pressure.

the narrow
opening O of a funnel
and plunge it, with its
wide opening down-

wards, deep into a
If the finger closing the upper 1large vessel of water,

opening be quickly removed, the space inside the
funnel will rapidly fill with water, and the surface of the
water outside, the funnel will sink. The work performed 1
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Détermina- from the surface mn downwards as positive and call
t ion of the
pressures
genera l ly
acting in ii- volume, whose horizontal base-area is a and height B,
quids in
mot ion.

Taking for our cross-section at the surface, zx = 0, The hydro-
p =0 ; and as the same quantity of liquid flows through pressure. . . . . . v a r i e s with
all cross-sections m the same interval 01 time, at vt = thecircum-

. r . s tances of
Wnencç, finally, the mot ion.

itz. Let us follow the course of a prismatic element of

in its downward motion, neglecting, ofi the assump-
tion of the parallelism of strata, all velocities at right
angles to 5. Let the density of the liquid be p, the
velocity of the element v, and the pressure, which is
dependent on 5, p. If the particle descend the dis-
tance dz, we have by the principle of vis viva

a2 v 2‘

Pi =PZZ2 + Y V\
The pressure p2 of the liquid in motion (the hydro-
dynamic pressure) consists of the pressure pgz 2 of the
liquid at rest (the hydrostatic pressure) and of a pres-

sure ( p / 2 )v\\_(a\ — dependent on the density,
the velocity of flow, and the cross-sectional areas. In
cross-sections larger than the surface of the liquid, the
hydrodynamic pressure is greater than the hydrostatic,
and vice versa.

A clearer idea of the significance of Bernoulli’s i l lus t ra t ion. . . . . . . . . . . . of these re-
principle may be obtained by imagining the liquid m sui ts by the

the vessel A unacted on by gravity, and its outflow quidsunder
pressures

produced by a constant pressure />. on the surface, produced. 1 by pis tons.
Equation (3) then takes the form

a\\

4- **( D2

= a j3 pgdz —
that is, the increase of the vis viva of the element is
equal to the work of gravity for the displacement in
question, less the work of the forces of pressure of the
liquid. The pressure on the upper surface of theelement
is ap, that on the lower surface is a [ p -(- (dp/dz) fi].
The element sustains, therefore, if the pressure in-
crease downwards, an upward pressure a( dp jd2) f3 ;
and for any displacement dz of the element, the work
a ( dpjdz ) fidz must be deducted. Reduced, equation
(1) assumes the form

' <T.
and, integrated, gives

dz

/2 =/1 + 9 O? — »!)•dp= pgdz — -J- dz
If we follow the course of a particle thus moving, it
will be found that to every increase of the velocity of
flow (in the narrower cross-sections) a decrease of
pressure corresponds, and to every decrease of the ve-
locity of flow (in the wider cross-sections) an increase
of pressure. This, indeed, is evident, wholly aside
from mathematical considerations. In the present case
every change of the velocity of a liquid element must be
exclusively produced by the work of the liquid' s forces
of pressure. When, therefore, an element enters into
a narrower cross-section, in which a greater velocity
of flow prevails, it can acquire this higher velocity only

Jv 2
(2)P - ~

2 = P g z — P + const

If we express the velocities in two different hori-
zontal cross-sections ax and a2 at the depths zx and z 2

below the surface, by vlf v2 , and the corresponding
pressures by plf p2 , we may write equation (2) in the
form i

p
(>2 — V\)= p g { z x — z2) -f (/2 — P O (3) i

1
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v will be less than that deducible from Torricelli’s law,

portion of the work is consumed by resistances
We find, in

on the condition that a greater pressure acts on its rear
surface than on its front surface, that is to say, only
when it moves from points of higher to points of lower
pressure, or when the pressure decreases in the direc-
tion of the mot-ion.

as a
due to viscosity and perhaps to friction,

fact, that v —|/ 2 gh19 where h. Expressing by Jix
the velocity-head, and by // 2 the resistance-head, we may

put h = //1 -f- h2. If to the main cylindrical tube we

affix vertical lateral tubes, the liquid will rise in the

latter tubes to the heights at which it equilibrates the

pressures in the main tube, and will thus indicate at all

points the pressures of the main tube. The noticeable

fact here is, that the liquid-height at the point of influx

of the tube is = h2 , and that it diminishes in the direc-
tion of the point of outflow, by the law of a straight

The elucidation of this phenomenon is

If we imagine the pressures in
a wide section and in a succeeding narrower section
to be for a moment equal, the acceleration of the ele-
ments in the narrower section will not take place ; the
elements will not escape fast enough ; they will accumu-
late before the narrower section ; and at the entrance
to it the requisite augmentation of pressure will be im-
mediately produced. The converse case is obvious.

20. In dealing with more complicated cases, the
even though viscosity be

!
Treatment
of a l iquid

which vis in Pr°klems of liquid motion,
cosi ty and
fr ic t ion are |L_

.. .

cons idered . E"- — -

line, to zero,

the question now presented.
Gravity here does not act directly on the liquid in The condi

. 111 11 rr
. , t ions of the

the horizontal tube, but all effects are transmitted to ltperform-
by the pressure of the surrounding parts. If we imag- work in

J x ^ x such cas_ _
prismatic liquid element of basal area a and

length ft to be displaced in the direction of its length

a distance dz, the work done, as in the previous case, is

h
me a

dp— a f t d z= — a f t
d z

Fig. 220.

neglected, present great difficulties ; and when the
enormous effects of viscosity are taken into account,

every
So much so, that al-

though these investigations were begun by Newton,
we have, up to the present time, only been able to
master a very few of the simplest problems of this class,
and that but imperfectly. We shall content ourselves
with a simple example. If
in a vessel of the pressure-head h to flow, not through
an orifice in its base, but through a long cylindrical
tube fixed in its side (Fig. 220), the velocity of efflux

4— dz.
dz

For a finite displacement we have
anything like a dynamical solution of almost
problem is out of the question./1

' d p

/2

(Udz — — o t f t ( p2 — P i )
d Z

Work is done when the element of volume is displaced

from a place of higher to a place of lower pressure.

The amount of the work done depends on the size of

the element of volume and on the difference of pressure

at the initial and terminal points of the motion, and

the length and the form of the path traversed.

cause a liquid containedwe

f
not on
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If the diminution of pressure were twice as rapid in
one case as in another, the difference of the pressures
on the front and rear surfaces, or the force of the work,
would be doubled, but the space through which the
work was done would be halved. The work done would
remain the same, whether done through the space ab
or ac of Fig. 221.

Through every cross-section y of the horizontal tube
the liquid flows with the same velocity v. If , neglect-

ing the differences of velocity in the same cross-section,
we consider a liquid element which exactly fills the
section q and has the length p, the vis viva q /3 p( v2 / 2)
of such an element will persist unchanged throughout

its entire course in the tube.
This is possible only provided
the vis viva consumed by friction

p is replaced by the work of the
' liquid' s forces of pressure. Hence,

in the direction of the motion

generate the vis viva of the element discharged into
the mouth of the tube is

7;2

IPP 9-=40U> /2) = I P g p (A — h2 )=<] pgphx ,
and the work transmitted by the pressure of the liquid
to the element traversing the length of the tube, is

?Pl>2 = vPgph 2 ,
or the exact amount consumed in the tube.

Let us assume, for the sake of argument, that the indirect

pressure does not decrease from p2 at the mouth to tion of
*

zero at the extremity of the tube by the law of a straight sequences,

line, but that the distribution of the pressure is differ-
ent, say, constant throughout the entire tube. The
parts in advance tven will at once sutler a loss of ve-

locity from the fri tion, the parts which follow will
crowd upon them, a d there will thus be produced at
the mouth of the tube an augmentation of pressure
conditioning a constant velocity throughout its entire
length. The pressure at the end of the tube can only
be = 0 because the liquid at that point is not prevented
from yielding to any pressure impressed upon it.

If we imagine the liquid to be a mass of smooth A simile

elastic balls, the balls will be most compressed at the which these
bottom of the vessel, they will enter the tube in a state maylbclena
of compression, and will gradually lose that state incefvedC°n"

the course of their motion. We leave the further de-
velopment of this simile to the reader.

It is evident, from a previous remark, that the work
stored up in the compression of the liquid itself, is very
small. The motion of the liquid is due to the work of
gravity in the vessel, which by means of the pressure
of the compressed liquid is transmitted to the parts in
the tube.

The conse-
quences of
these con-
ditions.

IA A

Fig. 221. of the element the pressure
must diminish, and for equal distances, to which the

work of friction corresponds, by equal amounts.same
The total work of gravity on a liquid element q /3 p
issuing from the vessel, is qfipgh. Of this the portion
q /3 p (?;2 /2) is the vis viva of the element discharged
with the velocity v into the mouth of the tube, or, as
v=V 2 g

~
h

~, the portion q /3 pgh3. The remainder of
the work, therefore, q /3 pgh 2, is consumed in the tube,
if owing to the slowness of the motion we neglect the
losses within the vessel.

4

If the pressure-heads respectively obtaining in the
vessel, at the mouth, and at the extremity of the tube,
are h, Ji 2 , 0, or the pressures are p = hgp, p2 =h2gp909
then by equation (1) of page 417 the work requisite to
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An interesting modification of the case just dis-
cussed is obtained by causing the liquid to flow through

discussed, a tube composed of a number of shorter cylindrical
tubes of varying widths. The pressure in the direction
of outflow then diminishes (Fig. 222) more rapidly in
the narrower tubes, in which a greater consumption of
work by friction takes place, than in the wider ones.
We further note, in every passage of the liquid into a

A partial
exemplifi-
cation of
the results

CHAPTER IV.
THE FORMAL DEVELOPMENT OF MECHANICS.

THE ISOPERIMETRICAL PROBLEMS,

x. When the chief facts of a physical science have The formal,
T . . as distin-once been fixed by observation, a new period ot its guished. . . . . . from the de-development begins— the deductive, which we treatedductive. de-

• •
_ . velopment

in the previous chapter. In this period, the facts are of physical

reproducible in the mind without constant recourse to
observation. Facts of a more general and complex
character are mimicked in thought on the theory that
they are made up of simpler and more familiar obser-
vational elements. But even after we have deduced
from our expressions for the most elementary facts
(the principles) expressions for more common and more
complex facts (the theorems) and have discovered in
all phenomena the same elements, the developmental
process of the science is not yet completed. The de-
ductive development of the science is followed by its
formal development. Here it is sought to put in a clear
compendious form, or system, the facts to be repro-

duced, so that each can be reached and mentally pic-
tured with the least intellectual effort. Into our rules
for the mental reconstruction of facts we strive to in-
corporate the greatest possible uniformity, so that these
rules shall be easy of acquisition. It is to be remarked,
that the three periods distinguished are not sharply

Fig. 222.

wider tube, that is to a smaller velocity of flow, an in-
crease of pressure (a positive congestion) ; in every
passage into a narrower tube, that is to a greater velo-
city of flow, an abrupt diminution of pressure (a nega-
tive congestion). The velocity of a liquid element on
which no direct forces act can be diminished or in-
creased only by its passing to points of higher or lower
pressure.

I
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plained, for example, the form of the cells of the honey-

comb by the bees’ efforts to economise in materials.
These ideas fell, at the time of the revival of the The re-

searches of
sciences, on not unfruitful soil. They were first taken K®Pl^Jjer'
up by FERMAT and ROBERVAL, who developed a method Robervai.
applicable to such problems. These inquirers ob-
served, — as Kepler had already done,— that a magni-
tude y which depends on another magnitude x, gen-
erally possesses in the vicinity of its greatest and least
values a peculiar property. Let A: (Fig. 224) denote
abscissas and y ordinates. If, while x increases, y pass
through a maximum value, its increase, or rise, will
be changed into a decrease, or
fall ; and if it pass through a
minimum value its fall will be

separated from one another, but that the processes of
development referred to frequently go hand in hand,
although on the whole the order designated is unmis-
takable.

2. A powerful influence was exerted on the formalTheisoperi-
metrical
antiques- develoPment of mechanics by a particular class of

mathematical problems, which, at the close of thetions of
maxima
and minima seventeenth and the beginning of the eighteenth

turies, engaged the deepest attention of inquirers.
These problems, the so-called isoperimetrical problems,
will now form the subject of our remarks. Certain
questions of the greatest and least values of quanti-
ties, questions of maxima and minima, were treated by

the Greek mathemati-

(cen-

1Pythagoras is
said to have taught that
the circle, of all plane
figures of a given peri-
meter, has the greatest
area. The idea, too, of a

certain economy in the processes of nature was not
foreign to the ancients. Hero deduced the law of the
reflection of light from the theory that light emitted
from a point A (Fig. 223) and reflected at M will travel
to B by the shortest route. Making the plane of the
paper the plane of reflection, SS the intersection of
the reflecting surface, A the point of departure, B the
point of arrival, and M the point of reflection of the
ray of light, it will be seen at once that the line AMB' ,
where B' is the reflection of B, is a straight line. The
line AMB' is shorter than the line ANB\ and there-
fore also AMB is shorter than ANB. Pappus held
similar notions concerning organic nature ; he ex-

cians.
changed into a rise. The neigh-
boring values of the maximum —
or minimum value, consequently,
will lie very near each other, and
the tangents to the curve at the points in question will
generally be parallel to the axis of abscissas. Hence,
to find the maximum or minimum values of a quan-

R
SS . X

Fig. 224.%

' * B -
Fig. 223.

tity, we seek the parallel tangents of its curve.
The method of tangents may be put in analytical The

-
_ . . . . . r r r m e t h o d O f

form. For example, it is required to cut on trom a tangents,

given line a a portion x such that the product of the
two segments x and a — x shall be as great as possible.
Here, the product x (a — x) must be regarded as the
quantity y dependent on x. At the maximum value of
y any infinitely small variation of x, say a variation £,
will produce no change in y. Accordingly, the required
value of x will be found, by putting

1

x ( a — x) ( x -\- S ) ( a — x — <?)
or
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.1a x — x 2 — a x -\- a S — x 2 — x B, — x g — B2

0= a — 2 x — £.
sin a
'•• ~7j
sin p

or
*2

where n stands for the index of refraction. Hero’s law
of reflection, remarks Leibnitz, is thus a special case
of the law of refraction. For equal velocities = ?> 2),
the condition of a minimum of time is identical with
the condition of a minimum of space.

Huygens, in his optical investigations, applied and Huygens’s
further perfected the ideas of Fermat, considering, not of Fermat’s

rsscfirclicsly rectilinear, but also curvilinear motions of light,
in media in which the velocity of the light varied
tinuously from place to place. For these, also, he
found that Fermat’s law obtained. Accordingly, in all
motions of light, an endeavor, so to speak, to produce
results in a minimum of time appeared to be the funda-

As B> may be made as small as we please, we also get
0 — a — 2 x ;

whence x=0/2.
In this way, the concrete idea of the method oftangents may be translated into the language of alge-bra ; the procedure also contains, as we see, the germof the differential calculus.

The refrac- Fermat sought to find for the law of the refractionas a min?-ht of light an expression analogous to that of Hero for
law of reflection. He remarked
that light, proceeding from a
point A, and refracted at a

D point Mf travels to By not by
the shortest route, but in the
shortest time. If the path AMB
is performed in the shortest
time, then a neighboring path& ANBy infinitely near the real
path, will be described in theIf we draw from iVon AM and from M onNB the perpendiculars NP and MQ, then the secondroute, before refraction, is less than the first route by adistance MP= NM sin a, but is larger than it afterrefraction by the distance NQ= NM sin ).3.supposition, therefore, that the velocities in the firstand second media are respectively vx and v2 f the timerequired for the path AMB will be a minimum when

i
on

con-

A
î

mental tendency.
x. Similar maximal or minimal properties were The prob-° lem of the

brachisto-
chrone.

brought out in the study of mechanical phenomena.
As we have already noticed, John Bernoulli knew that
a freely suspended chain assumes the form for which
its centre of gravity lies lowest.

a simple one for the investigator who first rec-

i
This idea was, of

course,
ognised the general import of the principle of virtual

Stimulated by these observations, inquir-
began generally to investigate maximal and

The movement received its most

same time.
velocities.
ers now
minimal characters.
powerful impulse from a problem propounded by John
Bernoulli, in June, 1696*— the problem of the brachis-
tochrone. In a vertical plane two points are situated,
A and B. It is required to assign in this plane the

by which a falling body will travel from A to B
in the shortest time. The problem was very ingeniously

On the

curveNM sin a NM sin (3
vi v 2

or
* Acta Eruditorurn, Leipsic.
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solved by John Bernoulli himself ; and solutionsalso supplied by Leibnitz, L’Hôpital, Newton, andJames Bernoulli.

The most remarkable solution

The bra-chisto-
chrone a
cycloid.

dywere

ji s ' = k.vJohn Ber-noulli’s in-genious so- NOULLI s own.lutionof the
problem of
the brachis-tochrone.

was JOHN BER-This inquirer remarks that problemsof this class have already been solved, not for thetion of falling bodies, but for the motion of light. Heaccordingly imagines the motion of a falling body re-
placed by the motion of

whence follows
dy* =k 2 v2 ds2 = k 2 v 2 ( ilx2 + dy2 )

and because v = j/2gx also
mo-

1X
dy --- dx-\i — , where a =;J \ a — x 2gk*A

This is the differential equation of a cycloid, or curve
described by a point in the circumference of a circle of
radius r=aj'i =1/4gk2 , rolling on a straight line.

To find the cycloid that passes through A and B, Th^con-
^be noted that all cycloids, inasmuch as they are the cycloid

J between
two given
points.

a ray of light. (Comp,

p. 379.) The two points
A and B are supposed
to be fixed in a medium7?
in which the velocity of
light increases in thevertical downward direction by the same law as thevelocity of a falling body.

it is toFig. 226.

produced by similar
structions,
and that if generated by
the rolling of circles on
AD from the point A as

con-
are similar, ^The medium is supposedto be constructed of horizontal layers of downwardlydecreasing density, such that v =1/2gh denotes thevelocity of the light in any layer at the distance h be-low A.

/
V?

B'
origin, are also similarly
situated with respect to

Fig. 227.A ray of light which travels from A to Bder such conditions will describe this distance in theshortest time, and simultaneously trace out the curveof quickest descent.

un-
Accordingly, we draw through AB athe point A.

straight line, and construct any cycloid, cutting the
straight line in B\ The radius of the generating

Then the radius of the generating
Calling the angles made by the element of thecurve with the perpendicular, or the normal of thelayers, a, a\

circle is, say, r’.
circle of the cycloid sought is r — r\AB/ AB' ).

This solution of John Bernoulli’s, achieved entirely
without a method, the outcome of pure geometrical
fancy and a skilful use of such knowledge as happened
to be at his command, is one of the most remarkable
and beautiful performances in the history of physical

aesthetic genius in this

a” .. . ., and the respective velocitiesv, v' , v” . . . . , we have

sin a'sin a sin a . . — k =const.v v v
or, designating the perpendicular distances below Aby x, the horizontal distances from A by y, and theof the curve by J,

science. John Bernoulli was an
field. His brother James’s character was entirely differ-
ent. James was the superior of John in critical power,

arc
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EOF MAT DEVELOPMENT. 429Compan- but in originality and imagination was surpassed by thesc ient i f ic latter. James Bernoulli likewise solved this problem,of John and though in less felicitous form. But, on the other hand,he did not fail to develop, with great thoroughness, ageneral method applicable to such problems. Thus,in these two brothers we find the two fundamentaltraits of high scientific talent separated fromanother,— traits, which in theinquirers, in Newton, for

getlier. We shall
within one bosom

from among an infinite number of curves one which pos-
sesses a certain maximal or minimal property. This, as
he correctly remarks, is a problem of an entirely dif -
ferent character from the other and demands a new
method.

The principles that James Bernoulli employed inTheprinci-
the solution of this problem (Acta Eruditorum, May, ployedhi
1697)* are as follows: no^m’fso-. rr l • r • lutioil.(1) if a curve has a certain property of maximum
or minimum, every portion or element of the curve has
the same property.

(2) Just as the infinitely adjacent values of the
maxima or minima of a quantity in the ordinary prob-
lems, for infinitely small changes of the independent
variables, are constant, so also is the quantity here to
be made a maximum or minimum for the curve sought,
for infinitely contiguous curves, constant.

(3) It is finally assumed, for the case of the brachis-
tochrone, that the velocity is v=\/ 2 gh, where h de-
notes the height fallen through.

If we picture to ourselves a very small portion ABCThe essen-
of the curve (Fig. 228), and, imagining a horizontal turcs of
1 . . . 1 r1 James Ber-ime drawn through B, cause nouiii’s so-, . . . lution.the portion taken to pass into
the infinitely contiguous por-
tion ADC, we shall obtain, by
considerations exactly similar
to those employed in the treat-
ment of Fermat’s law, the well-
known relation between the

of the angles made by the curve-elements with
the perpendicular and the velocities of descent. In
this deduction the following assumptions are made,

* See also his works, Vol. II , p. 768.

noulli.

one
very greatest natural

example, are combined to-soon see those two tendencies, whichmight have fought their battlesin open conflict, in the
noticed, clashing
these two brothers.

un-
persons of

Vignette to Lcibnitzii et Johannis Hernoullii comercium epistolicum.Lausanne and Geneva, Bousquet, 1745.
James Ber- 4. James Bernoulli finds that the chief object ofmarks on research hitherto had been to find the values of a vari-
the genera l - r 1 * 1 i * -1 1

nature of able quantity, tor which a second variable quantity,problem, which is a function of the first, assumes its greatest orits least value. The present problem, however, is to find

sines

4*
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•*(i), that the part, or element, ABC is brachistochro-

nous, and (2), that ADC is described in the same time

as ABC. Bernoulli’s calculation is very prolix ; but

obvious, and the problem is

FORMAL DEVELOPMENT\
TIIE SCIENCE OF MECHANICS.V*

4 3 1

so for the other ordinates.
PF= xy BZ — x*.

John Bernoulli gave, forthwith, a solution of this John Ber-
problem, in the form

Further, we put BP — yf

noulli’s so-
lution of
this prob-
lem.its essential features are

solved * by the above-stated principles.
“ With the solution of the problem of the brachisto-

grainma of .
JamesBer- chrone, James Bernoulli, in accordance with the prac-
nonlli, or , * J ... , . . r

theproposi- tice then prevailing among mathematicians, proposed

general iso- the following more general“ isoperimetrical problem :

periraetri- . . .
caiprob- “ Of all isoperimetrical curves (that is, curves of equal

“ perimeters or equal lengths) between the same two

“ fixed points, to find the curve such that the space

“ included (1) by a second curve, each of whose ordi-
“ nates is a given function of the corresponding ordi-
“ nate or the corresponding arc of the one sought, (2)

“ by the ordinates of its extreme points, and (3) by the

“ part of the axis of abscissæ lying between those ordi-

“ nates, shall be a maximum or minimum.”
For example. It is required to find the curve BFNy

the base BN such, that of all curves of
the same length on BN’

thisparticularone shall make
the area BAN a minimum,

x" dx
\/ a2” — x2’1

where a is an arbitrary constant.
X dx

V (l 2— x2

’ -s — J

The Pro-

Jy=

that is, BFN is a semicircle on BN as diameter, and
the area BZN is equal to the area BFN. For this
ticular case, the solution, in fact, i
general formula is not universally valid.

On the publication of John Bernoulli’s solution,
James Bernoulli openly engaged to do three things :
first, to discover his brother’s method ; second, to point
out its contradictions and errors ; and, third, to give the
true solution. The jealousy and animosity of the two
brothers culminated, on this occasion, in a violent and
acrimonious controversy, which lasted till James’s
death. After James’s death, John virtually confessed
his error and adopted the correct method of his brother.

Tames Bernoulli surmised, and in all probability James Ber-J
m # noulli’scorrectly, that John, misled by the results of his re- criticism of

searches on the catenary and the curve of a sail filled noulli’s so-
with wind, had again attempted an indirect solution,
imagining BFN filled with a liquid of variable density
and taking the lowest position of the centre of gravity
as determinative of the curve required. Making the
ordinate PZ — p, the specific gravity of the liquid in
the ordinate PF=x must be p/x, and similarly in

The weight of a vertical fila-

par-
IS correct. But the

described on

7 M

1 N where PZ — ( PFy\ LM =
(LKy\ and so on.
relation between the ordi-
nates of BZN and the cor-
responding ordinates of BFN

To obtain PZ, from PF,

I- Let the

lution.
Fig. 229.

be given by the curve BH.

draw FGH at right angles to BG, where BG is at right

By hypothesis, then, PZ — Gil\ and
gles to BN.an

for information generally on the his-
Treatise on Isoperimetrical Probletns* For the details of this solution and

tory of this subject, see Woodliouse’s

and the Calculus of Variations, Cambridge, 1810.— Trans. every other ordinate.
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ment is then p . dy/ x, and its moment with respect to
BN is The dissensions between the two brothers were, we

may admit, greatly to be deplored. Yet the genius of
the one and the profundity of the other have borne, in
the stimulus which Euler and Lagrange received from
their several investigations, splendid fruits.

5. Euler ( Problematis IsoperimetriciSolatia Generalise E u l e r’s
general

Com. Acad. Petr. T. VI, for 1733, published in 1738)* ciassifica-. . . . . t i o n o f t h e
was the first to give a more general method of treating isoperimet-. . . . . . . r i c a l prob-
these questions of maxima and minima, or isoperimetri- lems.
cal problems. But even his results were based on
prolix geometrical considerations, and not possessed of
analytical generality. Euler divides problems of this
category, with a clear perception and grasp of their
differences, into the following classes :

(1) Required, of all curves, that for which a prop-
erty A is a maximum or minimum.

(2) Required, of all curves, equally possessing a
property A, that for which B is a maximum or mini-

1 xpd}
-

1= ~sP dy-2 x

Hence, for the lowest position of the centre of gravity,
ifpdy, or J> dy=BZNf is a maximum,

fact is here overlooked, remarks James Bernoulli, that
with the variation of the curve BFN the weight of the
liquid also is varied. Consequently, in this simple
form the deduction is not admissible.

In the solution which he himself gives, James Ber-
principic of noulli once more assumes that the small portion FFJames Ber-

of the curve possesses the
erty which the whole

But the

The funda-
mental

titnoulli’s
general so-
lution.

prop-
curve pos-

sesses. And then taking the four
successive points F F, F,, Fnn
of which the two extreme

B

HLSA onesy*

are fixed, he so varies F, and
Fn that the length of the arc F
FFFu t u r r 1

mum.Fig. 230.
remains tinehanged,

which is possible, of course, only by a displacement
of two points.

(3) Required, of all curves, equally possessing two
properties, A and B, that for which C is a maximum

And so on.

11 r

We shall not follow his involved and
unwieldy calculations. The principle of the j
clearly indicated in our remarks. Retaining the des-
ignations above employed, James Bernoulli, in sub-
stance, states that when

or minimum.
A problem of the first class is (Fig. 231) the finding Examples,

of the shortest curve through M and N. A problem of
the second class is the finding of a curve through M
and N, which, having the given length A, makes the
area MPN a maximum. A problem of the third class
would be : of all curves of the given length A, which
pass through M, N and contain the same area
MPN = B, to find one which describes when rotated
about MN the least surface of revolution. And so on.

process is

p dx
1/ aï — pe

J'pdy is a maximum, and when
(a — p') dx

1/2 ap — /2

J'pdy is a minimum.

dy=

dy=
* Euler’s principal contributions to this subject arc contained in three

memoirs, published in the Commentaries of Petersburg for the years 1733, 1736,
and 1766, and in the tract Methodus inveniendi Linens Curvas Proprietate
Maximi Minimive gaudentes, Lausanne and Geneva, 1744.— Trans.
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We may observe here, that the finding of an abso-

lute maximum or minimum, without collateral condi-
tions, is meaningless. Thus, all the curves of which in

the first example the shortest is sought
P possess the common property of pas-

^ sing through the points M and JV.

M N The solution of problems of the
first class requires the variation of two
elements of the curve or of one point.
This is also sufficient. In problems
of the second class three elements or
two points must be varied ; the reason
being, that the varied portion must

with the unvaried portion the prop-
to be made a maximum or mini-

435434

condition that the property A shall be possessed incommon or shall be a maximum, is expressed in ‘themanner, Euler saw the possibility of reducing theproblems of the higher classes to problems of the firstclass.
same

If, for example, it is required to find, of allcurves having the common property A, that whichmakes B a maximum, the curve is sought for whichA -f- viB is a maximum, where m is an arbitrary con-stant. If on any change of the curve, A -f- viB, for anyvalue of M , does not change, this is generally possibleonly provided the change of A, considered by itself ,and that of B, considered by itself , are = 0.6. Euler was the originator of still another itant advance.

*

Fig. 231.

impor- The ftinda-In treating the problem of finding the principle ofbrachistochrone in a resisting medium, which was in- nouiîi’s er
vestigated by Herrmann and him, the existing meth- shown not1 i •

to be uni-ods proved incompetent. For the brachistochrone inversaiiya vacuum, the velocity depends solely on the verticalheight fallen through. The velocity in one portion ofthe curve is in no wise dependent on the othertions.

possess in common
erty A, and, as B is
mum, also the property B, that is, must satisfy two con-
ditions. Similarly, the solution of problems of the third

Andthe variation of four elements.class requires
so on.

The solution of a problem of a higher class involves,
by implication, the solution of its converse, in all its
forms. Thus, in the third class, we vary four elements
of the curve, so, that the varied portion of the curve
shall share equally with the original portion the values
A and B and, as C is to be made a maximum or a
minimum, also the value C. But the same conditions
must be satisfied, if of all curves possessing equally B
and C that for which A is a maximum or minimum is

of all curves possessing A and C that for

por-In this case, then, we can indeed say, that if
- j curve is brachistochronous, every elementof it is also brachistochronous.

The com-
mutability
of the iso-
perimetri-
cal proper-
ties. with
Euler’s in-
ferences.

the whole

But in a resisting
The entire length andform of the preceding path enters into the determina-tion of the velocity in the element,

can be brachistochronous without the

medium the case is different.

The whole
separate ele-ments necessarily exhibiting this property. By con-siderations of this character, Euler perceived, that theprinciple introduced by James Bernoulli did not holduniversally good, but that in cases of the kind referredto, a more detailed treatment was required.

7. The methodical arrangement and the great num-ber of the problems solved, gradually led Euler to sub-

curve

sought, or
which B is a maximum or minimum is sought. Thus
a circle, to take an example from the second class
tains, of all lines of the same length A, the greatest

B, and the circle, also, of all curves containing
As the

con-

area
the same area B, has the shortest length A.
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stantially the same methods that Lagrange afterwards

somewhat different form, and which difference between a variation and a differential byimagining constants contained in the function, with tion^of La-the change of which the form of the function changed
The increments of the value of the function arisingfrom the increments of these constants were regarded
by him as the variations, while the increments of thefunction springing from the increments of the indepen-dent variables were the differentials. The conceptionof the Calculus of Variations that springs from such aview is singularly timid, narrow, and illogical, and doesnot compare with that of Lagrange. Even Lindelôf’smodern work, so excellent in other respects, is marredby this defect. The first really competent presenta-tion of Lagrange’s idea is, in our opinion, that of JEL-
LETT.* Jellett appears to have said what Lagrange per-haps was unable fully to say, perhaps did not deem itnecessary to say.

8. Jellett’s view is, in substance, this. Quantities JeHett’s ex-generally are divisible into constant and

Lagrange’s
place in the . - .
history of developed in a
lus of vari- now go by the name of the Calculus of Variations. First,

accidental solution of a

The mis-

grange’s. idea.ations. John Bernoulli lighted
problem, by analogy. James Bernoulli developed, for
the solution of such problems, a geometrical method.
Euler generalised the problems and the geometrical
method. And finally, Lagrange, entirely emancipating
himself from the consideration of geometrical figures,

analytical method. Lagrange remarked, that

on an

gave an
the increments which functions receive in consequence
of a change in their form are quite analogous to the in -
crements they receive in consequence of a change of
their independent variables. To distinguish the two
species of increments, Lagrange denoted the former
by d, the latter by d. By the observation of this anal-

enabled to write down at once theogy Lagrange
equations which solve problems of maxima and minima.

Of this idea, which has proved itself a very fertile one,
vérification ; in fact, did not

was

position ofvariable quan- the princi-1 . . ... . .. . . pies of thetitles; the latter being subdivided into independent Calculus ofj j 1 * ii 1 1 1 • -1 Variations.and dependent variables, or such as may be arbitrarilychanged, and such whose change dependschange of other, independent, variables, iconnected with them.

Lagrange never gave a
even attempt it. His achievement is in every respect

He saw, with great economical in-a peculiar one.
sight, the foundations which in his judgment were suf -

and serviceable to build upon. But
on the

in some way
The latter are called functionsof the former, and the nature of the relation that con-nects them is termed the form of the function. Now,quite analogous to this division of quantities into con-stant and variable, is the division of the forms of func-tions into determinate (constant) and indeterminate (vari-able). If the form of a function, y= <p(pc), is inde-terminate, or variable, the value of the functionchange in two

ficiently secure
the acceptance of these fundamental principles them-

Instead ofselves was vindicated only by its results.
the demonstration of these prin-employing himself on

ciples, he showed with what success they could be em -

ployed. ( Essai d'une nouvelle méthode pour déterminer
les maxima et minima des formules intégrales indéfinies.
Mise. Taur. 1762.)

The difficulty which Lagrange’s contemporaries and
successors experienced in clearly grasping his idea, is

to clear up the

y canways : (1) by an increment dx of the
* An Elementary Treatise onJohn Hewitt Jellett. Dublin, 1850.

the Calculus of Viriatiotis. By the Rev.quite intelligible. Euler sought 1in vain
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of an indeterminate function, y= cp{ x ). For a change
of form of cp, the value of y changes by dy and the
value of dy/dx by d( dy/dx). The corresponding change
in the value of u is

THE SCIENCE OF MECHANICS. 439
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independent variable x, or (2) by a change of form, by
The first change is the dif -a passage from cp to cp

ferential dy, the second, the variation dy. Accord

ingly,
dy — cp („v -f- dx) — <p (JC), and

Sy= cpx (#) — cp O).
dy dydF dFJ’ y J' ydx dx sd-y.dx

Ô u= dy dyindeterminate functionThe change of value of an dThe object

cuius of va- due to a mere change of, form involves no problem,
nations il- . . .
lustrated, just as the change of value of

dx
dvThe expression â - ." is obtained by our definition from Expres-
u X sions for

an independent variable
We may assume any change of form

T
involves none.

please, and so produce any change of value we

please. A problem is not presented till the change in

value of a determinate function (F ) of an indetermi-

nate function cp,due to a change of form of the included

indeterminate function, is required. For example, if

have a plane curve of the indeterminate form y —
between the abscissae x0

the varia-
tions of dif -
ferential
coefficients.â dy

^
d { y + Sy)

dx

Similarly, the following results are found :

^ d2 y d2 ây dz y d2 dy
dx 2 dx 2 ’ dxz dx 2 ’

dy ddy
dx dx *we d x

we and so forth.
We now proceed to a problem, namely, the de- A problem',

termination of the form of the function y = cp( x ) that
will render

cp ( x ), the length of its arc
and Xj is idyV1 I /

5= 1' Nll +(d cp ( x ) . dx,1 +. dx dxdx U x
*0

a determinate function of an indeterminate function.

The moment a definite form of curve is fixed upon, the

value of S can be given. For any change of form of

the curve, the change in value of the length of the arc,

dS, is determinable,

tion S does not contain the function y directly, but

through its first differential coefficient dy/dx, which is

itself dependent on y. Let u= F( y) be a determinate
function of an indeterminate function y= cp ( x ) ; then

p ôy.

Again, let u=F( y, dy/dx) be a determinate function

where
dy d 2 y

’ dx’ dx2’V= F\x, y

a maximum or minimum ; cp denoting an indetermi-
nate, and F a determinate function. The value of U
may be varied (1) by a change of the limits, xQ , xvOutside of the limits, the change of the independent
variables x, as such, does not affect U ; accordingly,
if we regard the limits as fixed, this is
in which we need attend to x. The only other way
(2) in which the value of U is susceptible of variation

In the example given, the func-

1

d F ( y ) the only respect
d u= F ( y + d y ) — F ( y)= dy
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is by a change of the form of y= cp( x ). This produces
a change of va lue in

441
440

X\
d dy d 2 dy

dx2
d 3 dy
dx3f [ N Ô y+ P,

*0 '
+ + A -|- . . . . \d x. The inte-I gration of

• the third
term of the

One difficulty here is, that not only ôy, but also the f f̂totai
terms dôy/dx, d 2 dy/ dx\ . . . . occur in this equation, variation.

— terms which are dependent on one another, but not
in a directly obvious manner. This drawback can be
removed by successive integration by parts, by means
of the formula

dx
dy d2 y
dx d l2 ’ ' 'y>

amounting to

8 dx2 ‘ ' ’
dv8y> 8 N • i

and so forth. The total change in U, which we shall
call DU, and to express the maximum-minimum con-

dition put = 0, consists of the differential dU and the

variation ôU.
T J'udv= uv — J'vdu.

By this methodAccordingly,
DU= dU+ dU= 0.

Denoting by V^ dx 1 and — VQdx0 the increments of

U due to the change of the limits, we then have

d d y dpxdx= Pt dy — ^sA 7 ôydx,
rdP2 ddy

J dx dx

dx d x
Expression
for the total
variation of
the func-
tion in
question.

! d dyfp> dx=d x
DU= Vidx1 — VQdx0 + SJ' Vdx= ddy dP2 d 2 P

~
dx^^y^x> a n d s o o n-

Performing all these integrations between the limits,
we obtain for the condition DU — 0 the expression

0 = Vldx1 — VQ dx0

e y + fP.-ro
dx dx

d x = 0.— V0 dx0 + JS V .
*0

But by the principles stated on page 439 we further get

dV ddy
dy d x

(ÎP -

V1 d x x

dV d 2 y
d 2 y dx 2

dV + . . . .+dV= -r-Vy + dP2 d P2dy d + A- ^1 — A — + • • • 8y0dx2 dxdx dx 0
dV d 2 dy
d 2 y dx2

dV ddy _
~

7 1
dV \ fddy\

0\dx Jo
dP3 ddy dPz+ . . . .V sy + + A- - A- +• • •dy d xdy dx dx dx(l dx 2d dx +

-AFor the sake of brevity we put •i
+ / ( d P x d 2 P2 d* P9

d x d x 2 d x'8

which now contains only dy under the integral sign.
The terms in the first line of this expression are

independent of any change in the form of the function
and depend solely upon the variation of the limits.

N — + • • • • j d y . d x,dVdVdV k=N - = p
d V -A)1» d 2 y_

d x2
d y dd :d x

Then *1.i*
Ô f V d x

\
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Equation (3) was found by Euler. But Lagrange first
showed the application of equation (1), for the deter-
mination of a function by the conditions at its limits.
By equation (3), which it must satisfy, the form of the
function y= cp( x ) is generally determined; but . this

. equation contains a number of arbitrary constants,
whose values are determined solely by the conditions
at the limits. With respect to notation,Jellett rightly
remarks, that the employment of the symbol â in the
first two terms V1ôx1 =VQô xQ of equation (1), (the
form used by Lagrange,) is illogical, and he correctly
puts for the increments of the independent variables
the usual symbols dxlf dxQ.

9. To illustrate the use to which these equations A practical
- . illustrationmay be put, let us seek the form of the function that of the

makes

442 443

The terms of the two following lines depend on theThe inter-
thlSts* change in the form of the function, for the limiting

values of only ; and the indices 1 and 2 state that
the actual limiting values are to be put in the place of

The terms of the last line,the general expressions,

finally, depend on the general change in the form of
Collecting all the terms, except those inthe function.

the last line, under one designation a' 1 — a0 , and calling
the expression in parentheses in the last line ft, we •

Thave
x\

«0 +JP - Sy .dx.0 = a1
•*0

But this equation can be satisfied only if

= 0 ' (i) i«0

and use
of these
equations.

J ft Sydx
-*0

(2)= 0 I +i dx
For if each of the members were not equal to zero,
each would be determined by the other,

tegral of an indeterminate function cannot be expressed
in terms of its limiting values only. Assuming, there-
fore, that the equation

But the in- a minimum— the shortest line. Here

F(dy\\dxj
V=

All expressions except
-rt dyJ' ft $ydx= 0,

•*0

holds generally good, its conditions can be satisfied,
solves the since ôy is throughout arbitrary and its generality of

form cannot be restricted, only by making ft = 0. By

dV dxA = dy
The cqua- d

dx
problem, or
makes the
function in
question a the equation
maximum
or mini-mum.

vanish in equation (3), and that equation becomes
dl\/dx = 0 ; which means that PA , and consequently
its only variable, dy/dx, is independent of x.
dy/dx = a, and y= ax -J- b, where a and b are
stants.

*dp< d* p
2 d* pQ + • • • = 0. • • (3),1N — Hence,dx*

therefore, the form of the function y= qy{ x ) that makes
the expression U a maximum

d x 2d x
Con-

or minimum is defined. The constants a, b are determined by the values ofi
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of Z the lowest position of the centre of

of this kind
The

Develop- the limits,
ment of the
illustration.

If the straight line
points xQ , yQ and xx , yx , then

to a minimum
gravity of a homogeneously heavy curve

corresponds ; the curve is therefore a catenary,

determination of the constants c, c is effected by means

of the limiting conditions, as above.
In the treatment of mechanical problems, a dis- variations

. . and virtual

tinction is made between the increments of coordinates dispiace-
. ments dis-

that actually take place in time, namely, dx, dy, dz, tinguished.

and the possible displacements dx, dy, dz, considered,

for instance, in the application of the principle of vir-

The latter, as a rule, are not varia-

changes of value that spring
Only when

passes through the

J ' Q axQ -f- b
O)

= 0, dy0= dyx= 0, equation (i)
The coefficients d (dy/dx), d ( d2y jdx2 ),. . . .

independently vanish. Hence, the values of a and b
are determined by the equations (///) alone.

If the limits x0, xx only are given, but y0 , yi are
indeterminate, we have dxQ= dxx = 0, and equation
(i) takes the form

y l — axi -j- b j
and* as dx0= dx
vanishes.

tual velocities.
tions ; that is, are not

from changes in the form of a function.
mechanical system that is a continuum,

as for example a string, a flexible surface, an elastic

body, or a liquid, are we at liberty to regard dx, dy,

dz as indeterminate functions of the coordinates x, y,
z, and are we concerned with variations.

It is not our purpose in this work, to develop math- imgcn-tancc

ematical theories, but simply to treat the purely phys- cuius of va-
A J . . . nations for

ical part of mechanics. But the history of the isoperi- mechanics.

metrical problems and of the calculus of variations had

to be touched upon, because these researches have ex-
the develop-

(*yi — <^0 ) = o,
i/ i + a*

which, since dyQ and dyx are arbitrary, can only be
satisfied if a= 0. The straight line is in this casey=b, parallel to the axis of abscissae, and as b is inde-
terminate, at any distance from it.

It will be noticed, that
sidiary conditions

consider awe

equation (i) and the sub-
expressed in equation (yn), with re-

spect to the determination of the constants,
complement each other.

generally

If
ercised a very considerable influence

Our sense of the general prop-
ies of maxima and

on
X2

z= ment of mechanics.*
erties of systems, and of properties

minima in particular, was much sharpened by these

investigations, and properties of the kind referred to

subsequently discovered in

with great facility. As a fact, physicists, since La-

grange’s time, usually express mechanical principles

maximal or minimal form. This predilection

would be unintelligible without a knowledge of the

d x

IS to be made a minimum, the integration of the appro-priate form of (3) will give mechanical systems
X — c' were

7 ~ % e + e

If ^ is a minimum, then 2 7T Z also i
the curve found will

_ is a minimum, and
give, by rotation about the axis

of abscissae, the least surface of revolution. Further,

m a

historical development.



y
FOA' MAL DEVELOPMENT. 447446 THE SCIENCE OF MECHANICS.

Nor was any engine too base for the church to handle The strug-
gleofscien-

She considered nothing but how to tists with

; and no temporal policy ever was conducted precon-
ceived
ideas.

in this struggle.
11. conquer

so selfishly, so unscrupulously, or so cruelly. But in-
vestigators have had another struggle on their hands,
and by no means an easy one, the struggle with their

preconceived ideas, and especially with the notion
that philosophy and science must be founded on the-

It was but slowly that this prejudice little by

THEOLOGICAL. ANIMISTIC, AND MYSTICAL POINTS OF VIEW
IN MECHANICS.

i. If , in entering a parlor in Germany, we happen
to hear something said about
pious, without having caught the name, we may fancy
that Privy Counsellor X was spoken of , — or Herr von
Y ; we should hardly think of a scientific man of our
acquaintance. It would, however, be a mistake to
pose that the want of cordiality, occasionally rising to
embittered controversy, which has existed in our day
between the scientific and the theological faculties,
always separated them.

own
man being verysome

ology.
little was erased.

2. But let the facts speak for themselves, while we Historical
examples.

introduce the reader to a few historical personages.
Napier, the inventor of logarithms, an austere Puri-

tan, who lived in the sixteenth century, was, in addi-
tion to his scientific avocations, a zealous theologian.

extremely curious

sup- (

Napier applied himself to
speculations. He wrote an exegetical commentary

the Book of Revelation, with propositions and mathe-

matical demonstrations. Proposition XXVI, for ex-
ample, maintains that the pope is the Antichrist ; propo-
sition XXXVI declares that the locusts are the Turks

someA glance at the history of onscience suffices to prove the contrary.
The con- People talk of the 4‘conflict ” of science and the-flict of sci-
cncc and ology, or better of science and the church.the church. .r .truth a prolific theme.

It is in
On the one hand, we have the

long catalogue of the sins of the church against pro-
gress, on the other side a “ noble army of martyrs, ”
among them no less distinguished figures than Galileo
and Giordano Bruno.

and Mohammedans ; and so forth.
Blaise Pascal (1623-1662), one of the most rounded

geniuses to be found among mathematicians and phys-
icists, was extremely orthodox and ascetical. So deep

the convictions of his heart, that despite the gen-
It was only by good luck that

Descartes, pious as he was, escaped the same fate.
These things are the commonplaces of history ; but it
would be a great mistake to suppose that the phrase
“ warfare of science ”

were
tleness of his character, he once openly denounced at

Rouen an instructor in philosophy as a heretic,

healing of his sister by contact with a relic most
ously impressed him, and he regarded her cure

On these facts taken by themselves it might

The
is a correct description of its

general historic attitude toward religion, that the only
repression of intellectual development has come from
priests, and that if their hands had been held off,
ing science would have shot up with stupendous velo-
city.

séri-
as a

miracle.
be wrong to lay great stress ; for his whole family were
much inclined to religious fanaticism,

plenty of other instances of his religiosity.

grow-

But there are
Such was

No doubt, external opposition did have to be
fought ; and the battle with it 1child’s play.was no
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“ I have studied these things ; Newtonand
Leibnitz.

440

his resolve,— which was carried out, too,— to abandon
altogether the pursuits of science and to devote his life
solely to the cause of Christianity. Consolation, he
used to say, he could find nowhere but in the teachings
of Christianity ; and all the wisdom of the world availed
him not a whit.

Pascal.

him with the remark
you have not !”

We need not tarry by Leibnitz, the inventor of the

best of all possible worlds and of pre-established har-
mony — inventions which Voltaire disposed of in Can-
dide, a humorous novel with a deeply philosophical pur-

pose. But everybody knows that Leibnitz was almost

if not quite as much a theologian, as a man of science.
Let us turn, however, to the last century. Euler, in Euler.

German Princess, deals with theologico-
philosophical problems in the midst of scientific ques-

tions. He speaks of the difficulty involved in explaining

the interaction of body and mind, due to the total

diversity of these two phenomena,— a diversity to his

mind undoubted. The system of occasionalism, devel-
oped by Descartes and his followers, agreeably to which

God executes for every purpose of the soul, (the soul it-

self not being able to do so,) a corresponding movement

of the body, does not quite satisfy him. He derides,

also, and not without humor, the doctrine of pre-
established harmony, according to which perfect agree-

established from the beginning between the

of the body and the volitions of the soul,—
connected with the

The sincerity of his desire for the
conversion of heretics is shown in his Lettres provin-
ciates, where he vigorously declaims against the dread -
ful subtleties that the doctors of the Sorbonne had
devised, expressly to persecute the Jansenists. Very
remarkable is Pascal’s correspondence with the theo-
logians of his time ; and a modern reader is not a little
surprised at finding this great “ scientist ” seriously
discussing in one of his letters whether or not the Devil
was able to work miracles.

his Letters to a

Otto von Guericke, the inventor of the air-
^

occupies himself , at the beginning of his book,
little over two hundred years old, with the miracle of
Joshua, which he seeks to harmonise with the ideas
of Copernicus. In like manner, we find his researches
on the vacuum and the nature of the atmosphere in-
troduced by disquisitions concerning the location of
heaven, the location of hell, and so forth. Although
Guericke really strives to answer these questions
tionally as he can, still

Otto von
Guericke. pump,

now

ment was
movementsas ra-

notice that they give him
considerable trouble, — questions, be it remembered,
that to-day the theologians themselves would consider
absurd.

although neither is in any way
other, — just as there is harmony between two different

He remarks, that in this
we

but like-constructed clocks,

view his own body is as foreign to him as that of a

rhinoceros in the midst of Africa, which might just as

well be in pre-established harmony with his soul as

its own. Let us hear his own words. In his day, Latin
When a German

Yet Guericke was a man who lived after the
Reformation !

The giant mind of Newton did not disdain to employ
itself on the interpretation of the Apocalypse. On such
subjects it was difficult for a sceptic to converse with
him. When Halley once indulged in a jest concerning
theological questions, he is said to have curtly repulsed

was almost universally written,

scholar wished to be especially condescending, he

“ Si dans le cas d’un dérèglement
wrote in French :

“ de mon corps Dieu ajustait celui d’ un P moceros,
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“ I have studied these things ; Ncwtonand
Leibnitz.
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They were not con-

I11 a court which
they are their own sincere views,

scious of any theological constraint,
harbored a Lamettrie and a Voltaire, Euler had no rea-

“ en sorte que ses mouvements fussent tellement d’ac-
“ cord avec les ordres de mon âme, qu’il levât la patte
“ au to conceal his real convictions.

According to the modern notion, these men should character. of their age.
at least have seen that the- questions they discussed
did not belong under the heads where they put them,
that they were not questions of science,

this contradiction between inherited theological beliefs

moment que je voudrais lever la main, et ainsi
“ des autres opérations, ce serait alors mon corps. Je

me trouverais subitement dans la forme d’un rhino-

son

i (

“ ceros au milieu de l’Afrique, mais non obstant cela
“ mon âme continuerait les même opérations. J
“ également l’honneur d’écrire à V. A., mais je ne sais
“ pas comment elle recevrait mes lettres. ”

Still, odd asaurais

and independently created scientific convictions seems
it is no reason for a diminished admiration ofOne would almost imagine that Euler, here, had beenEuler’s

proclivities tempted to play Voltaire. And yet, apposite
his criticism in this vital point, the mutual action of
body and soul remained a miracle to him, still. But he
extricates himself , however, from the question of the
freedom of the will, very sophistically. To give
idea of the kind of questions which a scientist was per-
mitted to treat in those days, it may be remarked that
Euler institutes in his physical “ Letters ” investiga-
tions concerning the nature of spirits, the connection
between body and soul, the freedom of the will, the
influence of that freedom on physical occurrences,
prayer, physical and moral evils, the conversion of sin-
ners, and such like topics ;— and this in a treatise full
of clear physical ideas and not devoid of philosophical
ones, where the well-known circle-diagrams of logic
have their birth-place.

Character 3. Let these examples of religious physicists suffice,
logical We have selected them intentionally from among the
the great in- foremost of scientific discoverers. The theological pro-

clivities which these men followed, belong wholly to
their innermost private life. They tell us openly things
which they are not compelled to tell us, things about
which they might have remained silent. What they
utter are not opinions forced upon them from without ;

to us,
those leaders of scientific thought. Nay, this very fact

proof of their stupendous mental power : they were
able, in spite of the contracted horizon of their age, to
which even their own aperçus were chiefly limited, to
point out the path to an elevation, where our genera-
tion has attained a freer point of view.

Every unbiassed mind must admit that the age in
which the chief development of the science of mechan-
ics took place, was an age of predominantly theological
cast. Theological questions were excited by everything,
and modified everything. No wonder, then, that
chanics took the contagion. But the thoroughness with
which theological thought thus permeated scientific
inquiry, will best be seen by an examination of details.

4. The impulse imparted in antiquity to this direc- Galileo’s
researches

tion of thought by Hero and Pappus has been alluded on
^to in the preceding chapter. At the beginning of the materials,

seventeenth century we find Galileo occupied with prob-
lems concerning the strength of materials. Pie shows
that hollow tubes offer a greater resistance to flexure
than solid rods of the same length and the same quantity
of material, and at once applies this discovery to the
explanation of the forms of the bones of animals, which

as was
is a

some

me-
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usually hollow and cylindrical in shape. The phe-
nomenon is easily illustrated by the comparison of a
flatly folded and a rolled sheet of paper. A horizontalbeam fastened at one extremity and loaded at the othermay be remodelled so as to be thinner at the loaded
end without any loss of stiffness and with a consider-
able saving of material. Galileo determined the form of
a beam of equal resistance at each cross-section,

also remarked that animals of similar geometrical
struction but of considerable difference of size would
comply in very unequal proportions with the laws of
resistance.

are
der at the adaptations of organic nature by serious in-
quiry into the mode of their origin.

Pappus's ideas concerning the cells of honeycombs Theceils
the honey-

late as the comb.
r, f

the subject of animated discussion as
In a treatise, published in 1865,

were
eighteenth century,

entitled Homes Without Hands ( p. 428), Wood substan-

tially relates the following : “ Maraldi had been struck
with the great regularity of the cells of the honey-
comb. He measured the angles of the lozenge-shaped
plates, or rhombs, that form the terr mal walls of the
cells, and found them to be respectively IO9° 28' and

Réaumur, convinced that these angles were in
connected with the economy of the cells,

Pie
con-

700 32'.The forms of bones, feathers, stalks, and other or-
. ganic structures, adapted, as they are, in their minut-

est details to the purposes they serve, are highly cal-
culated to make a profound impression on the thinking
beholder, and this fact has again and again been ad-
duced in proof of a supreme wisdom ruling in nature.
Let us examine, for instance, the pinion-feather of a

The quill is a hollow tube diminishing in thick-
ness as we go towards the end, that is, is a body of
equal resistance. Each little blade of the
peats in miniature the same construction,

require considerable technical knowledge even to imi-
tate a feather of this kind, let alone invent it.
should not forget, however, that scrutiny, or quest of
explanation, not wonder, is the office of
know how Darwin sought to solve these problems, by
the theory of natural selection. That Darwin's solution
is a complete one, may fairly be doubted ; Darwin him-
self questioned it.

Evidences
of design
in nature some way

requested the mathematician Kônig to calculate the
form of a hexagonal prism terminated by a pyramid
composed of three equal and similar rhombs, which
would give the greatest amount of space with a given

The answer was, that the anglesamount of material,
should be IO9° 26' and 70° 34'. The difference, accord-

Maclaurin,* dissatisfied withbird.
ingly, was two minutes,

this agreement, repeated Maraldi’s measurements,found
them correct, and discovered, in going over the calcu-
lation, an error in the logarithmic table employed by

Not the bees, but the mathematicians were

vane re-
It would

Kônig.
wrong, and the bees had helped to detect the error !”

Any one who is acquainted with the methodsof meas-
uring crystals and has seen the cell of a honeycomb,
with its rough and non-reflective surfaces, will question
whether the measurement of such cells can be executed
with a probable error of only two minutes,f So, we
must take this story as a sort of pious mathematical

We

science. We

All external conditions would be
powerless if something were not present that admitted
of variation. * Philosophical Transactions for 1743.— Trans.

t But see G. F. Maraldi in the Mémoires de Vacadémie for 1712. It is, how-
ever, now well known the cells vary considerably. See Cliauncey Wright,
Philosophical Discussions, 1877, p. 311.— Trans.

But there can be no question that his
theory is the first serious attempt to replace mere won-
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Histoire du docteur Akakia, a work which led , as we

know, to the rupture between Frederick and Voltaire.
Maupertuis’s principle would in all probability soon Euler’s re-

have been forgotten, had Euler not taken up the sug- thcthcoiog-
^ . . i 1 r 1 • • i • ical basis of
Euler magnanimously lett the principle its this prin-

Maupertuis the glory of the invention, and con-

fairy-tale, quite apart from the consideration that noth-
ing would follow from it even were it true,

from a mathematical point of view, the problem is too
imperfectly formulated to enable us to decide the ex-
tent to which the bees have solved it.

The ideas of Hero and Fermat, referred to in the
previous chapter, concerning the motion of light, at
once received from the hands of Leibnitz a theolog-
ical coloring, and played, as has been before mentioned,
a predominant role in the development of the calculus
of variations. In Leibnitz’s correspondence with John
Bernoulli, theological questions are repeatedly dis -
cussed in the very midst of mathematical disquisitions.
Their language is not unfrequently couched in biblical
pictures. Leibnitz, for example, says that the problem
of the brachistochrone lured him as the apple had lured
Eve.

Besides,

gestion.
Other
instances. name,

verted it into something new and really serviceable.
What Maupertuis meant to convey is very difficult to

What Euler meant may be easily shown byascertain.
simple examples. If a body is constrained to move on a
rigid surface, for instance, on the surface of the earth, it
will describe when an impulse is impaiced to it, the
shortest path between its initial and terminal positions.
Any other path that might be prescribed it, would be

- longer or would require a greater time. This principle
finds an application in the theory of atmospheric and
oceanic currents. The theological point of view, Euler

'
i
I

retained. He claimsit is possible to explain phenomena,
not only from their physical causes, but also from their

“ As the construction of the universe is the

Maupertuis, the famous president of the Berlin
Academy, and a friend of Frederick the Great,
a new impulse to the theologising bent of physics by
the enunciation of his principle of least action. In the
treatise which formulated this obscure principle, and
which betrayed in Maupertuis a woeful lack of mathe-
matical accuracy, the author declared his principle to be
the one which best accorded with the wisdom of the
Creator. Maupertuis was an ingenious man, but not a
man of strong, practical sense. This is evidenced by
the schemes he was incessantly devising : his bold prop-
ositions to found a city in which only Latin should be
spoken, to dig a deep hole in the earth to find new
substances, to institute psychological investigations by
means of opium and by the dissection of monkeys, to
explain the formation of the embryo by gravitation, and
so forth. He was sharply satirised by Voltaire in the

The theo-
logical ker-
nel of the
principle of
least ac-
tion.

gave
purposes.
“ most perfect possible, being the handiwork of

“ all-wise Maker, nothing can be met with in the world

“ in which some maximal or minimal property is not

an

f
i no doubt but“ displayed. There is, consequently,

“ that all the effects of the world can be derived by

“ the method of maxima and minima from their final
M *i “ causes as well as from their efficient ones.

5. Similarly, the notions of the constancy of the
quantity of matter, of the constancy of the quantity of

t
Quum enim mundi universi fabrica sit perfcctissima, atque a crcatore

sapientissimo absolnta, nihil oirmino in mundo contingit, in quo non maximi
minimive ratio quaepiam eluceat ; qiiain ob rem dubium prorsus est nullum,

mundi effectus ex causis linalibus, ope methodi maximorum et

minimorum, acque féliciter detenninari quaeant, atque ex ipsis causis eflicien-
tibus.” ( Mcthodus inveniendi linens curvas maximi minimive proprietate
gmulentcs. Lausanne, 1744.)

:j: i (

f
quin omnes

l\

* 1
I
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The central motion, of the indestructibility of work or energy, con-
notions of
modern
phvsics
mainly of all arose under the influence of theological ideas. The
theological
origin.

Towards the close of the eighteenth century a re- ultimate
complete

markable change took place,— a change which was emancipa-
tion of

apparently an abrupt departure from the current trend physics
^

ceptions which completely dominate modern physics,

notions in question had their origin in an utterance of
Descartes, before mentioned, in the Principles of Philos-
ophy, agreeably to which the quantity of matter and mo-

tion original^' created in the world,— such being the
only course compatible with the constancy of the Crea-
tor, — is always preserved unchanged. The conception
of the manner in which this quantity of motion should
be calculated was very considerably modified in the
progress of the idea from Descartes to Leibnitz, and to
their successors, and as the outcome of these modifi-
cations the doctrine gradually and slowly arose which
is now called the “ law of the conservation of energy. ”
But the theological background of these ideas only
slowly vanished. In fact, at the present day, we still
meet with scientists who indulge in self -created mys-
ticisms concerning this law.

During the entire sixteenth and seventeenth centu-
ries, down to the close of the eighteenth, the prevail-
ing inclination of inquirers was, to find in all physical
laws some particular disposition of the Creator. But
a gradual transformation of these views must strike
the attentive observer. Whereas with Descartes and

of thought, but in reality was the logical outcome of ogy.
the development indicated. After an attempt in a
youthful work to found mechanics on Euler’s principle
of least action, Lagrange, in a subsequent treatment
of the subject, declared his intention of utterly disre-
garding theological and metaphysical speculations, as
in their nature precarious and foreign to science. He
erected a new mechanical system on entirely different
foundations, and no one conversant with the subject
will dispute its excellencies. All subsequent scientists
of eminence accepted Lagrange’s view, and the pres-
ent attitude of physics to theology was thus substan-
tially determined.

6. The idea that theology and physics are two dis- The mod-
tinct branches of knowledge, thus took, from its first aiway^the

germination- in Copernicus till its final promulgation îlîe greatest
0 * J. »

_
> inquirers.Î

by Lagrange, almost two centuries to attain clearness
in the minds of investigators. At the same time it
cannot be denied that this truth was always clear to
the greatest minds, like Newton. Newton never, de-
spite his profound religiosity, mingled theology with
the questions of science. True, even he concludes his
Optics, whilst on its last pages his clear and luminous
intellect still shines, with an exclamation of humble
contrition at the vanity of all earthly things. But his
optical researches proper, in contrast to those of Leib-
nitz, contain not a trace of theology. The same may
be said of Galileo and Huygens. Their writings con-
form almost absolutely to the point of view of La-
grange, and may be accepted in this respect as class-
ical. But the general views and tendencies of an age

Gradual
transition
from the
theological
point of
view.

I»
I

Leibnitz physics and theology were still greatly inter-
mingled, in the subsequent period a distinct endeavor
is noticeable, not indeed wholly to discard theology,
yet to separate it from purely physical questions. Theo-
logical disquisitions were put at the beginning or rele-
gated to the end of physical treatises. Theological
speculations were restricted, as much as possible, to
the question of creation, that, from this point onward,
the way might be cleared for physics.

!
J

1

1
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must not be judged by its greatest, but by its average,
minds.

and physical science here met and gave each other
mutual encouragement. All who have experienced, in
part, in its literature, this wonderful emancipation of
the human intellect, will feel during their whole lives a
deep, elcgiacal regret for the eighteenth century.

7. The old point of view, then, is abandoned. Its T h e c n-
history is now detectible only in the form of the me- m e m o f t h e

J
i f n e w v i e w s.

chanical principles. And this form will remain strange
to us as long as we neglect its origin. The theological
conception of things gradually gave way to a more
rigid conception ; and this was accompanied with a
considerable gain in enlightenment, as we shall now
briefly indicate.

Vlien we say light travels by the paths of shortest
time, we grasp by such an expression many things.
But we do not know as yet why light prefers paths of
shortest time. We forego all further knowledge of the
phenomenon, if we find the reason in the Creator's wis-
dom. We of to-day know, that light travels by all
paths, but that only on the paths of shortest time do
the waves of light so intensify each other that a per-
ceptible result is produced. Light, accordingly, only
appears to travel by the paths of shortest time. After Extrava-

gance as
the prejudice which prevailed on these questions had w e l l a s. .. ,. . e c o n o m y i n
been removed, cases were immediately discovered in nature,

which by the side of the supposed economy of nature
the most striking extravagance was displayed. Cases
of this kind have, for example, been pointed out by
Jacobi in connection with Euler’s principle of least ac-
tion. A great many natural phenomena accordingly
produce the impression of economy, simply because
they visibly appear only when by accident an econom-
ical accumulation of effects take place. This is the
same idea in the province of inorganic nature that Dar-

To comprehend the process here portrayed, the gen-Thc theo-
ceptionof eral condition of affairs in these times must be consid-the world . . . . .
natural and ered. It stands to reason that in a stage of civilisation
explain-
able. in which religion is almost the sole education , and the

only theory of the world, people would naturally look
at things in a theological point of view, and that they
would believe that this view was possessed of compe-
tency in all fields of research. If we transport ourselves
back to the time when people played the organ with
their fists,when they had to have the multiplication table
visibly before them to calculate, when they did so much
with their hands that people now-a-days do with their
heads, we shall not demand of such a time that it
should critically put to the test its own views and the-

With the widening of the intellectual horizon
through the great geographical, technical, and scien-
tific discoveries and inventions of the fifteenth and six-

ones.

teenth centuries, with the opening up of provinces in
which it was impossible to make any progress with the
old conception of things, simply because it had been
formed prior to the knowledge of these provinces, this
bias of the mind gradually and slowly vanished,

great freedom of thought which appears in isolated
cases in the early middle ages, first in poets and then
in scientists, will always be hard to understand. The en -
lightenment of those days must have been the work of a
few very extraordinary minds, and can have been bound
to the views of the people at large by but very slender
threads, more fitted to disturb those views than to re-
form them. Rationalism does not seem to have gained
a broad theatre of action till the literature of the eigh-
teenth century. Humanistic, philosophical, historical,

The
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and physical science here met and gave each other
mutual encouragement. All who have experienced, in
part, in its literature, this wonderful emancipation of
the human intellect, will feel during their whole lives a
deep, elegiacal regret for the eighteenth century.
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historv is now detectible only in the form of the me- ment of the
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to 11s as long as we neglect its origin. The theological
conception of things gradually gave way to a more
rigid conception ; and this was accompanied with a
considerable gain in enlightenment, as we shall now
briefly indicate.

When we say light travels by the paths of shortest
time, we grasp by such an expression many things.
But we do not know as yet 7uhy light prefers paths of
shortest time. We forego all further knowledge of the
phenomenon, if we find the reason in the Creator’s wis-
dom. We of to-day know, that light travels by all
paths, but that only on the paths of shortest time do
the waves of light so intensify each other that a per-
ceptible result is produced. Light, accordingly, only
appears to travel by the paths of shortest time. After Extrava-
the prejudice which prevailed on these questions had well as
been removed, cases were immediately discovered in nature,

which by the side of the supposed economy of nature
the most striking extravagance was displayed. Cases
of this kind have, for example, been pointed out by
Jacobi in connection with Euler’s principle of least ac-
tion. A great many natural phenomena accordingly
produce the impression of economy, simply because
they visibly appear only when by accident an econom-
ical accumulation of effects take place. This is the
same idea in the province of inorganic nature that Dar-

nuist not be judged by its greatest, but by its average,
minds.

To comprehend the process here portrayed, the gen-The theo-
logical con-
ception of eral condition of affairs in these times must be consid -the world
natural and ered. It stands to reason that in a stage of civilisationexplain-
able. in which religion is almost the sole education, and the

only theory of the world, people would naturally look
at things in a theological point of view, and that they
would believe that this view was possessed of compe-
tency in all fields of research. If we transport ourselves
back to the time when people played the organ with
their fists,when they had to have the multiplication table
visibly before them to calculate, when they did so much
with their hands that people now-a-days do with their
heads, we shall not demand of such a time that it
should critically put to the test its own views and the-

With the widening of the intellectual horizon
through the great geographical, technical, and scien -
tific discoveries and inventions of the fifteenth and six-

ories.

teenth centuries, with the opening up of provinces in
which it was impossible to make any progress with the
old conception of things, simply because it had been
formed prior to the knowledge of these provinces, this
bias of the mind gradually and slowly vanished. The
great freedom of thought which appears in isolated
cases in the early middle ages, first in poets and then
in scientists, will always be hard to understand. The en-
lightenment of those days must have been the work of a
few very extraordinary minds, and can have been bound
to the views of the people at large by but very slender
threads, more fitted to disturb those views than to re-
form them. Rationalism does not seem to have gained
a broad theatre of action till the literature of the eigh-
teenth century. Humanistic, philosophical, historical,
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the second place, the theological conception of nature
itself owes its origin to an endeavor to obtain a more
comprehensive view of the world ;— the very same en-
deavor that is- at the bottom of physical science. Hence,

admitting that the physical philosophy of theology

win worked out in the domain of organic nature. We
facilitate instinctively our comprehension of nature by
applying to it the economical ideas with which we are
familiar.

Often the phenomena of nature exhibit maximal
or minimal properties because when these greatest or
least properties have been established the causes of all
further alteration are removed. The catenary gives
the lowest point of the centre of gravity for the simple
reason that when that point has been reached all fur-
ther descent of the system’s parts is impossible. Li-
quids exclusively subjected to the action of molecular
forces exhibit a minimum of superficial area, because

E x p l a n a-
t i o n o f m a x-i m a l a n d
m i n i m a l
e f f e c t s.

even
is a fruitless achievement, a reversion to a lower state of
scientific culture, we still need not repudiate the sound
root from which it has sprung and which is not differ-
ent from that of true physical inquiry.

In fact, science can accomplish nothing by the con- N e c e s s i t y. . . o f a c o n-
sideration of individual facts : from time to time it must s tant con-

s idéra t ion
cast its glance at the world as a whole. Galileo’s of the AH,

' <=> . . . . . . in research
laws of falling bodies, Huygens’s principle of vis viva,
the principle of virtual velocities, nay, even the con-
cept of mass, could not, as we saw, be obtained, ex-
cept by the alternate consideration of individual facts
and of nature as a totality. We may, in our men-
tal reconstruction of mechanical processes, start from

* the properties of isolated masses (from the elementary
or differential laws), and so compose our pictures of
the processes ; or, we may hold fast to the properties
of the system as a whole (abide by the integral laws).
Since, however, the properties of one mass always in-
clude relations to other masses, (for instance, in ve-
locity and acceleration a relation of time is involved,
that is, a connection with the whole world,) it is mani-
fest that purely differential, or elementary, laws do not
exist. It would be illogical, accordingly, to exclude
as less certain this necessary view of the All, or of the
more general properties of nature, from our studies.
The more general a new principle is and the wider its
scope, the more perfect, tests will, in view of the possi-
bility of error, be demanded of it.

The conception of a will and intelligence active in

stable equilibrium can only subsist when the molecular
forces are able to effect no further diminution of super-
ficial area. The important thing, therefore, is not the
maximum or minimum, but the removal of work ; work
being the factor determinative of the alteration. It
sounds much less imposing but is much more elucida-
tory, much more correct and comprehensive, instead
of speaking of the economical tendencies of nature, to
say : “ So much and so much only occurs as in virtue
of the forces and circumstances involved can occur. ”

The question may now justly be asked, If the pointPoints of
ident i ty in .
the theoiog- of view of theology which led to the enunciation of theica l and . . . .scientific principles of mechanics was utterly wrong, how

it that the principles themselves are in all substantial
points correct ? The answer is eas}'. In the first place,
the theological view did not supply the contents of the
principles, but simply determined their guise ; their mat-
ter was derived from experience. A similar influence
would have been exercised by any other dominant type
of thought, by a commercial attitude, for instance, such
as presumably had its effect on Stevinus’s thinking. In

comesconcep-
t ions.

1
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462 striction placed on this tendency of thought. When we Animistic
reflect that even Luther is said to have had personal science,

encounters with the Devil, that Kepler, whose aunt had
been burned as a witch and whose mother came near
meeting the same fate, said that witchcraft could not
be denied, and dreaded to express his real opinion of
astrology, we can vividly picture to ourselves the
thought of less enlightened minds of those ages.

Modern physical science also shows traces of fetish-
ism, as Tylor well remarks, in its “ forces. ”
hobgoblin practices of modern spiritualism
evidence that the

Pagan ideas nature is by no means the exclusive property of Chris-

dcesPHfe in tian monotheism. On the contrary, this idea is a quite
the modern . . , . . . .
world. familiar one to paganism and fetishism.

however, finds this will and intelligence entirely in in-

dividual phenomena, while monotheism seeks it in the

monotheism does not exist.

Paganism,

All. Moreover, a pure
of the Bible is by no means

The Jewish monotheism
free from belief in demons, sorcerers, and witches ;

the Christian monotheism of mediaeval times is
We shall notand

even
And the

richer in these pagan conceptions.

speak of the brutal amusement in which church and

state indulged in the torture and burning of witches,

and which was undoubtedly provoked, in the majority

of cases, not by avarice but by the prevalence of the

ideas mentioned. In his instructive work on Primitive

Culture Tylor has studied the sorcery, superstitions,

and miracle-belief of savage peoples, and compared

them with the opinions current in mediaeval times con-
cerning witchcraft. The similarity is indeed striking.__I u of witches, which was so frequent in

in the sixteenth and seventeenth centuries, is
Even

are ample
conceptions of paganism have not

by the cultured society of to-day.
It is natural that these ideas so obstinately assert

themselves. Of the many impulses that rule man
with demoniacal power, that nourish, preserve, and
propagate him, without his knowledge or supervision,
of these impulses of which the middle
such great pathological

been overcome even

ages present
excesses, only the smallest

part is accessible to scientific analysis and conceptual
knowledge. The fundamental character of all these
instincts is the feeling of our oneness and sameness
with nature ; a feeling that at times
but never

The burning
Europe in ..

to-day vigorously conducted in

now and in civilised countries and among cultivated

people traces of these conditions, as Tylor shows, still

exist in a multitude of usages, the sense of which, with

altered point of view, has been forever lost.
8. Physical science rid itself only very slowly of

these conceptions. The celebrated work of Giambatista

della Porta, Magia naturalis, which appeared in 1558,

though it announces important physical discoveries, is

yet filled with stuff about magic practices and demono-

logical arts of all kinds little better than those of a red-

skin medicine-man. Not till the appearance of Gil-
bert’s work, Dc magnete (in 1600), was any kind of re- i

Central Africa. can be silenced
occupa-

110 matter
eradicated by absorbing intellectual

and which certainly has a sound basis,
to what religious absurdities it may have given rise.

9. The French encyclopaedists of the eighteenth
century imagined they were not far from a final ex-
planation of the world by physical and mechanical prin-
ciples ; Laplace even conceived a mind competent to
foretell the progress of nature for all eternity, if but the
masses, their positions, and initial velocities were given.
In the eighteenth century, this joyful overestimation of
the scope of the new physico-mechanical ideas is par-

tions,

our
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Indeed, it is a refreshing, noble, and ele-
deeply sympathise with

the most diverse opinions on this subject, according to
the range of their intellects and their estimation of the
consequences.

Physical science makes no investigation at all into
things that are absolutely inaccessible to exact investi-
gation, or as yet inaccessible to it.
inces ever be thrown open to exact research which
now closed to it, no well-organised man, no one who
cherishes honest intentions towards himself and others,
will any longer then hesitate to countenance inquiry
with a view to exchanging his opinion regarding such
provinces for positive knowledge of them.

When, to-day, we see society waver, see it change Results of’ . .. . , theincom-lts views on thesame question according to its mood and pietenessof

the events of the week, like the register of an organ,when the world,

we behold the profound mental anguish which is thus
produced, we should know that this is the natural and
necessary outcome of the incompleteness and transi-
tional character of our philosophy. A competent view
of the world can never be got as a gift ; we must ac-
quire it by hard work. And only by granting free sway
to reason and experience in the provinces in which they
alone are determinative, shall we, to the weal of man-
kind, approach, slowly, gradually, but surely, to that
ideal of a monistic view of the world which is alone
compatible with the economy of a sound mind.

Overesli- d Oilable,
ination of
the me-
chanical
view.

vating spectacle ; and
this expression of intellectual joy, so unique in history.
But now, after a century has elapsed, after our judg-
ment hasgrown more sober, the world-conception of the
encyclopaedists appears to us as a mechanical mythology
in contrast to the animistic of the old religions. Both

contain undue and fantastical exaggerations of
Careful physical research

will lead, however, to an analysis of our sensations.
We shall then discover that our hunger is not so
tially different from the tendency of sulphuric acid for

and our will not so greatly different from the
We shall again

we can

But should prov
are

views

incomplete perception.an

essen-

zme
pressure of a stone, as now appears,

feel ourselves nearer nature, without its being neces-
sary that we should resolve ourselves into a nebulous
and mystical mass of molecules, or make nature a

haunt of hobgoblins,

lightenment is to be looked for, as the result of long
and painstaking research, can of course only be sur-

To anticipate the result, or even to attempt to

f

The direction in which this en-

mised.
introduce it into any scientific investigation of to-day,
would be mythology, not science.

Physical science does not pretend to be a complete
view of the world ; it simply claims that it is working
toward such a complete view in the future. The high-
est philosophy of the scientific investigator is precisely
this toleration of an incomplete conception of the world
and the preference for it rather than an apparently per-
fect, but inadequate conception. Our religious opin-
ions are always our own private affair, as long as we do
not obtrude them upon others and do not apply them
to things which come under the jurisdiction of a differ-

Physical inquirers themselves entertain.

Pretensions
and atti-
tude of
physical
science.

III.
ANALYTICAL MECHANICS.

i. The mechanics of Newton are purely geometrical. The «
^He deduces his theorems from his initial assumptions mechanics. . . . of Newton.entirely by means of geometrical constructions,

procedure is frequently so artificial that, as Laplace

eo-

His
ent tribunal.
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remarked, it is unlikely that the propositions were dis-
covered in that way. We notice, moreover, that the
expositions of Newton are not as candid as those of
Galileo and Huygens. Newton’s is the so-called syn-
thetic method of the ancient geometers.

When we deduce results from given suppositions,
the procedure is called synthetic. When we seek the
conditions of a proposition or of the properties of a fig-
ure, the procedure is analytic. The practice of the latter
method became usual largely in consequence of the
application of algebra to geometry. It has become
customary, therefore, to call the algebraical method
generally, the analytical. The term “ analytical me-
chanics,” which is contrasted with the synthetical, or
geometrical, mechanics of Newton, is the exact equiva-
lent of the phrase “ algebraical mechanics.”

2. The foundations of analytical mechanics were
laid by EULER ( .Mechanica, sive Moins Scientia Analytice
Exposita, St. Petersburg, 1736). But while Euler’s
method, in its resolution of curvilinear forces into tan-
gential and normal components, still bears a trace of
the old geometrical modes, the procedure of MACLAURIN
( A Complete System of Fluxions, Edinburgh, 1742) marks
a very important advance. This author resolves all
forces in three fixed directions, and thus invests the
computations of this subject with a high degree of
symmetry and perspicuity.

3. Analytical mechanics, however, was brought to
its highest degree of perfection by LAGRANGE. La-

grange’s aim is ( .Mécanique analytique, Paris, 1788) to
dispose once for all of the reasoning necessary to resolve
mechanical problems, by embodying as much as pos-

sible of it in a single formula. This he did. Every case
that presents itself can now be dealt with by a very

simple, highly symmetrical and perspicuous schema ;
and whatever reasoning is left is performed by purely
mechanical methods. The mechanics of Lagrange
is a stupendous contribution to the economy of
thought.

In statics, Lagrange starts from the principle of statics
j 1 • • /-A 1 c • 1 • founded on

virtual velocities. On a number ot material points the prinei-

nij , ;;/ 2 , m 3. . . . , definitely connected with one another, tuai veioci-
are impressed the forces F1 , P2 , P3 . . . . If these
points receive any infinitely small displacements p

compatible with the connections of the sys-
tem, then for equilibrium 12 Pp= 0 ; where the well-
known exception in which the equality passes into an
inequality is left out of account.

Now refer the whole system to a set of rectangular

Analytic
m e c h a n i c s

1’
/2’/3

coordinates. Let the coordinates of the material points
be x., y . . Resolve the forces intoEuler and

Maclau-
rin’s con-
tributions.

Z l > X 2 > I’ 2 > Z 2 • *

the components X ± , Y x , Z l 9 X 2 , Y2 , Z2 . . . . parallel
to the axes of coordinates, and the displacements into

1 > iy

the displacements âx 19 ôy 19 âz 19 ô x2 , ôy2 , ô z2 . . .
also parallel to the axes. In the determination of the
work done only the displacements of the point of appli-
cation in the direction of each force-component need
be considered for that component, and the expression
of the principle accordingly is

• J

2 ( X â x + Y ôy + Z ôz ) --= 0 (1)

where the appropriate indices are to be inserted for
the points, and the final expressions summed.

The fundamental formula of dynamics is derived Dynamics
r

_ . o n t h e p n n-
irom D Alembert’s principle. On the material points cipie of

mi > m2’ • • • • ? having the coordinates jc
1,

<
y1, z 1 9 x2 , bert.

y2’ z2 - • • • the force-components Xx , Yx , Zx 9 X
Z2 . . . . act. But, owing to the connections of the

Lagrange’s
perfection
of the
science.

Y2 > 2’
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system's parts, the masses undergo accelerations, which
are those of the forces.

d2 x .
(it 2 ’

These are called the effective forces. But the impressed
forces, that is, the forces which exist by virtue of the
laws of physics, X, Y, Z . . . . and the negative of these
effective forces are, owing to the connections of the
system, in equilibrium. Applying, accordingly, the
principle of virtual velocities, we get

d2 x
Tt»

d2 Z
111 Tt2

Thus, Lagrange conforms to tradition in making
statics precede dynamics. He was by no
pelled to do so. On the contrary, he might, with equal
propriety, have started from the proposition that the
connections, neglecting their straining, perform no
work, or that all the possible work of the system is due
to the impressed forces,

have begun with equation (2), which expresses this
fact, and which, for equilibrium (or non-accelerated
motion) reduces itself to (1) as a particular case. This
would have made analytical mechanics, as a system,
even more logical.

Equation (1), which for the case of equilibrium
makes the element of the work corresponding to the
assumed displacement = 0, gives readily the results
discussed in page 69. If

468
that is to say, if X, Y, Z are the partial differential co-
efficients of one and the same function of the coordi-
nates of position, the whole expression under the sign
of summation is the total variation, ôV, of V. If the
latter is = 0,Vis in general a maximum or a minimum.

5. We will now illustrate the use of equation (1) by i n d i c a t i o n

a simple example. If all the points of application of the e r a i s t e p s. . _
r 1 1 , 1 • f o r t h e s o l u-forces are independent of each other, no problem is tion o f s t a t-. . . . .... . ical prob-presented. Each point is then in equilibrium onlyiems.

when the forces impressed on it, and consequently
their components, are — 0. All the displacements ô x,
ôy, ô z . . . . are then wholly arbitrary, and equation
(1) can subsist only provided the coefficients of all the
displacements d.r, ôy, ô z . . . . are equal to zero.

But if equations obtain between the coordinates of
the several points, that is to say, if the points are sub-
ject to mutual constraints, the equations so obtaining
will be of the form F ( x1 , y
or, more briefty, of the form F — 0. Then equations
also obtain between the displacements, of the form

dF
dx1

d2y.

d2 v\ ô x+ y-,u j - jôy+
L o

2 X —
(2)Ô zZ —

Discussion
of La-
grange’s
method.

4-
means com- «1, *2 > y2 > v • • 0 = °>i >

dF dF dFô x 1 + r + **!+ - + = 0dy1 d z1

which we shall briefly designate as Z)F=0. If the
system consist of n points, we shall have 311 coordi-
nates, and equation (1) will contain 3« magnitudes
ôx, ôy, ô z . . . . If , further, between the coordinates
m equations of the form F= 0 subsist, then m equa-
tions of the form DF= 0 will be simultaneously given
between the variations ôx, ôy, ô z . . . . By these
equations m variations can be expressed in terms of the
remainder, and so inserted in equation (1). In (1),
therefore, there are left 3;/ — m arbitrary displace-
ments, whose coefficients are put = 0. There are thus

d x2In the latter case he would

d V
dz’

dVdV z=, y= >-x= d yd x
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purposes of elimination Lagrange employed a per- Lagrange’s
fectly uniform and systematic procedure, which may nate coeffi-

C16X1f sbe pursued quite mechanically, without reflection. We
shall use it here. It consists in multiplying each of .the
equations (5) by an indeterminate coefficient A , pi, and
adding each in this form to (3).
\_ X-\- Xx — pi ( x , — x)]dx [A, -f - pi (aq — #)]ôx
[ Y+iy— pOt— yWy ’+lY\+ fftsy

The coefficients of the four displacements may
be put cjirectly = 0. For two displacements
bitrary, and the two remaining coefficients may be
made equal to zero by the appropriate choice of À and
pi— which is tantamount to an elimination of the two
remaining displacements.

We have, therefore, the four equations
X + Xx — // (aq — x) = 0
Xx -|- pi ( x , — x )= 0
V + Xy — pi (jq — y)= 0
yi + t* O', — y) = «

We shall first assume that the coordinates
and seek the forces that maintain equilibrium. The
values of X and pi are each determined by equating to
zero two coefficients,

fourth equations,

obtained between the forces and the coordinates 3 n— m

equations, to which the m equations { F= 0) must be
added.
which are sufficient to determine the 3 n coordinates of
the position of equilibrium, provided the forces are
given and only the form of the system’s equilibrium is
sought.

But if the form of the system is given and the forces
sought that maintain equilibrium, the question is

indeterminate. We have then, to determine 3 n force-
components, only 3 /z — m equa-
tions ; the m equations ( F = 0)
not containing the force-compo-
nents.

We have, accordingly, in all, 3 n equations,

So doing, we obtain

=0.
are

now
are ar-

y\

b
M As an example of this man-

of treatment we shall select
A statical
example. X ner

a lever OM= a, free to rotate
Fig. 232.

about the origin of coordinates
in the plane XY, and having at its end a second, simi-
lar lever MN= b. At M and IV, the coordinates of

which we shall call x, y and xu yy , the forces X, Land

XL , Yl are applied. Equation (1), then, has the form

X ôx -{- X xx + Ydy -|- Y1ôy1

Of the form F= 0 two equations here exist ; namely,

(6)

are given,

= 0 . . . (3)
We get from the second and

*2 +y* — a2 =0

Or — *)2 + Or — y )2 — b2 = 0

The equations DF ~ 0, accordingly, are

x d x -j- y dy= 0

Oi — X ) dx1 — ( x ± — x) dx + Oq — y) dy1 —
( y1 — y) $y= 0

Here, two of the variations in (5) can be expressed
of the others and introduced in (3). Also for

(4) — X and pi= —pi=x1 — x y
whence

XA x x
(7)

• (5)
that is to sa)', the total component force impressed at
IV has the direction AIN. From the first and third
equations we get

in terms
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y+ /'ü'i — y )

VTx+ x^+Jy
a ( V + Yt)

— X + f i { x t — x y ^
b X1A = +Their em-

ployment in
the deter-
the'tinai1 o£ and ^rom these by simple reduction
equation.

Character
of the pres-
ent prob-
lem.

*1 =yx I X\+ Y\rxy
1> YX-+y1 =-

K + Y
that is to say, the resultant of the forces applied at M
and N acts in the direction OM.*

The four force-components are accordingly subject
to only two conditions, (7) and (8). The problem, con-
sequently, is an indeterminate one ; as it must be from
the nature of the case ; for equilibrium does not depend
upon the absolute magnitudes of the forces, but upon
their directions and relations.

If we assume that the forces are given and seek the
four coordinates, we treat equations (6) in exactly the
same manner. Only, we can now make use, in addi-
tion, of equations (4). Accordingly, we have, upon the
elimination of A and //, equations (7) and (8) and two
equations (4). From these the following, which fully
solve the problem, are readily deduced •

a ( X + Xf )

x V ~

X\+ Y\
Simple as this example is, it is yet sufficient to give

us a distinct idea of the character and significance of
Lagrange’s method. The mechanism of this method is
excogitated once for all, and in its application to par-

ticular cases scarcely any additional thinking is re-
quired. The simplicity of the example here selected
being such that it can be solved by a mere glance at
the figure, we have, in our study of the method, the
advantage of a ready verification at ever}' step.

6. We will now illustrate the application of equa- General

tion (2), which is Lagrange’s form of statement of thesoiution

D’Alembert’s principle. There is no problem when icatprob-
thc masses move quite independently of one another.
Each mass yields to the forces applied to it ; the va-
riations âx, ôy, f is . . . . are wholly arbitrary, and each
coefficient may be singly put = 0. For the motion of
11 masses we thus obtain 3n simul-
taneous differential equations.

(8) V ( x + + (T+ v, yy1

»

X =- Y1/ ( X + X t )* + ( Y+ Y x y
* { Y± YÜ

1/ (x+ x l y + { Y + Y t y

But if equations of condition
(77 — 0) obtain between the coordi-
nates, these equations will lead to
others ( DF= 0) between the dis- Q

placements or variations. With the
latter we proceed exactly as in the
application of equation (1). Only it must be noted
here that the equations F 0 must eventually be em-
ployed in their undifferentiated as well as in their dif -
ferentiated form, as will best be seen from the follow-
ing example.

y == -

* The mechanical interpretation of the indeterminate coefficients ?L, fL may
be shown as follows. Equations (6) express the equilibrium of two f ree points
on which in addition to X, Y , Xlt Ft other forces act which answer to the re-
maining expressions and just destroyX, V, Xl , Yx . The point N, for example,
is in equilibrium if is destroyed by a force /Z (J j r), undetermined as yet
in magnitude, and Yt by a force /z ( y i — y). This supplementary force is due
to the constraints. Its direction is determined ; though its magnitude is not.
If we call the angle which it makes with the axis of abscissas a, we shall have

Pjf i — y)

M-*T — -1' )

that is to say. the force due to the connections acts in the direction of l.

Fig. 233.

y1 y
X J — X

tan a —
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Some care is necessary in the application of equa- A modifica-
tion (i ) if F= 0 contains the time. The procedure in example,

such cases may be illustrated by the following example.
Imagine in the preceding case the straight line on
which m descends to move vertically upwards with the
acceleration y. We start again from equation (9)

d 2 y

A heavy material point m, lying in a vertical plane
a straight line, y=ax, inclined

(Fig. 233.) Here equa-
A dynam-
ical exam-
ple. XV, is free to move on

at an angle to the horizon.
tion (2) becomes

d2 x
m Tit 2 ^ ô x + d2y

in —dF
Sy= 0,X —

d 2x
dF

— mg, also + u + dnd '1 y 6 y= 0- ô x + UT + F — 0 is here replaced bydFdF
FThe place of F= 0 is taken by (12)y= ax -\- y -

. (10)y = a X
To form Z)F= 0, we vary (12) only with respect to x
and y, for we are concerned here only with the possible
displacement of the system in its position at any given
instant, and not with the displacement that actually
takes place in time. We put, therefore, as in the pre-
vious case,

and for DF= 0 we have
ây= aS x.

Equation (9), accordingly, since Sy drops out and

Sx is arbitrary, passes into the form
d2x + [ s + j£ ' a == 0.
dF Sy = a S x,

By the differentiation of (io), or ( F= 0), we have
d2y

and obtain, as before,
d 2 x
It 2

But to get an equation in x alone, we have, since x
and y are connected in (13) by the actual motion, to
differentiate (12) with respect to / and employ the re-
sulting equation

d2 x= a dF ’ + [g+Tfy (13)= 0dF
and, consequently,

d2 x d2 x
d F

a u= 0+ a\g + a

Then, by the integration of (11), we obtain

— a
x =r+ a

— a 2

dF

F
d 2 y d 2 x=adf l + r

for substitution in (13). In this way the equation
d 2 x
dF

is obtained, which, integrated, gives

dFand
F

-- * \ + a b t 4- a c,
1 + a2 ,s 2 ^ ^
constants of integration, determined

This result

y =
+ {g+ r +TT )a= 0where b and c are

by the initial position and velocity of m.
can also be easily found by the direct method.
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a forced acceleration in the direction of x, such that illustration

the equation F= 0 becomes^r ür + r/,2

1 2 + " * + a c-
b t + c of the mod-

ified exam-
ple.

X =1 + a
/3

(U).V = y7 = y — 99

the moving straight D’Alembert’s principle again gives equation (9).
But since from D F == 0 it follows here that d x= 0,
this equation reduces itself to

^A d> = o
d t 2 )

in which d y is wholly arbitrary. Wherefore,. d - y n<r -I— — - = 00 ^ d r-

If a weightless body m lie on
line, we obtain these equations

— a
1 + a V2 'x =

(15)
<£* +/ 2r —|— ci b t "J- ci c,

2 o1 -[-

— results which are readily understood, when we re-
flect that, on a straight line moving upwards with the
acceleration y, in behaves as if it were affected with a
downward acceleration y on the straight line at rest.

Discussion 7. The procedure with equation (12) in the preced-

uLdlxam̂ ing example may be rendered somewhat clearer by the
ple‘ following consideration. Equation (2), D’Alembert’s

principle, asserts, that all the work
that can be done in the displacement
of a system is done by the impressed
forces and not by the connections. This

* is evident, since the rigidity of the con-
nections allows no changes in the rela-‘

and — irl2
y — 2 j~ a l +

to which must be supplied (14) or
/2

x = y « •

It is patent that (15) does not assign the total work
of the displacement that actually takes place, but only
that of some possible displacement on the straight line
conceived, for the moment, as fixed.

If we imagine the straight line massless, and
it to travel parallel to itself in some guiding mechan-
ism moved by a force in y, equation (2) will be re-
placed by

Y
m

Fig. 234- cause
tive positions which would be neces-

sary for any alteration in the potentials of the elastic
But this ceases to be true when the connec-forces.

tions undergo changes in time. In this case, the changes
of the connections perform work, and we can then ap-
ply equation (2) to the displacements that actually take
place only provided we add to the impressed forces the

forces that produce the changes of the connections.
A heavy mass in is free to move on a straight line

parallel to OY (Fig. 234.) Let this line be subject to

m y — m--*- J d x +
and since d x, d y are wholly arbitrary here, we obtain
the two equations

d y= 0,

d 2 x
d t2 = 0y —
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d 2 y Also in the expression to the left, (dx /dt ) dt may be F
written for dx. But this gives

f 2 (.Xd

where v 0 denotes the velocity at the beginning and v
the velocity at the end of the motion. The integral to the
left can always be found if we can reduce it to a single
variable, that is to say, if we know the course of the
motion in time or the paths which the movable points
describe. If , however, X, V, Z are the partial differ-
ential coefficients of the same function Uof coordinates,
if , that is to say,

= 0, orce-
function.• g + dt2

which give the same results as before. The apparently
different mode of treatment of these cases is simply the
result of a slight inconsistency, springing from the fact
that all the forces involved are, for reasons facilitating
calculation, not included in the consideration at the
outset, but a portion is left to be dealt with subse-
quently.

Deduction 8. As the different mechanical principles only ex-
cipic^ri/j press different aspects of the same fact, any one of
Lagrange’s them is easily deducible from any other ; as we shall
taYdynam- now illustrate by developing the principle of vis viva
don

cqi?a" from equation (2) of page 468. Equation (2) refers to
instantaneously possible displacements, that is, to “ vir-
tual ” displacements. But when the connections of a
system are independent of the time, the motions that
actually take place are “ virtual ” displacements. Conse-

quently the principle may be applied to actual motions.
For dx, ôy, dz, we may, accordingly, write dx, dy,
dz, the displacements which take place in time, and
put

x

dU dU dUX= , y= , z= dz’
as is always the case when only central forces are in -
volved, this reduction is unnecessary. The entire ex-
pression to the left is then a complete differential. And
we have

dx dy

2{U-U0 )=2$ m {v*-v l ),
which is to say, the difference of the force-functions
(or work) at the beginning and the end of the motion
is equal to the difference of the vires vivœ at the be-
ginning and the end of the motion. The vires vivœ are
in such case also functions of the coordinates.

In the case of a body movable in the plane of X
and Fsuppose, for example, X — — y, Y= — x ; we
then have

2 ( Xdx + Ydy Zdz )=
d'2 x d 2 y d 2 z2m d x “ j- dy + dz .dt2 dt 2dt 2

The expression to the right may, by introducing for
dx, (dx/dt ) dt and so forth, and by denoting the velo-
city by v, also be written

d 2 .v d x
dt 2 dt

J X — y d x — xdy ) =
*od'o

But if X = — a, Y= — a', the integral to the left is
— j\a dx + ^ dy). This integral can be assigned the
moment we know the path the body has traversed, that

yd O/) =
d 2 y dy
dt 2 dt

d 2 z dz xy=\m ( z> 2 — v 2 ).2m dt + dt + dtdt 2 dt

dx\2 dyA 2 dz\2

\d2m I'd2m v 2.++dt dt d t
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is, if j is determined a function of x.
y=px 2, the integral would become

If, for example,

c0 — x)3 I V.
J* ( a -f- 2/ „r2) dx a („r0 — x) -f- 3 THF, ECONOMY OF SCIENCE.

The difference of these two cases is, that in the first
the work is simply a function of coordinates, that a
force-function exists, that the element of the work is a
complete differential, and the work consequently is de-
termined by the initial and final values of the coordi-
nates, while in the second case it is dependent on the
entire path described.

9. These simple examples, in themselves present-
ing no difficulties, will doubtless suffice to illustrate the
general nature of the operations of analytical mechan-
ics. No fundamental light can be expected from this
branch of mechanics. On the contrary, the discovery
of matters of principle must be substantially completed
before we can think of framing analytical mechanics ;
the sole aim of which is a perfect practical mastery of
problems. Whosoever mistakes this situation, will
never comprehend Lagrange’s great performance, which
here too is essentially of an economical character. Poin-
sot did not altogether escape this error.

It remains to be mentioned that as the result of the
labors of M " )ius, Hamilton, Grassmann, and others, a
new transformation of mechanics is preparing. These
inquirers have developed mathematical conceptions
that conform more exactly and directly to our geomet-

rical ideas than do the conceptions of common analyt -
ical geometry ; and the advantages of analytical gene-
rality and direct geometrical insight are thus united.
But this transformation, of course, lies, as yet, beyond
the limits of an historical exposition.

1. It is the object of science to replace, or save, ex- The basis
• • • of science

periences, by the reproduction and anticipation of facts economy ôf

in thought. Memory is handier than experience, and
often answers the same purpose. This economical
office of science, which fills its whole life, is apparent
at first glance ; and with its full recognition all mys-
ticism in science disappears.

Science is communicated by instruction, in order
that one man may profit by the experience of another
and be spared the trouble of accumulating it for him-
self ; and thus, to spare posterity, the experiences of
whole generations are stored up in libraries.

Language, the instrument of this communication, The CCO-
is itself an economical contrivance. Experiences are character

of lan-
guage.

Essential
character
of analyt-
ical me-
chanics.

analysed, or broken up, into simpler and more familiar
experiences, and then symbolised at some sacrifice of
precision. The symbols of speech are as yet restricted
in their use within national boundaries, and doubtless
will long remain so. But written language is gradually
being metamorphosed into an ideal universal character.
It is certainly' no longer a mere transcript of speech.
Numerals, algebraic signs, chemical symbols, musical
notes, phonetic alphabets, may be regarded as parts
already formed of this universal character of the fu-
ture ; they are, to some extent, decidedly conceptual,
and of almost general international use. The analysis
of colors, physical and physiological, is already far
enough advanced to render an international system of
color-signs perfectly practical. In Chinese writing,
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Possibility we have an actual example of a true ideographic lan-
of a univer-
sal lan-
guage.

ableness, we cannot at the same time hold fast to the
idea of the thing’s permanence, unless we have recourse
to the conception of a thing-in-itself , or other such like
absurdity. Sensations are not signs of things ; but, on
the contrary, a thing is a thought-symbol for a com-
pound sensation of relative fixedness. Properly speak-
ing the world is not composed of “ things ” as its ele-
ments, but of colors, tones, pressures, spaces, times,
in short what we ordinarily call individual sensations.

The whole operation is a mere affair of economy.
In the reproduction of facts, we begin with the more
durable and familiar compounds, and supplement these
later with the unusual by way of corrections. Thus,
we speak of a perforated cylinder, of a cube with bev-
eled edges, expressions involving contradictions, un-
less we accept the view here taken. All judgments are
such amplifications and corrections of ideas already
admitted.

3. In speaking of cause and effect we arbitrarily The ideas
give relief to those elements to whose connection we effect.

and

have to attend in the reproduction of a fact in the re-
spect in which it is important to us. There is no cause
nor effect in nature ; nature has but an individual exis-
tence ; nature simply is. Recurrences of like cases in
which A is always connected with E, that is, like results
under like circumstances, that is again, theessence of the
connection of cause and effect, exist but in the abstrac-
tion which we perform for the purpose of mentally re-
producing the facts. Let a fact become familiar, and
we no longer require this putting into relief of its con-
necting marks, our attention is no longer attracted to
the new and surprising, and we cease to speak of cause
and effect. Heat is said to be the cause of the tension
of steam ; but when the phenomenon becomes familiar

guage, pronounced diversely in different provinces, yet
everywhere carrying the same meaning. Were the
system and its signs only of a simpler character, the
use of Chinese writing might become universal. The
dropping of unmeaning and needless accidents of gram-
mar, as English mostly drops them, would be quite
requisite to the adoption of such a system. But uni-
versality would not be the sole merit of such a char-
acter ; since to read it would be to understand it. Our
children often read what they do not understand ; but
that which a Chinaman cannot understand, he is pre-
cluded from reading.

2. In the reproduction of facts in thought, we
never reproduce the facts in full, but only that side of
them which is important to us, moved to this directly
or indirectly by a practical interest. Our reproductions
are invariably abstractions. Here again is an econom-

ical tendency.
Nature is composed of sensations as its elements.

Primitive man, however, first picks out certain com-
pounds of these elements— those namely that are re-
latively permanent and of greater importance to him.
The first and oldest words are names of “ things. ”
Even here, there is an abstractive process, an abstrac-
tion from the surroundings of the things, and from the
continual small changes which these compound sensa-
tions undergo, which being practically unimportant are
not noticed. No inalterable thing exists. The thing
is an abstraction, the name a symbol, for a compound
of elements from whose changes we abstract. The
reason we assign a single word to a whole compound is
that we need to suggest all the constituent sensations
at once. When, later, we come to remark the change-

Econom-
ical charac-
ter of all
our repre-
sentations
of the
world.
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think of the steam at once with the tension proper
Acid is said to be the cause of the

veloped from experience. The notion of the necessity
of the causal connection is probably created by
voluntary movements in the world and by the changes
which these indirectly produce, as Iluine supposed but
Schopenhauer contested. Much of the authority of
the ideas of cause and effect is due to the fact that they
are developed instinctively and involuntarily, and that

distinctly sensible of having personally
tributed nothing to their formation. We may, indeed,
say, that our sense of causality is not acquired by the
individual, but has been perfected in the develop-
ment of the race.

we
to its temperature.
reddening of tincture of litmus ; but later we think of
the reddening as a property of the acid.

Hume first propounded the question , ITow
Kant, and 1 r 1 .
Schopen- thing A act on another thing B ? Hume, in fact, re-

jects causality and recognises only a wonted succes-
ofcause .
and effect, sion in time. Kant correctly remarked that a necessary

connection between A and B could not be disclosed by
He assumes an innate idea or

our

can aITume,

haucr’s ex-
planations

we are con-

simple observation.
category of the mind, a Vcrstandcsbcgriff\ under which
the cases of experience are subsumed. Schopenhauer,
who adopts substantially the
guishes four forms of the “ principle of sufficient

” — the logical, physical, and mathematical form,
and the law of motivation. But these forms differ only

gards the matter to which they are applied, which
y belong either to outward or inward experience.
The natural and common-sense explanation is ap-

economicai parently this. The ideas of cause and effect originally
oTSiougiit? sprang from an endeavor to reproduce facts in thought.

At first, the connection of A and B, of C and D} of E
and F, and so forth, is regarded as familiar. But after

a greater rang# jf experience is acquired and
nection between M and N is observed, it often turns

out that we recognise M as made up of A, C, E, and N
of B, Z>, Ef the connection of which was before a fa-
miliar fact and accordingly possesses with us a higher
authority. This explains why a person of experience
regards a new event with different eyes than the nov-

The new experience is illuminated by the mass
As a fact, then, there really does

Cause and effect, therefore,
things of thought, having an economical office. It can-
not be said why they arise.

areposition, distinsame
rea- For it is precisely by the

abstraction of uniformities that we know the question
“ why. ”

son
(See Appendix, V.)

4. In the details of science, its economical character E
is still more apparent. The so-called descripti
ences must chiefly remain content with reconstructing
individual facts. Where it is possible, the common fea-
tures of many facts are once for all placed in relief . But
in sciences that are more highly developed, rules for the
reconstruction of great numbers of facts may be embod-
ied in a single expression. Thus, instead of noting indi-
vidual cases of light - refraction,
struct all present and future cases, if we know that the
incident ray, the refracted ray, and the perpendicular
lie in the same plane and that sin n'/sin fi = n. Here,
instead of the numberless cases of refraction in different
combinations of matter and under all different angles
of incidence, we have simply to note the rule above
stated and the values of //, — which is much easier. The
economical purpose is here unmistakable,

there is no law of refraction, only different cases of re-

as re conom-. ical 1'ea-
lVe SCI- tures of

all laws of
nature.

ina
Cause and

a con-

can mentally recon-we

ice.
of old experience,

exist in the mind an “ idea ” under which fresh experi-
subsumed ; but that idea has itself been de- In nature

ences are
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that the more complicated numerical operation at theleft may always be replaced by the simpler one at theright, whatever numbers x and y stand for.save

The law of refraction is a concise compen-fraction.
dious rule, devised by us for the mental reconstruction
of a fact, and only for its reconstruction in part, that

We thusourselves the labor of performing in future casesthe more complicated operation,

method of replacing in the most comprehensive andeconomical manner possible, nc7v numerical operationsby old ones done already with known results.

its geometrical side.

5. The sciences most highly developed economically
those whose facts are reducible to a few numerable

elements of like nature. Such is the science of mechan-
ics, in which we deal exclusively with spaces, times,

The whole previously established econ-
of mathematics stands these sciences in stead.

is, on

Mathematics is the
The econ-
omy of the
mathemat- are
ical sci-
ences.

It mayhappen in this procedure that the results of operationsare employed which were originally performed centu-

and masses.
omy
Mathematics may be defined as the economy of count-

Numbers are arrangement-signs which, for the
ries ago.

Often operations involving intense mental effort The theory. . of detcr-may be replaced by the action of semi-mechanical minants,routine, with great saving of time and avoidance offatigue.
owes its origin to the remark, that it is not necessaryto solve each time anew equations of the form

mg.
sake of perspicuity and economy, are themselves ar-
ranged in a simple system. Numerical operations, it
is found, are independent of the kind of objectsoperated

and are consequently mastered once for all. When,
for the first time, I have occasion to add five objects to

others, I count the whole collection through, at
; but when I afterwards discover that I can start

For example, the theory of determinantson,

ax x + bA y 4- r1 = 0
a 2 * + y + c2 =

seven
once
counting from 5, I save myself part of the trouble;
and still later, remembering that 5 and 7 always count
up to 12, I dispense with the numeration entirely.

The object of all arithmetical operations is to save
direct numeration, by utilising the results of our old

Our endeavor is, having done

from which result
C\ J* 2 _ C 2 ^a\ l> 2 ~ a2 l\

_ P1

NArithmetic
and alge-
bra. Q(l 1 C2_— a*S- _ —a\ l>2 — a2 b y N '

but that the solution may be effected by means of thecoefficients, by writing down the coefficients accordingprescribed scheme and operating with themchanically. Thus,
! a. b !1 1 1

a., b

J' ==operations of counting.
to preserve the answer for future use. Thea sum once,

first four rules of arithmetic well illustrate this view.
Such, too, is the purpose of algebra, which, substitut-
ing relations for values, symbolises and definitively
fixes all numerical operations that follow the same rule.
For example, we learn from the equation

to a
me-

— b 2 — a 2 bx — N
2 1

and similarlyy2x
I 'M bY
k 2 b2

-= x — y,
= P, and a1 ^(7 ., C

X + )’
; Q.

2 i
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It only places at our disposal energy within our present
or future possession, which the circumstance of igno-rance prevented us from availing ourselves of. Thisis precisely the case with the application of scientificideas.

Even a total disburdening of the mind can be ef -
fected in mathematical operations. This happens where
operations of counting hitherto performed are symbol-
ised by mechanical operations with signs, and our brain
energy, instead of being wasted on the repetition of
old operations, is spared for more important tasks.
The merchant pursues a like economy, when, instead
of directly handling his bales of goods, he operates
with bills of lading or assignments of them,

drudgery of computation may even be relegated to a
machine.
chines are actually in practical use.
these (of any complexity) was the difference-engine of
Babbage, who was familiar with the ideas here pre-
sented.

Calculating
machines.

The mathematician who pursues his studies with- Necessity1 . . °f clearout clear views of this matter, must often have the views on*

this subuncomfortable feeling that his paper and pencil sur- ject.
pass him in intelligence. Mathematics, thus pursuedas an object of instruction, is scarcely of more educa-tional value than busying oneself with the Cabala. Onthe contrary, it induces a tendency toward mystery,
which is pretty sure to bear its fruits.

The

Several different types of calculating ma-
The earliest of

6. The science of physics also furnishes examples Examplesof this economy of thought, altogether similar to those
we have just examined. A brief reference here will suf - physics.m
fice. The moment of inertia saves us the separate con-sideration of the individual particles of
the force-function we dispense with the separate investigation of individual force-components.

of the econ -omy ofA numerical result is not always reached by the
actual solution of the problem ; it may also be reached
indirectly. It is easy to ascertain, for example, that a

whose quadrature for the abscissa x has the value

Other ab-
breviated
methods of
attaining
results. Bymasses.

curve
x’" , gives an increment vixm~ldx of the quadrature for
the increment dx of the abscissa. But we then also know

The sim-plicity of reasonings involving force-functions springsfrom the fact that a great amount of mental work hadbe performed before the discovery of the propertiesof the force-functions was possible. Gauss’s dioptricsdispenses us from the separate consideration of thesingle refracting surfaces of a dioptrical system andsubstitutes for it the principal and nodal points,
a careful consideration of the single surfaces had toprecede the discovery of the principal and nodal points.Gauss’s dioptrics simply saves us the necessity of often
repeating this consideration.

that Çinxm 1 dx=x’n\ that is, we recognise the quan-
tity xm from & î increment mx,n ~' dx as unmistakably
as we recognise a fruit by its rind,

kind, accidentally found by simple inversion, or by
processes more or less analogous, are very extensively
employed in mathematics.

That scientific work should be more useful the more
it has been used, while mechanical work is expended in
use, may seem strange to us.
daily takes the same walk accidentally finds a shorter
cut, and thereafter, remembering that it is shorter, al-
ways goes that way, he undoubtedly saves himself the
difference of the work. But memory is really not work.

to
Results of this

But

When a person who

We must admit, therefore, that fhere is no result of
science which in point of principle could not have beenarrived at wholly without methods. But, as a matter
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graphically recorded. If the rod he shortened, the Exampi
vibrations will increase in rapidity and cannot be di- of the
rectly seen ; the rod will present to the sight a blurred science.

This is a new phenomenon.

of fact, within the short span of a human life and with
man’s limited powers of memory, any stock of knowl-
edge worthy of the name is unattainable except by the
greatest mental economy,

may be regarded as a
the completest possible presentment of facts with the
least possible expenditure of thought.

7. The function of science, as we take .it, is to re-
Thus, on the one hand, science

Science a
minimal
problem.

e il-

Science itself , therefore, image.
tion of touch is still like that of the

But the sensa-
minimal problem, consisting of previous case ; we

can still make the rod record its movements ; and if
we mentally retain the conception of vibrations,
still anticipate the results of experiments,

shortening the rod the sensation of touch is altered ;
the rod begins to sound ; again a new phenomenon is
presented. But the phenomena do not all change at
once ; only this or that phenomenon changes ;
quently the accompanying notion of vibration, which
is not confined to any single one, is still serviceable,
still economical.

we can
On further

place experience,

must remain in the province of experience, but, on the
other, must hasten beyond it, constantly expecting con-

Wherefirmation, constantly expecting the reverse,

neither confirmation nor refutation is possible, science
conse-

Science acts and only acts in theis not concerned,

domain of uncompleted experience. Exemplars of such
branches of science are the theories of elasticity and

Even when the sound has reached
so high a pitch and the vibrations have become so
small that the previous means of observation
of avail, we

of the conduction of heat, both of which ascribe to the
smallest particles of matter only such properties as ob-
servation supplies in the study of the larger portions.
The comparison of theory and experience may be far-
ther and farther extended, as our means of observation

are not
still advantageously imagine the sounding

rod to perform vibrations, and can predict the vibra-
tions of the dark lines in the spectrum of the polarised
light of a rod of glass. If on the rod being further
shortened all the phenomena suddenly passed into
phenomena, the conception of vibration would
longer be serviceable because it would no longer afford

means of supplementing the new experiences by
the previous ones.

increase in refinement.
Experience alone, without the ideas that are asso-

ciated with it, would forever remain strange to us.
Those ideas tl. . hold good throughout the widest do-
mains of research and that supplement the greatest
amount of experience, are the most scientific. The prin-
ciple of continuity, the use of which everywhere per-
vades modern inquiry, simply prescribes a mode of
conception which conduces in the highest degree to the
econom}' of thought.

8. If a long elastic rod be fastened in a vise, the
rod may be made to execute slow vibrations. These

directly observable, can be seen, touched, and

new
noThe princi-

ple oi' con-
tinuity, the
norm of sci-
entific
method.

US a

When we mentally add to those actions of a human
being which we can perceive, sensations and ideas like
our own which we cannot perceive, the object of the
idea we so form is economical. The idea makes ex-
perience intelligible to us ; it supplements and sup-
plants experience. This idea is not regarded as a great
scientific discovery, only because its formation is so
natural that every child conceives it. Now, this isare
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familiar ideas are employed as an easy means of
plementing experience. Natural phenomena whose re-
lations are not similar to those of functions with which

exactly what we do when we imagine a moving body
which has just disappeared behind a pillar, or a comet

at the moment invisible, as continuing its motion and
retaining its previously observed properties,

this that we may not be surprised by its reappearance.
We fill out the gaps in experience by the ideas that

sup-

we are familiar, are at present very difficult to recon-
struct.

We do
But the progress of mathematics may facilitate

the matter.
As mathematical helps of this kind, spaces of more Muiti-

than three dimensions may be used, as I have else- sioned

where shown.
experience suggests.

9. Yet not all the prevalent scientific theories origi-

nated so naturally and artlessly. Thus, chemical, elec-
explained by atoms,

was not formed by the

All scien-
tific the-
ories not
founded on
the princi-
timiity?°n But the mental artifice atom

principle of continuity ; on the contrary, it is a pro-
duct especially devised for the purpose in view. Atoms

cannot be perceived by the senses ; like all substances,
they are things of thought. Furthermore, the atoms

are invested with properties that absolutely contradict
the attributes hitherto observed in bodies,

well fitted atomic theories may be to reproduce certain
groups of facts, the physical inquirer who has laid to
heart Newton’s rules will only admit those theories as

provisional helps, and will strive to attain, in some more
natural way, a satisfactory substitute.

The atomic theory plays a part in physics similar

taiartifices, to that of certa .̂ auxiliary concepts in mathematics ;

it is a mathematical model for facilitating the mental

spaces.But it is not necessary to regard these,
on this account, as anything more than mental arti-
fices.*trical, and optical phenomena are

*As the outcome of the labors of Lobatschewsky, Bolyai, Gauss, and Rie-
mann, the view has gradually obtained currency in the mathematical world,
that that which we call space is a particular, actual case of a more general,
conceivable case of multiple quantitative manifoldness. The space of sight
and touch is a threefold manifoldness ; it possesses three dimensions ; and
every point in it can be defined by three distinct and independent data,

it is possible to conceive of a quadruple or even multiple space-like manifold-
ness.

But

And the character of the manifoldness may also be differently conceived
from the manifoldncss of actual space. We regard this discovery, which is
chiefly due to the labors of Riemann, as a very important one. The properties
of actual space are here directly exhibited as objects of experience, and the
pseudo-theories of geometry that seek to excogitate these properties by meta-
physical arguments are overthrown.

However

A thinking being is supposed to live in the surface of a sphere, with no
other kind of space to institute comparisons with. His space will appear to
him similarly constituted throughout. He might regard [it as infinite, and
could only be convinced of the contrary by experience. Starting from any two
points of a great circle of the sphere and proceeding at right angles thereto
other great circles, lie could hardly expect that the circles last mentioned

So, also, with respect to the space in which we live, only ex-
perience can decide whether it is finite, whether parallel lines intersect in it,
or the like. The significance of this elucidation can scarcely be overrated.
An enlightenment similar to that which Riemann inaugurated in science was
produced in the mind of humanity at large, as regards the surface of the earth,
by the discoveries of the first circumnavigators.

The theoretical investigation of the mathematical possibilities above re-
ferred to, has, primarily, nothing to do with the question whether things really
exist which correspond to these possibilities ; and we must not hold mathe-
maticians responsible for the popular absurdities which their investigations
have given rise to. The space of sight and touch is A^rtv-diinensional ; that,
no one ever yet doubted. If , now, it should be found that bodies vanish from
this space, or new bodies get into it , the question might scientifically be dis-
cussed whether it would facilitate and promote our insight into things
ceive experiential space as part of a four-dimensional or multi-dimensional

Atoms and on

would intersect.

reproduction of facts. Although we represent vibra-

tions by the harmonic formula, the phenomena of cool-

ing by exponentials, falls by squares of times, etc., no

will fancy that vibrations in themselves have any-one
thing to do with the circular functions, or the motion
of falling bodies with squares. It has simply been ob-

served that the relations between the quantities inves-
tigated were similar to certain relations obtaining be-

tween familiar mathematical functions, and these more
to con-
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This is the case, too, with all hypothesis formed
phenomena. Our concep-

Hypotlieses
and facts. for the explanation of

tions of electricity fit in at once with the electrical phc-
, and take almost spontaneously the familiar

new

nomena
course, the moment we note that things take place as
if attracting and repelling fluids moved on the surface

But these mental expedients have CHAPTER V.of the conductors,

nothing whatever to do with the phenomenon itself. THE RELATIONS OF MECHANICS TO OTHER DE-
PARTMENTS OF KNOWLEDGE.Yet in such a case, this fourth dimension would , none the less, remainspace.

a pure thing of thought, a mental fiction.
But this is not the way matters stand. The phenomena mentioned were

not forthcoming until after the new views were published, and were then ex-
hibited in the presence of certain persons at spiritualistic séances. The fourth
dimension was a very opportune discover*- for the spiritualists and for theo-
logians who were in a quandary about the location of hell. The use the spiri-
tualist makes of the fourth dimension is this. It is possible to move out of a
finite straight line, without passing the extremities, through the second dimen-
sion ; out of a finite closed surface through the third ; and, analogously, out
of a finite closed space, without passing through the enclosing boundaries,
through the fourth dimension. Even the tricks that prestidigitateurs, in the
old days, harmlessly executed in three dimensions, are now invested with a
new halo by the fourth. But the tricks of the spiritualists, the tying or untying
of knots in endless strings, the removing of bodies from closed spaces, are all
performed in cases where there is absolutely nothing at stake. All is purpose-
less jugglery. We have not yet found an accoucheur who has accomplished
parturition through the fourth dimension. If we should , the question would
at once become a serious one. Professor Simony’s beautiful tricks in rope-
tying, which, as the performance of a prestidigitateur, are very admirable,
speak against, not for, the spiritualists.

Everyone is free to set up an opinion and to adduce proofs in support of
eientist shall find it worth his while to enter into

THE RELATIONS OF MECHANICS TO PHYSICS.
1. Purely mechanical phenomena do not exist. The Thc eventsJ A

' of natureproduction of mutual accelerations in masses is, to all n.ot ?*clusivelyappearances, a purely dynamical phenomenon. Butj^ongtowith these dynamical results are always associatedence-thermal, magnetic, electrical, and chemical phenom-ena, and the former are always modified in proportionas the latter are asserted. On the other hand, thermal,magnetic, electrical, and chemical conditions alsoproduce motions. Purely mechanical phenomena
cordingly, are abstractions, made, either intentionallyor from necessity, for facilitating our comprehension ofthings. The same thing is true of the other classes ofphysical phenomena. Every event belongs, in a strictsense, to all the departments of physics, the latter be-ing separated only by an artificial classification, whichis partly conventional, partly physiological, and partlyhistorical.

2. The view that makes mechanics the basis of theremaining branches of physics, and explains all physicalphenomena by mechanical ideas, is in our judgment aprejudice. Knowledge which is historically first, isnot necessarily the foundation of all that is subsequently

can
, ac-

it. Whether , though ,

serious investigations of opinions so advanced , is a question which his reason
and instinct alone can decide. If these things, in the end, should turn out to

I shall not be ashamed of being the last to believe them. What I havebe true,
seen of them was not calculated to make me less sceptical.

I myself regarded multi-dimensioned space as a mathematico-physical
help even prior to the appearance of Riemann’s memoir. But I trust that

no one will employ what I have thought, said, and written on this subject as a
basis for the fabrication of ghost stories. (Compare Mach, Die Gcsckichte und
die Wurzel des Satzes von der Erhaltung der Arbeit .)

I
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gained. As more and more facts are discovered and
aspects*of classified, entirely new ideas of general scope can be

necessar i ly formed. We have no means of knowing, as yet, which
i t s funda-
menta l
aspects.

values of the potential function V and the dielectric
If we assume the differences of the values based onof V to be measured (on the electrometer) by the forces,

and regard V and not the quantity of electricity Q as
the primary notion, or measurable physical attribute,
we shall have, for any simple insulator, for our quan-
tity of electricity

The nie- Science
constants.

fac ts, not
on hypoth-
eses.of the physical phenomena go deepest, whether the

mechanical phenomena are perhaps not the most super-
ficial of all, or whether all do not go equally deep. Even
in mechanics we no longer regard the oldest law, the

law of the lever, as the foundation of all the other

/(— 1 d2 V d2 V
d

~x 2 + dy
d2 V

2 + dv,principles.
Artificiality The mechanical theory of nature, is, undoubtedly,
of the me- B . . . . . . .
chanicai in an historical view, both intelligible and pardonable ;
concept ion
of the and it may also, for a time, have been of much value.
world. . .

the whole, it is an artificial conception.
Faithful adherence to the method that led the greatest
investigators of nature, Galileo, Newton, Sadi Carnot,
Faraday, and J. R. Mayer, to their great results, re-
stricts physics to the expression of actual facts, and
forbids the construction of hypotheses behind the facts,
where nothing tangible and verifiable is found. If this

is done, only the simple connection of the motions of
of changes of temperature, of changes in the

values of the potential function, of chemical changes,
and so forth is to be ascertained, and nothing is to be
imagined along with fhese elements except the physical
attributes or characteristics directly or indirectly given
by observation.

This idea was elsewhere * developed by the author

with respect to the phenomena of heat, and indicated,

in the same place, with respect to electricity. All hy-
potheses of fluids or media are eliminated from the
theory of electricity as entirely superfluous, when
reflect that electrical conditions are all given by the

-171 dz 2

(where x} y, z denote the coordinates and dv the ele-ment of volume,) and for our potential *

H— 1 d2 V d 2 V
dy2

Here Q and W appear as derived notions, in which no
conception of fluid or medium is contained. If we
work over in a similar manner the entire domain of
physics, we shall restrict ourselves wholly to the
titative conceptual expression of actual facts,
perfluous *ind futile notions are eliminated, and theimaginary problems to which they have given rise fore-stalled.

d 2 VBut, upon W = dv.87t dx 2 dz 2

quan-
All su-

masses,

The removal of notions whose foundations
torical, conventional, or accidental,
thered by a comparison of the conceptions obtainingin the different departments, and by finding for the
conceptions of every department the
conceptions of others.

are his-
can best be fur-

corresponding
We discover, thus, that tem-peratures and potential functions correspond to thevelocities of mass-motions. A single velocity-value, asingle temperature-value, or a single value of potential

function, never changes alone. But whilst in the caseof velocities and potential functions, so far as we yet

we

* Mach, Die Geschichte nnd die Wurzel des Satzes von dev Erhaltung der

* Using the terminology of Clausius.Arbeit.
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this kind is the principle of vis viva — Uf )=(V 2 — v2 ), which states that the increase of the
vis viva of a system in its passage from one position to
another is equal to the increment of the force-function,
or work, which is expressed as a function of the final
and initial positions,

work a system can perform and call it with Helmholtz
the Spannkraft, S,* then the work actually performed,
U', will appear as a diminution of the Spannkraft, K,
initially present ; accordingly, S= K — U, and the
principle of vis viva takes the form

2S -f-\2m v 2= const,

know, only differences come into consideration, the
significance of temperature is not only contained in its
difference with respect to other temperatures. Thermal
capacities correspond to masses, the potential of
electric charge to quantity of heat, quantity of elec-
tricity to entropy, and so
semblances and differences lays the foundation of a
comparative physics, which shall ultimately render pos-
sible the concise expression of extensive groups of facts,
without arbitrary additions. We shall then possess a
homogeneous physics, unmingled with artificial atomic
theories.

Desirabil-
ity of a
compara-
tive phys-
ics.

an

The pursuit of such re- If we fix our attention on theon.

It will also be perceived, that a real economy of
scientific thought cannot be attained by mechanical

hypothesis were fully com-
that is to say, every diminution of the Spannkraft, is The Con-

^compensated for by an increase of the vis viva. In this Energy,

form the principle is also called the law of the Conser-
hypotheses. Even if an
petent to reproduce a given department of natural phe-
nomena, say, the phenomena of heat, we should, by
accepting it , only substitute for the actual relations be-

the mechanical and thermal processes, the hy-

vation of Energy, in that the sum of the Spannkraft (the
potential energy) and the vis viva (the kinetic energy)
remains constant in the system. But since, in nature,
it is possible that not only vis viva should appear as the
consequence of work performed, but also quantities of
heat, or the potential of an electric charge, and so forth,
scientists saw in this law the expression of a mechanical
action as the basis of all natural actions,

nothing is contained in the expression but the fact of
an invariable quantitative connection between mechani-
cal and other kinds of phenomena.

4. It would be a mistake to suppose that a wide
and extensive view of things was first introduced into
physical science by mechanics.

tween
replaced bypothesis. The real fundamental facts

equally large number of hypotheses, which is cer-
Once an hypothesis has facilitated,

are
an
tainly no gain,

as best it can, our view of new facts, by the substitu-
tion of more familiar ideas, its powers are exhausted. However,
We err when we expect more enlightenment from an
hypothesis than from the facts themselves.

Circum- 3- The development of the mechanical view was

which fa- favored by many circumstances.
develop-

6 connection of all natural events with mechanical pro-
Sechanicaï cesses unmistakable, and it is natural, therefore, that

should be led to explain less known phenomena by
Then again, it was

In the first place, a

On the contrary, this
view. we

* Ilolinlioltz used this term in 1847 ; but it is not found in his subsequentpapers ; and in 1883 ( Wisscnschaftliche Abhandlungen, II, 965} he expresslydiscards it in favor of the English “ potential energy.” He even (p. 968) pre-fers Clausius’s word Ergal to Spannkraft , which is quite out of agreementwith modern terminology.— Trans ,

better known mechanical events,

first in the department of mechanics that laws of gen-
eral and extensive scope were discovered. A law of
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fiction for Stevinus’s exquisite investigative sense that
would escape less profound thinkers.

This same breadth of view, which alternates the Also,

insight was possessed at all times by the foremost
inquirers and even entered into the construction of
mechanics itself , and was, accordingly, not first created

Compre-
hensive-
ness of
view the
condition,

suh, of me- bv the latter. Galileo and Huygens constantly alter-
chanics.

in the

individual with the universal, is also displayed, only in of Carnot
this instance not restricted to mechanics, in the per- Mayer.1*’

formances of Sadi Carnot. When Carnot finds that
the quantity of heat Q which, for a given amount of
work Z, has flowed from a higher temperature / to a
lower temperature can only depend on the tempera-
tures and not on the material constitution of the bodies,
he reasons in exact conformity with the method of
Galileo. Similarly does J. R. Mayer proceed in the
enunciation of the principle of the equivalence of heat
and work. In this achievement the mechanical view
was quite remote from Mayer’s mind ; nor had he need
of it. They who require the crutch of the mechanical
philosophy to understand the doctrine of the equiva-
lence of heat and work, have only half comprehended
the progress which it signalises. Yet, high as we may
place Mayer’s original achievement, it is not on that
account necessary to depreciate the merits of the pro-
fessional physicists Joule, Helmholtz, Clausius, and
Thomson, who have done very much, perhaps all, to-
wards the detailed establishmcjit and perfection of the
new view. The assumption of a plagiarism of Mayer’s
ideas is in our opinion gratuitous. They who advance
it, are under the obligation to prove it. The repeated
appearance of the same idea is not new in history. We
shall not take up here the discussion of .purely personal
questions, which thirty years from now will no longer
interest students. But it is unfair, from a pretense of
justice, to insult men, who if they had accomplished
but a third of their actual services to science, would
have lived highly honored and unmolested lives.

nated the consideration of particular details with the
consideration of universal aspects, and reached their
results only by a persistent effort after a simple and
consistent view. The fact that the velocities of indi-
vidual bodies and systems are dependent on the spaces
descended through, was perceived by Galileo and
Huygens only by a very detailed investigation of the
motion of descent in particular cases, combined with
the consideration of the circumstance that bodies gen-
erally, of their own accord, only sink. Huygens
especially speaks, on the occasion of this inquiry, of
the impossibility of a mechanical perpetual motion ;
he possessed, therefore, the modern point of view. He
felt the incompatibility of the idea of a perpetual motion
with the notions of the natural mechanical processes
with which he was familiar.

Take the fictions of Stevinus— say, that of the end-
Here, too, a deep, broad

insight is displayed. We have here a mind, disciplined
by a multitude of experiences, brought to bear on an
individual case. The moving endless chain is to Ste-
vinus a motion of descent that is not a descent, a mo-
tion without a purpose, an intentional act that does
not answer to the intention, an endeavor for a change
which does not produce the change. If motion, gener-
ally, is the result of descent, then in the particular case
descent is the result of motion. It is a sense of the
mutual interdependence of v and h in the equation
v — V 2 g h that is here displayed, though of course in
not so definite a form. A contradiction exists in this

Exemplifi-
cation of . n , 1
this in ste- less chain on the prism.
vinus’s re-
searches.

I
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in Stevinus, Galileo, Huygens, and other great inquir- Sense of

ers. The idea is also at the basis of the discovery of depend-

eounter- phenomena. Thus, a change in the volume of basis of ail

a gas due to a change of temperature is supplemented 1
'

by the counter-phenomenon of a change of tempera-
ture on an alteration of volume ; Seebeck’s phenome-
non by Peltier’s effect, and so forth.
Care must, of course, be exercised, in
such inversions, respecting the form
of the dependence. Figure 235 will
render clear how a perceptible altera- 0
tion of a may always be produced by
an alteration of A , but a change of A
not necessarily by a change of a. The relations be-
tween electromagnetic and induction phenomena, dis-

covered by Faraday, are a good instance of this truth.
If a set of circumstances a6 yd . . . , by which a Various

' J forms of cx-
second set A ur . . . is determined, be made to pass pression of. . / ’ ï

f
this truth.

from its initial values to the terminal values a' ft ' y
à - • then\jx v . . . also will pass intoA' // V ' . . .
If the first set be brought back to its initial state, also
the second set will be brought back to its initial state.
This is the meaning of the “ equivalence of cause and
effect, ” which Mayer again and again emphasizes.

If the first group suffer only periodical changes, the
second group also can suffer only periodical changes,
not continuous permanent ones. The fertile methods
of thought of Galileo, Huygens, S. Carnot, Mayer,
and their peers, are all reducible to the simple but sig-
nificant perception, that purely periodical alterations of
one set of circumstances can only constitute the source of
similarly periodical alterations of a second set of circum-
stances, not of continuous and permanent alterations. Such
maxims, as “ the effect is equivalent to the cause, ”

The inter- 5. We shall now attempt to show that the broad
once of the view expressed in the principle of the conservation
ture. of energy, is not peculiar to mechanics, but is a condi-

tion of logical and sound scientific thought generally.
The business of physical science is the reconstruction
of facts in thought, or the abstract quantitative expres-
sion of facts. The rules which we form for these recon-
structions are the laws of nature. In the conviction that

covenes.

such rules are possible lies the law of causality. The
law of causality simply asserts that the phenomena of
nature are dependent on one another. The special em -
phasis put on space and time in the expression of the
law of causality is unnecessary, since the relations of
space and time themselves implicitly express that phe-
nomena are dependent on one another.

The laws of nature are equations between the meas-
urable elements aftyd . . . . co of phenomena. As na-
ture is variable, the number of these equations is al-
ways less than the number of the elements.

If we know all the values of aftyd . . ., by which,
for example, the values of X y v . . . are given, we may
call the group aftyd . . . the cause and the group
X y v . . . the effect. In this sense we may say that the
effect is uniquely determined by the cause. The prin-
ciple of sufficient reason, in the form, for instance, in
which Archimedes employed it in the development of
the laws of the lever, consequently asserts nothing

than that the effect cannot by any given set of

Fig- 235.

more
circumstances be at once determined and undetermined.

If two circumstances a and A are connected, then,
supposing all others are constant, a change of A will
be accompanied by a change of a, and as a general
rule a change of a by a change of A. The constant
observance of this mutual interdependence is met with
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its true maturity, and be insured against lop-sided and
monstrous growths.

The division of labor, the restriction of individual
inquirers to limited provinces, the investigation of
those provinces as a life-work, are the fundamental science,
conditions of a fruitful development of science. Only
by such specialisation and restriction of work can the
economical instruments of thought requisite for the
mastery of a special field be perfected. But just here
lies a danger— the danger of our overestimating the in-
struments, with which we are so constantly employed,
or even of regarding them as the objective point of
science.

2. Now, such a state of affairs has, in our opinion, physics
actually been produced by the disproportionate formal made the
development of physics. The majority of natural in- physiology,
quirers ascribe to the intellectual implementsof physics,
to the concepts mass, force, atom, and so forth, whose

revive economically arranged expe-
riences, a reality beyond and independent of thought.
Not only so, but it has even been held that these forces
and masses are the real objects of inquiry, and, if
they were fully explored, all the rest would follow from
the equilibrium and motion of these masses. A person
who knew the world only through the theatre, if brought
behind the scenes and permitted to view the mechan-
ism of the stage’s action, might possibly believe that
the real world also was in need of a machine-room, and
that if this were once thoroughly explored, we should
know all. Similarly, we, too, should beware lest the
intellectual machinery, employed in the representation
of the world on the stage of thought, be regarded as the
basis of the real world.

3. A philosophy is involved in any correct view of
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“ work cannot be created out of nothing, ” “ a per-
petual motion is impossible, ” are particular, less defi-
nite, and less evident forms of this perception, which
in itself is not especially concerned with mechanics, but
is a constituent of scientific thought generally. With
the perception of this truth, any metaphysical mystic-
ism that may still adhere to the principle of the con-
servation of energy* is dissipated. (See Appendix, VI.)

All ideas of conservation, like the notion of sub-
stance, have a solid foundation in the economy of
thought. A mere unrelated change, without fixed point
of support, or reference, is not comprehensible, not
mentally reconstructible. We always inquire, accord-
ingly, what idea can be retained amid all variations as
permanent, what law prevails, what equation
fulfilled, what quantitative values remain constant ?
When we say the refractive index remains constant in
all cases of refraction, g remains = 9 -810;;/ in all cases
of the motion of heavy bodies, the energy remains con-
stant in every isolated system, all our assertions have
one and the same economical function, namely that of
facilitating our mental reconstruction of facts.

Confusion
of the
means and

Purpose of
the ideas of
conserva-
tion.

remains

sole office is to

once

11.

THE RELATIONS OF MECHANICS TO PHYSIOLOGY.

i. All science has its origin in the needs of life.
However minutely it may be subdivided by particular
vocations or by the restricted tempers and capacities of
those who foster it, each brandi can attain its full and
best development only by a living connection with the
whole. Through such a union alone can it approach

* When we reflect that the principles of science are all abstractions that
presuppose repetitions of similar cases, the absurd applications of the law of
the conservation of forces to the universe as a whole fall to the ground.

' Conditions
of the true
develop-
ment of
science.
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combination of touch, sight, light, and time sensations.
• They possess intelligible meaning only by virtue of

the sensations they involve, the contents of which
of course be very complicated.

It would be equivalent, accordingly, to explaining Mode of
the more simple and immediate by the more compli- such cr-
eated and remote, if we were to attempt to derive
sations from the motions of masses, wholly aside from
the consideration that the notions of mechanics
economical implements or expedients perfected to
represent mechanical and not physiological or psycho-
logical facts.
properly distinguished, and our expositions were re-
stricted to the presentation of actual facts, false prob-
lems of this kind could not

the relations of special knowledge to the great body of
p1Snlfeef* knowledge at large,— a philosophy that must be de-
ings by
motions.

The at-

manded of every special investigator. The lack of it
is asserted in the formulation of imaginary problems,

may

in the very enunciation of which, whether regarded as
soluble or insoluble, flagrant absurdity is involved.
Such an overestimation of physics, in contrast to physi-
ology, such a mistaken conception of the true relations
of the two sciences, is displayed in the inquiry whether
it is possible to explain feelings by the motions of
atoms?

rors.sen-

are

Let us seek the conditions that could have impelled
the mind to formulate so curious a question. We find
in the first place that greater confidence is placed in our
experiences concerning relations of time and space ;
that we attribute to them a more objective, a more real
character than to our experiences of colors, sounds,

Yet, if we investigate the

If the means and aims of research wereExplication
of this
anomaly.

arise.
4. All physical knowledge can only mentally repre- The princi-sent and anticipate compounds of those elements we chanîcŝ ot

call sensations. It is concerned with the connection of tionbut
these elements. Such an element, say the heat of a body aspect ot
A, is connected, not only with other elements, say with
such whose aggregate makes up the flame B, but also
with the aggregate of certain elements of our body, say
with the aggregate of the elements of a nerve JV.
simple object and element N is not essentially, but only
conventionally, different from A and B. The connection

temperatures, and so forth,

matter accurately, we must surely admit that our sen-
sations of time and space are just as much sensations
as are our sensations of colors, sounds, and odors, only
that in our knowledge of the former we are surer and
clearer than in that of the latter. Space and time are
well -ordered systems of sets of sensations. The quan-
tities stated in mechanical equations are simply ordinal
symbols, representing those members of these sets
that are to be mentally isolated and emphasised. The
equations express the form of interdependence of these

the world.

As

of A and B is a problem of physics, that of A and N a
problem of physiology. Neither is alone existent ; both
exist at once. Only provisionally can we neglect
either. Processes, thus, that in appearance are purely
mechanical, are, in addition to their evident mechani-

ordinal symbols.
A body is a relatively constant sum of touch and

sight sensations associated with the same space and
Mechanical principles, like that, for

cal features, always physiological, and, consequently,
also electrical, chemical, and so forth. The science of
mechanics does not comprise the foundations

part of the world, but only an aspect of it.

time sensations,

instance, of the mutually induced accelerations of two
masses, give, either directly or indirectly, onty some

, no, nor
even a



APPENDIX.

(See page 140.)

In an exhaustive study in the Zeitschrift fur Vo/ker-
psychologie, 1884, Vol. XIV, pp. 365-410, and Vol. XV,
pp. 70-135, 33^-387, entitled Die Entdeckung des Bc-
harrungsgesetzes, E. Wohlwill has shown that the prede-
cessors and contemporaries of Galileo, nay, even Gali-
leo himself , only very gradually abandoned the Aristo-
telian conceptions for the acceptance of the law of in-
ertia. Even in Galileo’s mind uniform circular motion
and uniform horizontal motion occupy distinct places.
Wohlwill’s researches are very acceptable and show
that Galileo had not attained perfect clearness in his
own new ideas and was liable to frequent reversion to
the old views, as might have been expected.

Indeed, from my own exposition the reader will
have inferred that the law of inertia did not possess
in Galileo’s mind the degree of clearness and univer-
sality that it subsequently acquired. (See pp. 140
and 143.) With regard to my exposition at pages
140-141, however, I still believe, in spite of the opin-

ions of Wohlwill and Poske, that I have indicated the
point which both for Galileo and his successors must
have placed in the most favorable light the transition
from the old conception to the new.
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sation, so, for similar reasons, we select, in this instance,
as our measure of time, an arbitrarily chosen motion, (the
angle of the earth’s rotation, or path of a free body,)
which proceeds in almost parallel correspondence with
our sensation of time. Once we have made clear to our-
selves that we are concerned only with the ascertain-
ment of the interdependence of phenomena, as I pointed
out as early as 1865 (Ueber den Zeitsinn desOhres, Sitzungs-
bcrichte der Wiener Akadeniic) and 1866 (Fichte’s Zeit-
schrift fur Philosophic'), all metaphysical obscurities dis-
appear. (Compare J . Epstein, Die logischen Principien
der Zeitmessung, Berlin, 1887.)

11.

(See page 218.)

. H. Streintz’s objection { Die physikalischen Grund-
lagen der Mechanik, Leipsic, 1883, p. 117), that a com-
parison of masses satisfying my definition can be ef -
fected only by astronomical means, I am unable to ad -
mit. The expositions on pages 202, 218-221 amply
refute this. Masses mutually produce in each other
accelerations in impact, when subject to electric and
magnetic forces, and when connected by a string on
Atwood’s machine.

My definition is the outcome of an endeavor to
establish the interdependence of phenomena and to re-
move all metaphysical obscurity, without accomplish-
ing on this account less than other definitions have
done. I have pursued exactly the same course with
respect to ideas “ quantity of electricity ” { Ueber die
Grundbegriffe der Elcktrostatik, Vortrag gehalten auf der
internationalen clcktrischen Ausstellung, Vienna, Septem-
ber 4, 1883), “ temperature, ” “ quantity of heat ” { Zeit-
schrift fier den physikalischen und chemisehen Unterricht,
Berlin, 1888, No. I), and so forth.

iv.
(See page 238.)

Of the treatises which have appeared since 1883
the law of inertia, all of which furnish welcome evidence
of a heightened interest in this question, I can here
only briefly mention that of Streintz {Physikalische
Grundlagen der Mechanik , Leipsic, 1883) and that of L.
Lange {Die gcschichtliche Entwicklung des Bewegungs-
begriffes, Leipsic, 1886).

The expression “ absolute motion of translation ”
Streintz correctly pronounces as devoid of meaning and
consequently declares certain analytical deductions,
to which he refers, superfluous. On the other hand,
with respect to rotation, Streintz accepts Newton’s po-
sition, that absolute rotation can be distinguished from
relative rotation. In this point of view, therefore, one
can select every body not affected with absolute rota-
tion as a body of reference for the expression of the
law of inertia.

I cannot share this view.

on

HI.
(See page 226.)

My views concerning physiological time, the sensa-
tion of time, and partly also concerning physical time,
I have expressed elsewhere (see Beitrage zur Analyse
der Empfindungen, Jena, Fischer, 1886, pp. 103-m,
166-168). As in the study of thermal phenomena we
select as our measure of temperature an arbitrarily
chosen volume, which varies in almost parallel correspon-
dence with our sensation of heat, and which is not liable
to the uncontrollable disturbances of our organs of sen-

For me, only relative
motions exist {Erhaltung der Arbeit, p. 48; Science of
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riod of time, without a knowledge of Newton and
Euler, I have only been led to views which these in-

Mcchanics, p. 229), and I can see, in this regard, no
distinction between rotation and translation. When a
body moves relatively to the fixed stars, centrifugal
forces are produced ; when it moves relatively to some
different body, and not relatively, to the fixed stars, no
centrifugal forces are produced. I have no objection
to calling the first rotation 11 absolute ” rotation, if it
be remembered that nothing is meant by such a desig-
nation except relative rotation with respect to the fixed
stars. Can we fix Newton’s bucket of water, rotate the
fixed stars, and then prove the absence of centrifugal
forces ?

The experiment is impossible, the idea is meaning-
less, for the two cases are not, in sense- perception,
distinguishable from each other. I accordingly regard
these two cases as the same case and Newton’s dis-
tinction as an illusion ( Science of Mechanics, p. 232).

But the statement is correct that it is possible to
find one’s bearings in a balloon shrouded in fog, by

of a body which does not rotate with respect to
the fixed stars. But this is nothing more than an in-
direct orientation with respect to the fixed stars; it is
a mechanical, substituted for an optical, orientation.

I wish to add the following remarks in answer to
Streintz’s criticism of my view. My opinion is not to
be confounded with that of Euler (Streintz, pp. 7, 50),
who, as Lange has clearly shown, never arrived at
any settled and intelligible opinion on the subject.
Again, I never assumed that remote masses only,and not
near ones, determine the velocity of a body (Streintz, p.
7); I simply spoke of an influence independent of dis-
tance. In the light of my expositions at pages
245, the unprejudiced and careful reader will scarcely
maintain with Streintz (p. 50), that after so long a pe-

quirers long ago held, but were afterwards, partly by
them and partly by others, rejected. Even my re-
marks of 1872, which were all that Streintz knew, can-
not justify this criticism. These were, for good rea-
sons, concisely stated, but they are by no means so
meagre as they must appear to one who knows them
only from Streintz’s criticism. The point of view
which Streintz occupies, I at that time expressly re-
jected.

Lange’s treatise is, in my opinion, one of the best
that have been written on this subject. Its methodical
movement wins at once the reader’s sympathy. Its
careful analysis, and study, from historical and critical
points of view, of the concept of motion, have pro-
duced, it seems to me, results of permanent value. I
also regard its clear emphasis and apt designation of
the principle of “ particular determination ” as a point
of much merit, although the principle itself , as well as
its application, is not new.
the basis of all measurement.

means
The principle is really at

The choice of the unit
of measurement is convention ; the number of measure-
ment is a result of inquiry. Every natural inquirer who
is clearly conscious that his business is simply the in-
vestigation of the interdependence of phenomena, as I
formulated the point at issue a long time ago (1865-1866), employs this principle.
( .Mechanics, p. 218 et seqq.), the negative inverse ratio
of the mutually induced accelerations of two bodies is
called the mass-ratio of these bodies, this is a conven-tion, expressly acknowledged as arbitrary ; but that
these ratios are independent of the kind and of the
order of combination of the bodies is a result of inquiry.

When, for example,

222-
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Such an expression is less fit than Streintz’s for prac-
tical purposes, but on the other hand, is, for its method-
ical advantages, more attractive. It especially appeals
to my mind, as a number of years ago I was engaged
with similar attempts, of which not the beginnings but
only a few remnants (.Mechanics, pp. 234-235) are left.
I abandoned these attempts because I was convinced
that we only apparently evade by such expressions ref -

to the fixed stars and the angular rotation of

I might adduce numerous similar instances from thetheories of heat and electricity as well as from otherprovinces. Compare Appendix, II.
Taking it in its simplest and most perspicuous form,the law of inertia, in Lange’s view, would read as foblows :

“ Three material points Pl 9 P
“ neously hurled from the same point in space and
4‘then left to themselves. The moment we are certain
“ that the points are not situated in the same straight
“ line, we join each separately with any fourth point in
“ space, Q. These lines of junction, which
“ respectively call G t , G2, G.v form, at their point of
“ meeting, a three-faced solid angle.
“ this solid angle preserve, with unaltered rigidity,
“ its form, and constantly determine in such a manner
“ its position, that P } shall always move on the line
“ P2 on the line G 2 , P9 on the line £3, these lines
“ may be regarded as the axis of a coordinate or iner-“ tial system, with respect to which every other
“ terial point, left to itself , will move in a straight line.
“ The spaces described by the free points in the paths
“ so determined will be proportional to one another. ”A system of coordinates with respect to which threematerial points move in a straight line is, according toLange, under the assumed limitations, a simple con-vention. That with respect to such a s}'stem also afourth or other free material point will
straight line, and that the paths of the different pointswill all be proportional to one another, are results ofinquiry.

In the first place, we shall not dispute the fact thatthe law of inertia can be referred to such a system oftime and space coordinates and expressed in this form.

P3, are simulta-2 ’

erences
This, in my opinion, is also true of thethe earth.

forms in which Streintz and Lange express the law.
precisely by the considera-

tion of the fixed stars and the rotation of the earth
that we arrived at a knowledge of the law of inertia as
it at present stands, and without these foundations we
should never have thought of the explanations here
discussed (Mechanics, 232-233). The consideration of
a small number of isolated points, to the exclusion of
the rest of the world, is in my judgment inadmissible

In point of fact, it waswe may

If now we make

(.Mechanics, pp. 229-235).
It is quite questionable, whether a fourth material

point, left to itself , would, with respect to Lange’s
“ inertial system,” uniformly describe a straight line, if
the fixed stars were absent, or not invariable, or could
not be regarded with sufficient approximation as in-
variable.

The most natural point of view for the candid in-
quirer must still be, to regard the law of inertia pri-
marily as a tolerably accurate approximation, to refer
it, with respect to space, to the fixed stars, and, with
respect to time, to the rotation of the earth, and to
await the correction, or more precise definition , of our
knowledge from future experience, as I have explained
on page 237 of this book.

ma-

move in a
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Upon the whole, the treatises that have appeared
since 1883 convince me that my expositions have not
yet been fully considered, and I have therefore left the
text of this subject unaltered.

per, Vienna, 1883 ; Die Lehre von der Energie, by G.
Helm, Leipsic, 1887 ; Das Princip der Erhaltung der
Energie, by M. Planck, Leipsic, 1887 ; and Das Pro-
blem der Continuitàt in der Mathematik und Mechanik,
by F. A. M üller, Marburg, 1886.

The independent works of Popper and Helm are,
in the aim they pursue, in perfect accord, and they
quite agree in this respect with my own researches, so
much so in fact that I have seldom read anything that,
without the obliteration of individual differences, ap-
pealed in an equal degree to my mind. These two
authors especially meet in their attempt to enunciate
a general science of energetics ; and a suggestion of this
kind is also found in a note to my treatise, Ueber die
Erhaltung der Arbeit, page 54.

In 1872, in this same treatise (pp. 42 et seqq.), I
showed that our belief in the principle of excluded per-
petual motion is founded on a more general belief in
the unique determination of one group of (mechanical)
elements, (x ft y . . . , by a group of different elements,
xyz . . . Planck’s remarks at pages 99, 133, and 139
of his treatise, essentially agree with this ; they are
different only in form. Again, I have repeatedly re-
marked that all forms of the law of causality spring
from subjective impulses, which nature is by no means
compelled to satisfy. In this respect my conception is
allied to that of Popper and Helm.

Planck (pp. 21 et seqq., 135) and Helm (p. 25 et
seqq.) mention the “ metaphysical ” points of view by
which Mayer was controlled, and both remark (Planck,
p. 25 et seqq., and Helm, p. 28) that also Joule, though
there are no direct expressions to justify the conclusion,
must have been guided by similar ideas. To this last
I fully assent.

v.

(See page 485.)

In the text I have employed the term “ cause ” in
the sense in which it is ordinarily used. I may add
that with Dr. Cams,* following the practice of the
German philosophers, I distinguish “ cause, ” or Real-
grund, from Erkenntnissgrund. I also agree with Dr.
Cams in the statement that “ the signification of cause
and effect is to a great extent arbitrary and depends
much upon the proper tact of the observer. ” f

The notion of cause possesses significance only as
a means of provisional knowledge or orientation. In
any exact and profound investigation of an event the
inquirer must regard the phenomena as dependent on
one another in the same way that the geometer regards
the sides and angles of a triangle as dependent on one
another. He will constantly keep before his mind, in
this way, all the conditions of fact.

J

V I.
(Sec page 504.)

The principle of energy is only briefly treated in
the text, and I should like to add here a few remarks
on the following four treatises, discussing this subject,
which have appeared since 1883 : Die physikalischen
Grundsatze der ele/ztrisehen Kraftiibertragung, by J. Pop-

(

\

* See his Grundy Ursache und Zweck, R. v. Grumbkow, Dresden, 1881,
and his Fundamental Problems, pp. 79-91, Chicago: The Open Court Publish-
ing Co., i89 r -

t Fundamental Problems, p. 84. *I

!
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With respect to the so-called “ metaphysical ”
points of view of Mayer, which, according to Helm -

holtz, are extolled by the devotees of metaphysical
speculation as Mayer’s highest achievement, but which
appear to Helmholtz as the weakest feature of his ex-
posit ions, I have the following remarks to make. With
maxims, such as “ Out of nothing, nothing comes,”
“ The effect is equivalent to the cause, ” and so forth,
one can never convince another of anything. How lit t le
such empty maxims, which until recently were admit-
ted in science, can accomplish, I have il lustrated by
examples in my treatise Die Erhaltung der Arbeit. But
in Mayer’s case these maxims are, in my judgment,
not weaknesses. On the contrary, they are with him
the expression of a powerful instinctive yearning, as yet
unsett led and unclarif ied, after a sound, substantial
conception of what is now called energy. This desire I
should not exactly call metaphysical. We now know
that Mayer was not wanting in the conceptual power
to give to this desire clearness. Mayer’s att i tude in
this point was in no respect different from that of Gali-
leo, Black, Faraday, and other great inquirers, al though
perhaps many were more taciturn and cautious than he.

I have touched upon this point before in the Bei-
tràge zur Analyse der Empfindungen, Jena, 1886, p. 161
et seqq. Aside from the fact that I do not share the
Kantian point of view, in fact, occupy no metaphysical
point of view, not even that of Berkeley, as hasty
readers of my last-mentioned treatise have assumed,
I agree with F. A. Midler’s remarks on this question
(p. 104 et seqq).
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INDEX.

Absolute, space, time. etc. (See the
nouns.)

Absolute units, 278, 284.
Abstractions, economical character

of, 482.
Acceleration,Galileo on, i3i ,et seqq.;

Newton on, 238 ; also 2 x8, 230, 236,
243, 245 -

Action and reaction, Newton on, 198-
201, 242.

Action, least, principle of , 364-380,
454 ; sphere of , 385.

Adaptation, in nature,452; of thoughts
to facts, 6.

Adhesion plates, 115.
Aerostatics. (See air.)
Affined , 166.
Air, expansive force of isolated por-

tions of , 127 ; quantitative data' of ,
124 ; weight of, 113 ; pressure of ,
114 et seqq.

Air-pump, experiments, 122 et seqq.;
the mercurial, 125.

Alcohol and water, mixture of, 384 ct
seq.

Algebra, economy of, 486.
Algebraical mechanics, 466.
All, The, necessity of its considera-

tion in research, 235, 461.
Analytical mechanics, 465-480.
Analytic method, 466.
Animal free in space, 2go.
Animistic points of view in mechan-

ics, 461 et seq.
Archimedes, on the lever and the

centre of gravity, 8-11 ; critique of
his deduction, 13-14 ; illustration
of its value, 10 ; on hydrostatics,
86-88; various modes of deduction

of his hydrostatic principle, 104 ;
illustration of his principle, 106.

Areas, the law of the conservation of ,
293-305.

Areometer, effect of particles sus-
pended in liquids on, 208.

Artifices, mental, 492 et seqq.
Assyrian monuments, 1.
Atmosphere. (See Air.)
Atoms, mental artifices, 492.
Attraction, 246.
Atwood’s machine, 149.
Avenarius, R., ix.

Babbage, on calculating machines
488.

Babo, von, apparatus of, 150.
Ballistic pendulum, 328.
Balls, elastic, symbolising pressures

in liquids, 419.
Bandbox, rotation of , 301.
Barometer, height of mountains de-

termined by, 115, 117.
Base, pressure of liquids on, 90, 99.
Belanger, on impulse, 271.
Berkeley, 5x8.
Benxoulli, Daniel, his geometrical

demonstration of the parallelo-
gram of forces, 40 42 ; criticism of
Bernoulli’s demonstration, 42-46 ;
on the law of areas, 293; on the
principle of vis viva, 343, 348 ; on
the velocity of liquid efflux, 403 ; his
hydrodynamic principle,408; on the
parallelism of strata, 409 ; his dis-
tinction of hydrostatic and hydro-
dynamic pressure, 413.

Bernoulli, James, on the catenary,
74; on the centre of oscillation, 331
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Compression of liquids and gases, 407.
Conradus, Balthasar, 30b.
Conservation, of energy, 499 ct seq. ,

516 et seqq.; of quantity of motion ,
Descartes and Leibnitz on, 272, 274;
purpose of the ideas of, 504.

Conservation of momentum, of the
centre of gravity, and of areas, laws
of the, 287-305 ; these laws, the ex-
pression of the laws of action and
reaction and inertia, 303.

Conservation of momentum and vis
viva interpreted, 326 ct seq.

Constancy of quantity of matter, mo-
tion, and energy, theological basis
of , 456.

Constraint, 335, 352 ; least , principle
of, 350-364.

Continuity, the principle of , 140, 490
et seqq.

Continuum, pliysico-mechanical, 109.
Coordinates, forces a function of, 397

see Force-function.
Copernicus, 457, 232.
Coriolis, on vis viva and work, 272.
Counter- phenomena, 503.
Counter-work, 363, 366.
Counting, economy of, 48G.
Courtivron, his law of equilibrium,

Deductive development of science,
421.

Demonstration , the mania for, iS, 82 ;
artificial, 82.

Departure from free motion, 355.
Derived units, 278.
Descartes, on the measure of force,

148, 250, 270, 272-276 ; on quantity of
motion, conservation of momen-
tum, etc., 272 ct seqq.; character of
his physical inquiries, 273 ; his me-chanical ideas, 250.

Descent, on inclined planes, 134 ct
seqq., law of, 137 ; in chords of cir-
cles,138; vertical ,motion of, treated
by Hamilton’ s principle,383; quick-
est, curve of, 426 ; of centre of grav-
ity, 52, 174 ct seqq., 408.

Description,a fundamental feature of
science, 5.

Design evidences of, in nature, 452.
Determinants economy of, 487.
Determinativt factor* of physical

processes 76.
Differences, of quantities their rôle

in nature, 236 ; of velocities, 325.
Differential calculus, 424.
Differential laws, 255, 461.
Dimensions, theory of, 279.
Dioptrics, Gauss's, economy of, 489.
Disillusionment, due to insight, 77.
Dnhring, ix, 352.
Dynamics, the development of the

principles of, 128-255 ; retrospect of
the development of , 245-255; found-
ed by Galileo, 128 ; proposed new
foundations for, 243; chief results
of the development of, 245, 246 ;
analytical, founded by Lagrange on
the principle of virtual velocities,
467.

the brachistochrone, j Cause and effect, economical char-
acter of the ideas, 485 ; equivalence
of, 502, 503 ; Mach on, 516 ; Carus
on, 516.

Causes, efficient and final, 368.
Cavendish, his discovery of hydro-

gen, 124.
Cells of the honeycomb, 453.
Centimetre-gramme-second system,

285.
Central, centrifugal, and centripetal

force. (See Force. )
Centre of gravity, 14 et seqq.; descent

of, 52 ; descent and ascent of, 174
ct seqq., 408 ; the law of the con-
servation of the, 287-305.

Centre of gyration, 334.
Centre of oscillation, 173 et seqq., 331

-335 ; Mersenne, Descartes, and
Huygens on, 174 et seqq.; relations
of, to centre of gravity, 180-185;
convertibility of, with point of sus-
pension, 186.

Centre of percussion, 327.
Chain, Stevin’s endless, 25 et seqq.,

500 ; motion of, on inclined plane,
347-

Change, unrelated, 504.
Character, an ideal universal, 481.
Chinese language, 482.
Church, conflict of science and, 446.
Circular motion, law of, 160, 161.
Clairaut, on vis viva, work, etc., 348;

on the figure of the earth, 395 ; on
liquid equilibrium, 396 et seq.; on
level surfaces, etc. , 398.

Classes and trades, the function of in
the development of science, 4.

Clausius, 497, 499, 501.
Coefficients, indeterminate, La-

grange’ s, 471 et seq.
Collision of bodies. (See Impact
Colors, analysis of , 481.
Column, rest of a heavy, 258.
Commandinus, 87.
Communication , the economy of , 78.
Comparative physics, necessity of ,

498.
Component of force, 34.
Composition of forces, see Forces ;

Gauss’ s principle and the, 364.

et seq.;
426 ; on the isoperiinetrical prob-
lems, 428 et seq . ; his character, 428 ;

on

his quarrel with John, 431 ; his Pro-
gramma, 430.

Bernoulli, John, his generalisation of
the principle of virtual velocities,
56 ; on the catenary, 74 ; on centre
of oscillation, 333 335; on the prin-
ciple of vis viva , 343 ; on the anal-
ogies between motions of masses
and light ,372; his liquid pendulum,
410; on the brachistochrone, 425 et
seqq.; his character, 427 ; his quar-
rel with James, 431 ; his solution of
the isoperiinetrical problem, 431.

Black, hisdiscovery of carbonic acid
gas, 124.

Boat in motion, Huygens’s fiction of
a, 3'5. 325-

Body, definition of, 506.
Bolyai, 493.
Bomb, a bursting, 293.
Bouguer, on the figure of the earth,

395-
Boyle, his law, 125 et seq.; his inves-

tigations in aerostatics, J 23.
Brachistochrone, problem of the, 425

et seqq.
Brahe, Tycho, on planetary motion ,

187.
Bruno,Giordano, his martyrdom, 446.
Bubbles, 392.
Bucket of water, Newton’s rotating,

227, 232, 512.

\

r

73.
Ctcsibius, his air-gun , no.
Currents, oceanic, 302.
Curtius Rufus, 210.
Curve-elements, variation of , 432.
Curves, maxima and minima of , 429.
Cycloids, 143, 1S6, 379, 427-
Cylinder, double, on a horizontal sur-

face, 60; rolling on an inclined
plane, 345.

Cylinders, axal , symbolising the rela-
tions of the centres of gravity and
oscillation, 183.

Cabala, 489.
Calculating machines, 488.
Calculus, differential, 424 ; of varia-

tions, 436 et seqq.
Canal , fluid, equilibrium of , 396 ct

seqq.
Cannon and projectile, motion of ,291.
Canton,on compressibility of liquids,

Earth, figure of , 395 et seqq.
Economical character of analytical

mechanics, 480.
Economy of description, 5.
Economy in nature, 459.
Economy of science, 481 494.
Economy of thought, the basis and

essence of science, viii , 6, 481 ; of
language, 481 ; of all ideas, 482 ; of

D’ Alembert , his settlement of the
dispute concerning the measure of
force, 149, 276 ; his principle, 331-
343-

D’ Arcy, on the law of areas, 293.
Darwin, his theories, 452, 459.
Declination from free motion, 352-

356.

92.
Carnot, his performances, 501 ; his

formula, 327.
Carus, P., on cause, 516.
Catenary, The, 74, 379, 425.
Cauchy, 47.
Causality, 483 et seqq.; 502.
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problems arid the calculus of varia-
tions, 433 ct seqq.; his theological
proclivities, 449, 455 ; his contribu-
tions to analytical mechanics, 466.

Exchange of velocities in impact, 315.
Experience, x et seq., 481, 490.
Explanation, 6.
Extravagance in nature, 459.

ence of, 154 ; living, see Vis viva ;
Newton on the parallelogram of ,
192, 197; impressed, equilibrated , ef-
fective, gained and lost, 336 ; mole-
cular, 384 et seqq.; functions of co-
ordinates, 397, 4C 2 ; central , 397.

Formal development of science, 421.
Formulas, mechanical, 269-286.
Foucault and Toepler,optical method

of , 125.
Foucault’ s pendulum, 302.
Fourier, on dimensions, 279.
Free rigid body, rotation of , 295.
Free systems, mutual action of , 287.
Friction , of minute bodies in liquids,

208 ; motion of liquids under, 416 et
seq.

Functions, mathematical , their office
in science, 492.

Fundamental equations of mechan-
ics, 270.

Funicular machine, 32.
Funnel, plunged in water, 412 ; rotat-

ing liquid in, 303.

Gaseous bodies, the principles of
statics applied to, 110-127.

Gases, flow of, 405 ; compression of,
407.

Gauss, his view of the principle of
virtual velocities, 76 ; on absolute
units, 278 ; his principle of least
constraint, 350-364 ; on the statics
of liquids, 390 ; his dioptrics, 489.

Gilbert , 462.
Grassi, 94.
Grassmann, 480.
Gravitation, universal, 190.
Gravitational system of measures,

284-286.
Gravity, centre of. See Centre of

gravity.
Green’ s Theorem, 109.
Guericke, his theological specula-

tions, 448 ; his experiments in aero-
statics, 117 et seqq.; his notion of
air, 118 ; his air-pump, 120 ; his air-
gun , 123.

Gyration, centre of , 334.

the ideas cause and effect , 484 ; of

Ithe laws of nature, 485 ; of the law
of refraction, 485 ; of mathematics,
486 ; of determinants, 487 ; of cal-
culating machines, 488 ; of Gauss’ s
dioptrics, moment of inertia, force-
function, 489.

Efflux, velocity of liquid, 402 et seq.
Egyptian monuments, 1.
Eighteenth century, character of, Facts and hypotheses, 494, 496, 498.

458.
Elastic bodies, 315, 317, 320.
Elastic rod, vibrations of, 490.
Elasticity, theory of, 258, 259, 490-
Electricity, revision of the theory of ,

Fall of bodies, early views of , 128 ;
investigation of the laws of , 130 et
seq. ; see Descent.

Falling, sensation of , 206.
Falling bodies, laws of , accident of

their form, 247 et seq ; see Descent.
Faraday, 503 ; his lecture-experiment

496.
Electromotor, Page’ s, 292 ; motion of

a free, 296 et seq.
Elementary laws, see Differential

laws.
Ellipsoid, triaxal, 73 ; of inertia, 186;

central, 186.
Encyclopaedists, French, 463.
Energetics, the science of, 517.
Energy, Galileo’ s use of the word,

271 ; conservation of, 499 et seq.,
potential and kinetic, 272, 499; prin-
ciple of, 516 et seqq.

Enlightenment, the age of , 458.
Epstein, 511.
Equations, of motion, 342 ; of me-

chanics, fundamental, 270.
Equilibrium, the decisive conditions

of, 53 ; dependence of , on a maxi-
mum or minimum of work, 69 ; sta-
ble, unstable, mixed, and neutral
equilibrium, 70-71 ; treated by
Gauss’ s principle, 355 ; figures of ,
393 Î liquid, conditions of , 386 et
seqq.

Equipotential surfaces, see Level
surfaces.

Ergal, 499.
Error, our liability to in the recon-

struction of facts, 79.
Euler, on the “ loi de repos,” 68 ; on

moment of inertia, 179, 182, 186 ; on
the law of areas, 293 ; his form of
D’ Alembert’ s principle, 337 ; on vis
viva, 348 ; on the principle of least
action, 368 ; on the isoperimetrical

on gases, 124.
Feelings, the attempt to explain them

by motions, 506.
Fermat, on the method of tangents,

423-Fetishism, in modern ideas, 463.
Fiction of a boat in motion, Huy-

gens’s, 315, 325-
Figure of the earth, 395 et seqq.
Films, liquid, 386, 392 et seq.
Flow, lines of , 400 ; of liquids, 416 et

seq.
Fluids, the principles of statics ap-

plied to, 86-110 ; see Liquids.
Fluid hypotheses, 496.
Force, moment of, 37 ; the experien-

tial nature of, 42-44 ; conception of ,
in statics, 84 ; general attributes of ,
85 ; the Galilean notion of , 142 ; dis-
pute concerning the measure of,
148, 250, 270, 274-276 ; centrifugal
and centripetal, 158 et seqq.; New-
ton on, 192, 197, 238, 239 ; moving,
203, 243 ; resident, impressed, cen -
tripetal, accelerative, moving, 238,
239 ; the Newtonian measure of , 203,
239, 276 ; lines of , 400.

Force-function, 398 et seqq. , 479, 489 ;
Hamilton on, 350.

Force-relations, character of , 237.
Forces, the parallelogram of 32, 33-48,

243 ; principle of the composition
and resolution of, 33-48, 197 et seq ;
triangle of , 108 ; mutual independ-

“ Galileo,” name for unit of accél-
ération, 285.

Galileo, his dynamical achievements,
128-155 ; his deduction of the law
of the lever, 12 ; his explanation of
the inclined plane by the lever, 23 ;
his recognition of the principle of
virtual velocities, 51; his researches
in hydrostatics, 90; his theory of
the vacuum, 112 et seq.; his discov-
ery of the laws of falling bodies,
130 et seqq.; his clock , 133 ; char-
acter of his inquiries, 140 ; his foun-
dation of the law of inertia, 143 ;
on the notion of acceleration, 145 ;
tabular presentment of his discov-
eries, 147 ; on the pendulum and the
motion of projectiles, 152 et seqq.;
founds dynamics, 128 ; his pendu-
lum, 162 ; his reasoning on the laws
of falling bodies, 130, 131, 247 ; his
favorite concepts, 250; on impact,
308-312 ; his struggle with the
church, 446 ; on the strength of ma-
terials, 451; does not mingle science
with theology, 457 ; on inertia, 509.

Halley, 448.
Hamilton , on force-function, 350.
Hamilton’s principle, 380-384, 480.
Heat, revision of the theory of , 496.
Helm, 517.
Helmholtz, viii ; on the conservation

of energy, 499, 501, 518.
Hemispheres, the Magdeburg, 122.
Hermann, employs a form of D'Alem-

bert’ s principle, 337 ; on motion in
a resisting medium, 435.

Hero, his fountain, 411 ; on the mo-
tion of light , 422 ; on maxima and
minima, 451.

Hiero, 86.
Hipp, chronoscope of , 151.
Hollow space, liquids enclosing, 392.
Homogenous, 279.
Hôpital, L’ , on the centre of oscilla-

tion, 331 ; on the brachistochrone,
426.

Horror vacui, 112.
Hume, on causality, 484.
Huygens,dynamical achievements of,

I55- x87 ; his deduction of the law
of the lever, 15-16 ; criticism of his

'
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Instinct , mechanical, importance of,
304.

Instinctive knowledge, its cogency,
origin, and character, 1, 26-28, 83.

Instincts, our animal, 463.
Instruction, various methods of , 5.
Integral laws, 255, 461.
Intelligence, conception of ,in nature,

461.
Interdependence of the facts of na-

ture, 502 et passim.
Internal forces, action of , on free sys-

tems, 289, 295.
International language, 481.
Isoperimetrical problems, 421-446 ;

• Euler’ s classification of, 433.
Isothermal surfaces, 400.

deduction, 17-18 ; his rank as an
inquirer, 155 ; character of his re-
searches, 156 et seq.; on centrifugal
and centripetal force, 158 et seqq.;
his experiment with light balls in
rotating fluids, 162 ; on the pendu-
lum and oscillatory motion , 162 ct
seqq.; on the centre of oscillation ,
173 et seq.; his principle of the de-
scent and rise of the centre of grav-
ity, 174 ; his lesser investigations,
186 ; his crowning achievement , 1S7;
his favorite concepts, 251 ; on im-
pact, 313-327 ; on the principle of
vis viva, 343, 348; on the figure of
the earth , 395 ; his optical re-
searches, 425 ; does not mingle sci-
ence and theology, 457.

Hydraulic ram, Montgolfier's, 411.
Hydrodynamic pressure, 413.
Hydrodynamics, 402-420.
Hydrostatic pressure, 413.
Hydrostatics, 384-402.
Hypotheses and facts, 494.

gravity, 96 ; immersed in liquids,
pressure of, 105 ; lateral pressure of,
103 ; weightless, 384 ct seqq ,.; com-
pression of , 407 ; soniferous*, vibra-
tions of , 407 ; mobile, 407 ; motion
of viscous, 416.

Living power, 272.
Lobatschewsky, 493.
Locomotive, oscillations of the body

of , 292.
Luther, 463.

67-68 ; his form of D’ Alembert’ s
principle, 337 ; on vis viva, 349 ; on
the principle of least action , 371 ;
on the calculus of variations, 436 et
seq.; emancipates physics from the-
ology, 437 ; his analytical mechan-
ics, ix, 466 ; his indeterminate co-
efficients, 471 et seq.

Lami, on the composition of forces,

)

I
36.

Lange, 511 et seq.
Language, economical character of ,

481 ; possibility of a universal, 482 ;
the Chinese, 482.

Laplace, 463.
Lateral pressure, 103.
Laws of nature , 502.
Laws, rules for the mental recon-

struction of facts, 83-84, 485.
Least action, principle of , 364-380 ;

its theological kernel, 454.
Least constraint, principle of , 350-

364.
Leibnitz , on the measure of force,

148, 250, 270. 274-276 ; on quantity of
motion , 274 ; on the motion of light ,
425, 454 ; on the brachistochrone,
426 ; as a theologian, 449.

Level surfaces, 98, 398 et seqq.
Lever, the principle of the, 8-25 ; “ po-

tential, ’ 20 ; application of its prin-
ciples to the explanation of the
other machines, 22; its law deduced
by Newton’s principles, 263-267 ;
conditions of its rigidity, 96 ; Mau-
pertuis’ s treatment of , 366.

Libraries, stored up experience, 481.
Light, motion of , 422, 424, 426 ; Mau-

pertuis on motion of , 367 ; motion
of, in refracting media, 374-376, 377-
379 ; its minimal action explained ,
459-

Lindelôf , 437.
Lippich, apparatus of , 150.
Liquid efflux , velocity of , 402.
Liquid-head, 403, 416.
Liquid, rotating in a funnel, 303.
Liquids, the statics of , 86-110 ; the

dynamics of, 402-420 ; fundamental
properties of , 91 ; compressibility
of , 92 ; equilibrium of , subjected to

Machines the simple, 8 et seqq.
Maclaurin on the cells of the honey-

comb, 453; his contributions to ana-
lytical mechanics, 466.

Magnus, Valerianus, 117.
Manometer, statical , 123.
Maraldi, on the honeycomb, 453.
Marci, Marcus, 305-308.
Mariotte, his law, 125 ; his apparatus

and experiments, 126 et seq.; on im-
pact, 313.

Mass-areas, 295.
Mass, criticism of the concept of , 216
-222 ; Newton on, 192, 194. 217, 238,
251 ; John Bernoulli on, 251 ; as a
physical property, 194 ; distin-
guished from weight, 195; measura-
ble by weight, 195, 220 ; scientific
definition of , 218 et seq., 243, 510 ;
involves principle of reaction, 220.

Mass, motion of a, in principle of
least action , 372.

Mathematics, function of, 77.
Matter, quantity of , 216, 238.
Maupertuis, his loi de repos, 68 et

seq.; on the principle of least ac-
tion, 364, 368 ; his theological pro-
clivities, 454.

Maxima and minima, 368 ct seqq.
problems of , 422 et seqq.

Maximal and minimal effects, ex
pianation of , 460.

Maxims, scholastic, 143.
Maxwell, 271.
Mayer, J. R. , on work , 249, 503, 518 ;

his physical achievements, 501.
Measures, see Units.
Mechanical, experiences, 1 ; knowl-

edge of antiquity, 1-3; phenomena,

«
i

Jacobi, 76, 381, 459 ; on principle of
least action , 371.

Jellett, on the calculus of variations,
437 et seq.

Jolly, ix.
Joule, 501.
Judgments, economical character of

all , 483.
a

Inclined plane, the principle of the,
24-33; Galileo’ s deduction of its
laws, 151 ; descent on, 354 ; movable
on rollers, 357 et seq.

Indeterminate coefficients, La-
grange’s, 471 et seq.

Inelastic bodies, 317, 318.
Inertia, history of the law of , 141, 143,

509, 511 et seqq.; moment of , 179,
182, 186, 489 ; bodies with variable
moments of , 302 ; law of , critically
elucidated, 232, 238 ; Newton on,
238, 243.

Inertial system, 515.
Impact, the laws of, 305-330 ; force of ,

compared with pressure, 312 ; in
the Newtonian view, 317 et seqq.;
oblique, 327 ; Maupertuis’ s treat-
ment of , 365.

Impetus, 275.
Impulse, 271.
Inquirers, the great, character and

value of their performances, 7 ;
their different tasks, 76 ; their atti-
tude towards religion , 457.

Inquiry, typical modes of , 317.

JK^int, on causality, 484.
Kater, 186.
Kepler, his laws of planetary motion,

187 ; possibility of his discovery of
the laws of falling bodies, 248 ; on
maxima and minima, 423 ; on astrol-
ogy, 463.

Kilogramme, 281.
Kilogramme-metre, 272.
Kinetic energy, 272, 499.
Kirchhoft, viii , 3S1.
Knowledge, instinctive, 1, 26-28, 83 ;

the communication of , the founda-
tion of science, 4 ; the nature of , 5 ;
the necessary and sufficient condi-
tions of , 10.

Kbnig, on the cells of the honeycomb,
453.

i
*

Laborde, apparatus of , 150.
Lagrange, his deduction of the law of

the lever, 13 ; his deduction of the
principle of virtual velocities, 65-
67 ; criticism of this last deduction,

\
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Montgolfier’s hydraulic ram, 411.
Moon, its acceleration towards the

earth, 190 ; length of its day in-
creased to a month, 299.

Morin , apparatus of , 150.
Motion, Newton's laws of , 227, 241 ;

quantity of , 238, -271 et seqq.; equa-
tions of, 342, 3/ T ; circular, laws of,
15S et seqq.; uniformly accelerated,
132 ; relative and absolute, 227 et
seqq. , 511 et seq.

Motivation, law of , 484.
M üller, F. A., 517.
Mystical points of view in mechanics,

456.
Mysticism in science, 481.
Mythology, mechanical, 464.

purely, 495 et seq.; theory of na-
ture, its untenability, 495 et seq.;
phenomena not fundamental, 496 ;
conception of the world,artificiality
of , 496.

Mechanics, the science of , 1; earliest
researches in, 8 ; extended applica-
tion of the principles of , and de-
ductivedevelopment of thescience,
255-420 ; the formulae and units of ,

269-286; character of the principles
of , 237 ; form of its principle ;

mainly of historical and accidental
origin, 247 ct seq .; theological , ani-
mistic, and mystical points of view
in, 446-465 ; fundamental equations
of, 270-276 ; new transformation of ,
480 ; relations of , to other depart-
ments of knowledge, 495-507 ; rela-
tions of, to physics, 495

_
5°4 Î rela-

tions of , to physiology, 504-507 ; an
aspect, not the foundation of the
world, 496, 5:7 ; analytical, 465-480;
Newton’s geometrical, 465.

Medium, motion-determinative, hy-
pothesis of, in space, 230 ; resisting,
motion in, 435.

Memory, 481, 488.
Mensbrugghe, Van der, on liquid

films, 386.
Mental artifices, 492 et seqq.
Mercurial air-pump, 125.
Mersenne, 114 , 174.
Method of tangents, 423.
Metre, 280.
Mimicking, of facts in thought, see

Reproduction.
Minima, see Maxima.
Minimum of superficial area, 387.
Mixed equilibrium, 70-71.
Mobile liquids, 407.
Mobius, 372, 480.
Models, mental, 492.
Molecular forces, 384 et seqq.
Moment, statical , 14 ; of force, 37 ; of

inertia, 179, 182, 186.
Moments, virtual, 57.
Momentum, 241, 244, 271 ; law of the

conservation of , 288 ; conservation
of , interpreted , 326.

Monistic philosophy, the, 465,

to, 504-507 ; distinguished from
physics, 507.

Pila Heronis, «8, 412.
Place, 222, 226.
Planck, 517.
Planets, motion of, 187 et seq.
Plateau, on the statics of liquids, 384
'394 ; Plateau's problem, 393.

Poggendorf ’ s apparatus, 206 et seq.
Poinsot, 186, 251, 269, 480.
Poisson, 42, 46.
Polar and parallel coordinates, 304.
Poncelet, 251, 272.
Popper, J., 516.
Porta, 462.
Poske, on the law of inertia, 509.
Potential, no, 398 et seqq.; potential

function , 497 ; potential energy, 499.
Pound, Imperial , Troy, Avoirdupois,

283.
Pre-establislied harmony, 449.
Pressure, origin of the notion of, 84 ;

liquid, 90,99et seqq.; of falling bod-
ies, 205 ; hydrodynamic and hydro-
static, 413 ; of liquids in motion,
4H.

Pressure-head, 403, 4T6.
Principles, their general character

and accidental form, 79, S3, 421 ; see
Laws.

Projectiles, motion of, 152 et seqq.;
treated by the principle of least ac-
tion, 369.

Projection, oblique, 153 ; range of ,

theology with science, 457 ; on the
brachistochrone, 426.

Numbers, 486.
Observation, 82.
Occasionalism, the doctrine of , 449.
Oersted, 93.
Oil , vise of , in Plateau's experiments,

3S4 ct seq.
Oscillation, centre of, 331-335.
Oscillatory motion, 1C2 et seqq.
Pagan ideas in modern life, 462.
Page’ s electromotor, 292.
Pappus, 422 ; on maxima ard min-

ima 451.
Parallelism of strata, 409.
Parallelogram of forces, sec Forces.
Particular determination , principle

of , 513.
Pascal , his application of the prin-

ciple of virtual velocities to the
statics of liquids, 54, 91, 96 ; his ex-
periments in liquid pressure, 99 ;
his paradox, 101-102 ; liis great pi-
ety, 447 ; criticism of his deduction
of the hydrostatic principle, 95-96 ;
his experiments in atmospheric
pressure, 114 et seqq.

Peltier's effect, 503.
Pendulum, motion of , 152, 163, 168 ;

law of motion of, 168; experiments
illustrative of motion of , 168 et
seqq.; conical, 171 ; determination
of g by, 172 ; simple and compound ,

1/3. 1/7 ; cycloidal, 186 ; a falling,
205 ; ballistic, 328 ; liquid, 409.

Percussion, see Impact ; centre of ,
327.

Percussion-machine, 313.
Perier , 115.
Perpetual motion, 25, 89, 500.
Philosophy of the specialist, the, 506.
Phoronomic similarity, 166.
Physics and theology, separation of ,

456.
Physics, artificial division of , 495 ;

necessity of a comparative, 498 ; re-
lations of mechanics to, 495-504 ;
disproportionate formal develop-
ment of, 505.

Physiology, relations of mechanics

Napier, his theological inclinations,
447-

Nature, laws of , 502.
Necessity, 484, 485.
Neumann, C., 255.
Neutral equilibrium, 70-71.
Newton,his dynamical achievements,

187-201 ; his views of time, space,
and motion, 222-238 ; synoptical
critique of his enunciations, 238 -
245; scope of his principles, 256-2G9;
enunciates the principle of the par-
allelogram of forces, 36 ; liis prin-
ciple of similitude, 165 et seq. ; his
discovery of universal gravitation,
its character, and its law, 188 et
seqq.; effect of this discovery on
mechanics, 191 ; bis mechanical
discoveries, 192 ; his rcgulee philo-
softhandi, 193 ; his idea of force,
193 ; his concept of mass, 194 et
seqq.; on the composition of forces,
197 ; on action and reaction, 198 ;
defects and merits of liis doctrines,
201, 244 ; on the tides, 209 ct seq.;
his definitions, laws, and corolla-
ries, 238-242 ; his water-pendulum,
409 ; his theological speculations,
448 ; the economy and wealth of liis
ideas, 269 ; his laws and definitions,
proposed substitutes for, 243 ; his
favorite concepts, 251 ; on the figure
of the earth , 395 ; does not mingle.

154.
Proof, the natural methods of , 80.
Ptolemy, 232,
Pulleys, 21, 49-51.
Pump, 112.
Pythagoras, 422.
Quantity, of matter, 216, 238 ; of mo-

tion, 238, 271 et seqq.
Quickest descent, curve of , 426.
Radii vectores, 294.
Rationalism, 458.
Reaction, discussion and illustration

of the principle of , 201-216 ; criti-
cism of the principle of , 216-222;
Newton on, 198, 201, 242.

Reaction-tubes, 301.

/
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ted, Gi ; equilibrium of ramifying,
33.

Suction, 112.
Sufficient reason, the principle of , 9,

484, 502.
Surface of liquids, connection of , with

equilibrium, 386-390.
Surfaces, isothermal, 400 ; level, 98,

398 et seqq.
Symmetry of liquid iilms explained,

394-
Synoptical critique of the Newtonian

enunciations, 238-245.
Synthetic method, 4G6.

Scientists, struggle of , with their own
preconceived ideas, 447.

Seebcck’ s phenomenon, 503.
Segner, 186 ; Segner’ s wheel, 309.
Sensations, analysis of , 464 ; the ele-

ments of nature, 482 ; their relative
realness, 506.

Shortest line, 369, 371.
Similarity, phoronomic, 166.
Similitude, the principle of , 166, 177.
Siphon, 114 et seqq.
Space, Newton on, 226; absolute and

relative, 226, 232 ; a set of sensa-
tions, 506 ; multi-dimensioned, an
artifice of thought, 493.

Spannkraft , 499.
Specific gravity, 87-88.
Sphere, rolling on inclined plane ,

pliere, 113; founds dynamics, 402 ;
his vacuum experiment , 113; founds
hydrodynamics, 402 ; on the velo-
city of liquid efflux, 402.

Trade winds, 302.
Trades and classes, function of, in the

development of science, 4.
Tubes, motion of liquids in, 416 et

seqq.
Tylor, 4G2, 463.
Ubaldi, Guido, his statical re-

searches, 21.
Uniquely determined, 10, 502.

Unitary conception of nature, 5.
Units, 269-286.
Unstable equilibrium, 70-71.
Vacuum, 112 et seqq.
Variation, of curve-elements, 432 et

seqq.
Variations, calculus of, 436 ét
Varignon, enunciates the principle of

the parallelogram of forces, 36 ; on
the simple machines, 37 ; his statics
a dynamical statics, 38 ; on velocity
of liquid efflux, 403.

Fas superficial'ium of Stevinus, 89.
Vehicle on wheels, 291.
Velocity, 144 ; angular, 296 ; a phys-

ical level , 325.
Velocity-head, 417.
Vibration, see Oscillation.
View, breadth of , possessed by all

great inquirers, 500 et seq.
Vinci, Leonardo Da, on the law of

the lever, 20.
Virtual displacements, definition of,

57 ; see also Virtual velocities.
Virtual moments, 57.
Virtual velocities, origin and

ing of the term, 49 ; the principle
of, 49-77.

Viscosity of liquids, 416.
Vis viortua , 272, 275.
Vis viva , 272 et seqq., 315 ; conserva-

tion of, 317, interpreted, 326; in im-
pact, 322 et seqq.; principle of, 343-
350 ; connection of Huygens’ s prin-
ciple with, 178; prir.ciple of , de-
duced from Lagrange’ s fundamen-
tal equations, 478, 499.

Reaction-wheels, 299 et seqq.
Réaumur, 453.
Reason, sufficient, principle of , 9, 484 ,

502.
Reconstruction of facts, mental, sec

Reproduction.
Refiguring of facts in thought , sec

Reproduction.
Refraction, economical character of

law of, 485.
Regulce Fhilosophandiy Newton’s, 193.
Regularity, 395.
Religious opinions, Our, 464.
Repos^ loi de y 68.
Representation, sec Reproduction of

facts in thought.
Reproduction of facts in thought, 5,

84, 421, 481 494-
Research, means and aims of, distin-

guished , 507.
Resistance head, 417.
Rest, Maupertuis's law of , 68, 259.
Resultant of force, 34.
Richer, 161, 251.
Riemann, 493.
Roberval , his balance, 60; his method

of maxima and minima. 423 ; on
momenta, 305 ; on the composition
of forces, 197.

Robins, 330.
Routh, 352.
Routine methods, 181, 268, 287, 341.
Rules, 83, 485 ; the testing of , 81.

Tangents, method of, 423.
Taylor, Brook, on the centre of os-

cillation, 335.
Teleology, or evidences of design in

nature. 452.
Theological points of view in

chanics, 446 et seqq.; inclinations
of great physicists, 450.

Theology and science, conflict of, 446;
their points of identity, 460.

Theorems, 421.
Theories, 491 et seqq.
Thermometers, their construction,

282.

346.
Spiritism, or spiritualism, 49
Stable equilibrium, 70-71.
Stage of thought, the, 505.
Statical manometer, 123.
Statical moment, 14 ; possible origin

of the idea, 21.

me- seqq.

Statics, deduction of its principles
from hydrostatics, jo7- ct seqq.; the
development of the principles of,
8 127 ; retrospect of the develop-

of , 77 85; the principles of,
applied to fluids, 86-no ; the prin-
ciples of , applied to gaseous bodies.
110-127; Varignon’s dynamical, 38,
268 ; analytical, founded by La-

the principle of virtual

Things, their nature, 482 ; tilings of
thought , 492 et seqq.

Thomson and Tait , their opinion of
Newton's laws, 245.

Thought, instruments of, 505 ; things
of , 492 et seqq.; economy of, see
Economy.

Tides, Newton on, 209 ct seq.; their
effect on the army of Alexander the
Great, 209 ; explanation of, 213 et
seq.; their action illustrated by

ment

Sail filled with wind , curve of , 431. grange on
velocities, 467.

Stevinus, his deduction of the law of
the inclined plane, 24-31; his ex-
planation of the other machines by

the inclined plane, 31-33 ; the par-
allelogram of forces derived from
his principle, 32-35; his discovery

of the germ of the principle of vir-
tual velocities, 49-51; his researches
in hydrostatics, 88-90; his broad

Scheffler, 353, 364.
Schopenhauer, on causality, 484.
Science, the nature and development

of , 1-7 ; the origin of , 4, 8, 78 ; de-
ductive and formal development of ,

421 ; physical, its pretensions and
attitude. 464 et seq . ; the economy
of , 481-494 ; a minimal problem,
490 ; the object of , 496, 497, 502, 507;

and aims of , should be dis-

an mean-
experiment, 215.

Time, 511 ; a set of sensations, 506 ;
Newton’s view of, 222-238 ; abso-
lute and relative, 222 ; nature of,
223-226, 234.

Toeppler and Foucault,
method of , 125.

Torricelli, his modification of Gali-
leo' s deduction of the law of the
inclined plane,

means
tinguished, 504, 505 ; condition of

the true development of , 504 ; divi-
sion of labor in , 505 ; tools and in-

opticalview of nature, 500.
Strata, parallelism of , 409.
Streintz, 510 et seqq.
String, equilibrium of a, 372 et seqq.;

see Catenary.
Strings, equilibrium of three-knot-

struments of , 505.
Science and theology, conflict of, 446;

their points of identity, 460.
52 ; his measure-

ment of the weight of the atmos-
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Vitruvius, on the nature of sound, 3 ;
his account of Archimedes’s dis-
covery, S6 ; on ancient air-instru-
ments, no.

Viviani, 113.
Voltaire, 449, 454-
Volume of liquids, connection of

with equilibrium, 387-390.

Wohlwill , on the law of inertia, 308,

509.
Wood, on the cells of the honeycomb,

453-
Woodhouse, on isoperimetrical prob-

lems, 430.
Work, 54 , 67 et seq., 248 et seq., 363;

definition of , 272 ; determinative of
vis viva, 178 ; accidentally not the
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original concept of mechanics,/48; X
J . R. Mayer’s views of , 249 ; Iluy-

Wallis, on impact, 313 ; on the centre
of percussion, 327.

Water, compressibility of , 93.
Weightless liquids, 384 et seqq.
Weights and measures, see Units.
Weston, differential pulley of , 59.
Wheatstone, chronoscope of , 151.
Wheel and axle, with non-circular

wheel, 72 ; motion of , 22 et seq., 60,
337. 344. 35-b 3»i.

Will, conception of, in nature, 461.
Wire frames, Plateau 's, 393.

gens’s appreciation of, 252, 272; in
impact, 322 et seqq.; of molecular
forces in liquids, 385 et seqq.; posi-
tive and negative, 386 ; of liquid
forces of pressure, 413 ; of com-
pression, 407.

Wren, on impact, 313.
Wright, Chauncey, 453.

Yard, Imperial, 281 ; American , 283.
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