






























































































































































88 THE SCIENCE OF MECHANICS.

L Archimedes now, to present the matter briefly,
the princi- " v g % € -
ple. conceives the entire spherical earth as fluid in consti-

tution, and cuts out of it pyramids the vertices of
which lie at the centre (Fig. 59). All these pyramids
" must, in the case of equilib-
rium, have the same weight,
and the similarly situated
4 parts of the same must all
suffer the same pressure.
If we plunge a body @ of
the same specific gravity as
% water into one of the pyra-
. mids, the body will com-
pletely submerge, and, in
the case of equilibrium, will supply by its weight the
pressure of the displaced water. The body 4, of less
specific gravity, can sink, without disturbance of equi-
librium, only to the point at which the water beneath
it suffers the same pressure from the weight of the
body as it would if the body were taken out and the
submerged portion replaced by water. The body ¢,
of a greater specific gravity, sinks as deep as it possibly
can. That its weight is lessened 1n the water by an
" amount equal to the weight of the water displaced,
will be manifest if we imagine the body joined to
another of less specific gravity so that a third body is
formed having the same specific gravity as water,
which just completely submerges.
Thestateof 4. When in the sixteenth century the study of the
the science v .
in the six-  works of Archimedes was again taken up, scarcely the
iﬁ?_f,’.‘" “" principles of his researches were understood. The
complete comprehension of his deductions was at that
time impossible.
Stevinus rediscovered by a method of his own the

Fig. 59.

* submerged water solidified, the vessel formed by this”
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most important principles of hydrostatics and the de- The discov-
ductions therefrom. It was principally two ideas from e
which Stevinus derived his fruitful conclusions. The

one is quite similar to that relating to the endless

chain. The other consists in the assumption that the
golidification of a fluid in equilibrium does not disturb

its equilibrium.

Stevinus first lays down this principle. Any given JiCin
mass of water 4 (Fig. 60), immersed in water, 1S In tal princi-
equilibrium in all its parts. If 4 B
were not supported by the sur-
rounding water but should, let us
say, descend, then the portion of
water taking the place of 4 and
placed thus in the same circum-
stances, would, on the same as-
sumption, also have to descend.
This assumption leads, therefore, to the establishment
of a perpetual motion, which is contrary to our ex-
perience and to our instinctive knowledge of things.

Water immersed in water loses accordingly its The second

. . . fundamen-
whole weight. If, now, we imagine the surface of the tal princi-

le.

5 P

Fig. 6o.

surface, the vas superficiarium as Stevinus calls it, will
still be subjected to the same circumstances of pres-
sure. 1If empty, the vessel so formed will suffer an
upward pressurein the liquid equal to the weight of the
water displaced. If we fill the solidified surface with
some other substance of any specific gravity we may
choose, it will be plain that the diminution of the
weight of the body will be equal to the weight of the
fluid displaced on immersion.

In a rectangular, vertically placed parallelepipedal

vessel filled with a liquid, the pressure on the horizontal
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Stevinus's base is equal to the weight of the liquid. The pressure

deductions, .
is equal, also, for all parts of the bottom of the same
area. When now Stevinus imagines portions of the
liquid to be cut out and replaced by rigid immersed
bodies of the same specific gravity, or, what is the
same thing, imagines parts of the liquid to become so-
lidified, the reclations of pressure in the vessel will not
be altered by the procedure. But we easily obtain in
this way a clear view of the law that the pressure on
the base of a vessel is independent of its form, as well
as of the laws of pressure in communicating vessels,
and so forth.

Galileo, in 5. GALILEO treats the equilibrium of liquids in com-

l-?g;;g:f this municating vessels and the problems connected there-

ploysthe with by the help of the principle of virtual displace-

i e ments. NV (Fig. 61) being the

vlirtual dis-
placements - - - aqe
common level of a liquid in equilib-

rium in two communicating vessels,
Galileo explains the equilibrium
here presented by observing that in
the case of any disturbance the dis-
placements of the columns are to

each other in the inverse proportion
of the areas of the transverse sec-
tions and of the weights of the columns—that is, as
with machines in equilibrium. But this is not quite cor-
rect. The case does not exactly correspond to the
cases of equilibrium investigated by (alileo in ma-
chines, which present indifferent equilibrium. With
liquids in communicating tubes every disturbance of the
common level of the liquids produces an elevation of
the centre of gravity. In the case represented in FFig.
61, the centre of gravity .S of the liquid displaced from
the shaded space in 4 is elevated to ', and we may

Fig. 61.
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regard the rest of the liquid as not having been moved.
Accordingly, 1n the case of equilibrium, the centre of
gravity of the liquid lies at its lowest possible point.

6. PascaL likewise employs the principle of virtual The same

P

rinciple

displacements, but in a more correct manner, leaving made use of

the weight of the liquid out of account and considering
only the pressure at the surface. If we imagine two
communicating vessels to be closed by pistons (Fig.
62), and these pistons loaded with
weights proportional to their surface-
areas, equilibrium will obtain, because
in consequence of the invariability of
the volume of the liquid the displace-
ments in every disturbance are in- —
versely proportional to the weights. Fig. 62.
For Pascal, accordingly, it fo//ows, as a necessary con-
sequence, from the principle of virtual displacements,
that in the case of equilibrium every pressure on a su-
perficial portion of a liquid is propagated with undi-
minished effect to every other superficial portion, how-
ever and in whatever position it be placed. No objec-
tion is to be made to discovering the principle in this
way. Yet we shall sce later on that the more natural
and satisfactory conception is to regard the principle as
immediately given.

7. We shall now, after this historical sketch, again p

vy Pascal.

etailed

: ; CALm SE A considera-
examine the most important cases of liquid equilibrium, ton of the

and from such different points of view as may be con-
venient.

The fundamental property of liquids given us by
€xperience consists in the flexure of their parts on the
slightest application of pressure. Let us picture to our-
selves an element of volume of a liquid, the gravity of
which we disregard—say a tiny cube. If the slightest

subject,



The funda-
mental

property of
liquids the
mobijity of
their parts.

A second
property
the com-
pressibility
of their vol-
ume.
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excess of pressure be exerted on one of the surfaces of
this cube, (which we now conceive, for the moment,
as a fixed geometrical locus, containing the fluid but
not of its substance) the liquid (supposed to have pre-
viously been in equilibrium and at rest) will yield and
pass out in all directions through the other five surfaces
of the cube. A solid cube can stand a pressure on its
upper and lower surfaces different in magnitude from
that on its lateral surfaces ; or zice versa. A fluid cube,
on the other hand, can retain its shape only if the same
perpendicular pressure be exerted on all its sides. A
similar train of reasoning is applicable to all polyhe-
drons. In this conception, as thus geometrically eluci-
dated, is contained nothing but the crude experience
that the particles of a liquid yield to the slightgst pres-
sure, and that they retain this property also in the in-
terior of the liquid when under a high pressure; it
being observable, for example, that under the condi-
tions cited minute heavy bodies sink in fluids, and so on.

With the mobility of their parts liquids combine
still another property, which we will now consider. Li-
quids suffer through pressure a diminution of volume
which is proportional to the pressure exerted on unit
of surface. Every alteration of pressure carries along
with it a proportional alteration of volume and density.
If the pressure diminish, the volume becomes greater,
the density less. = The volume of a liquid continues to
diminish therefore on the pressure being increased, till
the point is reached at which the elasticity generated
within it equilibrates the increase of the pressure.

8. The earlier inquirers, as for instance those of the
Florentine Academy, were of the opinion that liquids
were incompressible. In 1761, however, Joun CanToN
performed an experiment by which the compressibility
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of water was demonstrated. A thermometer glass is The first
filled with water, boiled, and then sealed. (Fig. 63)%11?(3??52
The liquid reaches to ¢. But since the space above a is ﬁf’u"i?iff“’
airless, the liquid supports no atmospheric pres- i
sure. If the sealed end be broken off, the liquid |

will sink to 4. Only a portion, however, of this ;
displacement is to be placed to the credit of the ¢ s
compression of the liquid by atmospheric pres- E

sure. For if we place the glass before breaking %

off the top under an air-pump and exhaust the =
chamber, the liquid will sink to «. This last phe- o
nomenon is due to the fact that the pressure that
bears down on the exterior of the glass and diminishes
its capacity, is now removed. On breaking off the top,
this exterior pressure of the atmosphere is compensated
for by the interior pressure then introduced, and an
enlargement of the capacity of the glass again sets in.
The portion ¢4, therefore, answers to the actual com-

pression of the liquid by the pressure of the atmos-

. 63.

" phere.

The first to institute exact experiments on the com- The experi-
pressibility of water, was OERSTED, who employed to r(r)]:pstasegﬁm
this end a very ingenious method. A M
thermometer glass 4 (Fig. 64) is filled
with boiled water and is inverted, with
open mouth, into a vessel of mercury.
Near it stands a manometer tube B filled
with air and likewise inverted with open
mouth in the mercury. The whole ap-
paratus is then placed in a vessel filled
with water, which is compressed by the E
aid of a pump. By this means the water Figics.
in A is also compressed, and the filament of quicksilver
which rises in the capillary tube of the thermometer-
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glass indicates this compression. The alteration of
capacity which the glass A suffers in the present in-
stance, is merely that arising from the pressing to-

If we endeavor, now, quantitatively to elucidate our Thestate-
5 ce ment of
mental conception of these two facts, the easy mobility these impli-
cations,

The experi-
ments of
Grassi.

gether of its walls by forces which are equal on all sides.

The most delicate experiments on this subject have
been conducted by Grasst with an apparatus con-
structed by Regnault, and computed with the assist-
ance of Lamé’s correction-formule. To give a tan-
gible idea of the compressibility of water, we will remark
that Grassi observed for boiled water at 0° under an
increase of one atmospheric pressure a diminution of
the original volume amounting to 5 in 100,000 parts.
If we imagine, accordingly, the vessel A4 to have the
capacity of one litre (1000 ccm.), and affix to it a cap-
illary tube of r sq. mm. cross-section, the quicksilver
filament will ascend in it 5 cm. under a pressure of

and the compressibility of the parts of a liquid, so that
they will fit the most diverse classes of experience,
we shall arrive at the following proposition: When
equilibrium subsists in a liquid, in the interior of which
no forces act and the gravity of which we neglect, the
same equal pressure is exerted on each and every equal
surface-element of that liquid however and wherever
situated. The pressure, therefore, is the same at all
points and 1s independent of direction.

Special experiments in demonstration of this prin-
ciple have, perhaps, never been instituted with the re-
quisite degree of exactitude. But the proposition has
by our experience of liquids been made very familiar,
and readily explains it. -

one atmosphere.

Surface- _ 9. Surface-pressure, accordingly, induces a physical
pressure n- . - . - . . . .
ducesin  alteration in a liquid (an alteration in density), which
liquids an s =

alteration can be detected by sufficiently delicate means—even

ro. If aliquid be enclosed in a vessel (Fig. 65) Prelimi-
which is supplied with a piston A4, the cross-section marks fo

. . Bk F o 5 the discuss-
of which is unit in area, and with a piston & which ionof Pas.

- e . I's deduc-
for the time being is made station- fon e

of density.

The impli-
cations of
this fact.

optical. We are always at liberty to think that por-
tions of a liquid under a higher pressure are more dense,
though it may be very slightly so, than parts under a
less pressure.

Tet us imagine now, we have in a liquid (in the in-
terior of which no forces act and the gravity of which
we accordingly neglect) two portions subjected to un-
equal pressures and contiguous to one another. The
portion under the greater pressure, being denser, will
expand, and press against the portion under the less
pressure, until the forces of elasticity as lessened on the
one side and increased on the other establish equilib-
rium at the bounding surface and both portions are
equally compressed.

ary, and on the piston 4 a load p
be placed, then the same pressure
/. gravity mneglected, will prevail
throughout all the parts of the vessel.
The piston will penetrate inward and
the walls of the vessel will continue
tobe deformed till the point is reached Fig. 65.
at which the elastic forces of the rigid and fluid bodies
perfectly equilibrate one another. If then we imagine
the piston B, which has the cross-section f, to be mov-
able, a force f.  alone will keep it in equilibrium.
Concerning Pascal’s deduction of the proposition
before discussed from the principle of virtual displace-
ments, it is to be remarked that the conditions of dis-
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Criticiem of placement which he perceived hinge wholly upon the
duction,  fact of the ready mobility of the parts and on the
equality of the pressure throughout every portion of
the liquid. Tf it were possible for a greater compression
to take place in one part of a liquid than in another,
the ratio of the displacements would be disturbed and
Pascal's deduction would no longer be admissible.
That the property of the equality of the pressureis a
property given in experience, is a fact that cannot be
escaped ; as we shall readily admit if we recall to mind
that the same law that Pascal deduced for liquids also
holds good for gases, where even approximately there
can be no question of a constant volume. This latter
fact does not afford any difficulty to our view; but to
that of Pascal it does. In the case of the lever alse, be
it incidentally remarked, the ratios of the virtual dis-
placements arc assured by the elastic forces of the
lever-body, which do not permit of any great devia-

tion from these relations.
Gobet r1. We shall now consider the action of liquids un-
s naner der the influence of gravity. The upper surface of a
of gravity. liquid in equilibrium is horizontal,
NNV (Fig. 66). This fact is at once
rendered intelligible when we re-
flect that every alteration of the sur-
face in question elevates the centre
of gravity of the liquid, and pushes
Frig, 66. the liquid mass resting in the shaded
space beneath AV and having the centre of gravity .S
into the shaded space above VA having the centre of
gravity .S’. Which alteration, of course, 1s at once re-

versed by gravity.

Let there be in equilibrium in a vessel a heavy
liquid with a horizontal upper surface. We consider
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(Fig. 67) a small rectangular parallelepipedon in the The con-

2 : 5 5 5 . ditions of
interior. The area of its horizontal base, we will say, 1S equilibrium

. - 4 in liquids

a, and the length of its vertical edges 7% The weight subjected

to the ac-

of this parallelepipedon is therefore w45, where s is tionof grav-
its specific gravity. If the paral- -
lelepipedon do not sink, this is
possible only on the condition that .
a greater pressure is exerted on the Prep
lower surface by the fluid than on
the upper. The pressures on the
upper and lower surfaces we will
respectively designate as ap and «a (p -} &p). LEqui-
librium obtains when adi.s=adp or dpjdi=s,

where /£ 1n the downward direction is reckoned as posi-

tive. We see from this that for equal increments of %
vertically downwards the pressure p must, correspond-

ingly, also receive equal increments. So that p=

hs -+ ¢ and if ¢, the pressure at the upper surface,

which is usually the pressure of the atmosphere, be-

comes = 0, we have, more simply, p = /s, that is, the
pressure is proportional to the depth beneath the sur-

face. If we imagine the liquid to be pouring into a ves-

sel, and this condition of affairs not yet attained, every

liquid particle will then sink until the compressed par-

ticle beneath balances by the elasticity developed in it -

the weight of the particle above.

From the view we have here presented it will be fur- piferent
ther apparent, that the increase of pressure in a liquid f?ﬁ?éﬂ:?
takes place solely in the direction in which gravity ﬁﬁ?’é?:ﬁ‘i
acts. Only at the lower surface, at the base, of the 3?;2‘}?;“
parallelepipedon, is an excess of elastic pressure on the
part of the liquid beneath required to balance the
weight of the parallelepipedon. Along the two sides of
the vertical containing surfaces of the parallelepipedon,

Fig. 67.
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the liquid is in a state of equal compression, since no
force acts in the vertical containing surfaces that would

determine a greater compression on the one side than

Level sur-
faces,

on the other.

If we picture to ourselves the totality of all the
points of the liquid at which the same pressure p acts,
we shall obtain a surface—a so-called lewel surface. 1f

“we displace a particle in the direction of the action of

Their func-

tion in
thought,

gravity, it undergoes a change of pressure. If we dis-
place it at right angles to the direction of the action of
gravity, no alteration of pressure takes place. In the
latter case it remains on the same level surface, and
the element of the level surface, accordingly, stands at
right angles to the direction of the force of gravity.
Imagining the earth to be fluid and spherical, the
level suifaces are concentric spheres, and the directions
of the forces of gravity (the radii) stand at right angles
to the elements of the spherical surfaces. Similar ob-

“servations are admissible if the liquid particles be acted

on by other forces than gravity, magnetic forces, for
example.

The level surfaces afford, in a certain sense, a dia-
gram of the force-relations to which a fluid is subjected;
a view further elaborated by analytical hydrostatics.

1z. The increase of the pressure with the depth be-
low the surface of a heavy liquid may be illustrated by
a series of experiments which we chiefly owe to Pas-
cal. These experiments also well illustrate the fact,
that the pressure is independent of the direction. In
Fig. 68, 1, is an empty glass tube g ground off at the
bottom and closed by a metal disc pp, to which a
string is attached, and the whole plunged into a vessel
of water. - When immersed to a sufficient depth we
may let the string go, without the metal dise, which is
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supported by the pressure of the liquid, falling. In 2, Pascals ex-
the metal disc is replaced by a tiny column of mepgsﬁﬂfnts
cury. If (3) we dip an open siphon tube filled with Fgude.
quicksilver into the water, we
shall see the quicksilver, in conse-
quence of the pressure at a, rise
into the longer arm. In 4, we see
a tube, at the lower extremity of L
which a leather bag filled with

quicksilver is tied:

L

continued
immersion forces the quicksilver
higher and higher into tube. In
5, a piece of wood 4 is driven by
the pressure of the water into the
small arm of an empty siphon
tube. A piece of wood /7 (6) im-
mersed in mercury adheres to the
bottom of the wvessel, - and is
pressed firmly against it for as
long a time as the mercury is
kept from working its way be-
neath it. :
13. Once we have made quite T :H v
clear to ourselves that the pres- b,
sure in the interior of a heavy
ligquid increases proportionally to
the depth below the surface, the
law that the pressure at the base
of a vessel is independent of its
form will be readily perceived.
The pressure increases as we de-
scend at an equal rate, whether the vessel (Fig. 6g)
has the form aéecd or edcf. In both cases the walls
of the vessel where they meet the liquid, go on deforming

Fig. 68.

| The pres-
| sure at the
[
I
!

o baseof a

vessel inde-
| pendent of
its form.
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till the point is reached at which they equilibrate by the
elasticity developed in them the pressure exerted by the
fluid, that is, take the place as regards pressure of the
fluid adjoining. This fact is
a direct justification of Ste-
vinus’s fiction of the solidi-
fied fluid supplying the place
of the walls of the vessel.
The pressure on the base

Fig. 69. always remains 2= d45.s,
where 4 denotes the area of the base, % the depth of
the horizontal plane base below the level, and s the
specific gravity of the liquid.

Elucida- The fact that, the walls of the vessel being neg-
fon o™ Jected, the vessels 1, 2, 3 of Fig. 70 of equal base-

area and equal pressure-height weigh differently in the
balance, of course
in no wise con-

2

= E

= . tradicts the laws
= E— of pressure men-
| 1 | tioned. If we take

Fig. 7. into account the
lateral pressure, we shall see that in the case of 1 we
have left an extra component downwards, and in the

~case of 3 an extra component upwards, so that on the
whole the resultant superficial pressure is always equal
to the weight.
The princi-  I4. The principle of virtual displacements is ad-

le of vir- . Gt
fualdis-  mirably adapted to the acquisition of clearness and

lacements . > 3
applied to. comprehensiveness in cases of this character, and we

the eonsit” shall accordingly make use of it. To begin with, how-

Prorieme o ver, let the following be noted. If the weight ¢ (Fig.
71) descend from position 1 to position 2, and a weight

of exactly the same size move at the same time from
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2 to 3, the work performed in this operation is ¢ /4, - E;j;’ﬂ;é
ghy,=gq (&, + %,), the same, that is, as if the weight marks.
g passed directly from 1 to 3 and the weight at 2 re-
mained 1n its original position. The observation is

easily generalised.

7 ,@ h
) 2 S
Ly ﬁ
7
3
¢ Az "
Fig. 71. Fig, 72,

Let us consider a heavy homogeneous rectangular
parallelepipedon, with vertical edges of the length 4/,
base A4, and the specific gravity s (Fig. 72). Let this
parallelepipedon (or, what is the same thing, its centre
of gravity) descend a distance #%. The work done is
then 4 /is.d %, or, also, Adks.k In the first expres-
sion we conceive the whole weight A /s displaced the
vertical distance 4% ; in the second we conceive the
weight 44 /s as having descended from the upper
shaded space to the lower shaded space the distance 4,
and leave out of account
the rest of the body.
Both methods of concep-
tion are admissible and
equivalent,

15. With the aid of
this observation we shall
obtain a clearinsight into Fig. 73.
the paradox of Pascal, which consists of the following.
The vessel ¢ (Fig. 73), fixed to a separate support and
consisting of a narrow upper and a very broad lowen
cylinder, is closed at the bottom by a movable piston,

Pascal’s
paradox,
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which, by means of a string passing through the axis
of the cylinders, is independently suspended from the
extremity of one arm of a balance. If ¢ be filled with
water, then, despite the smallness of the quantity of
water used, there will have to be placed on the other
scale-pan, to balance it, several considerable weights,
the sum of which will be A4 /s, where A is the piston-
area, / the height of the liquid, and s its specific grav-
ity. But if the liquid be frozen and the mass loosened
from the walls of the vessel, a very small weight will be
sufficient to preserve equilibrium.
The expla- Let us lock to the virtual displacements of the two
nation of o . .
the paradox cases (Fig. 74). In the first case, supposing the pis-
ton to be lifted a distance @/, the virtual moment is
Adhs. or Als.dh It thus
comes to the same thing,
whether we consider the mass
that the motion of the piston
displaces to be lifted to the
upper surface of the flmd

Fig. 74. through the entire pressure-
height, or consider the entire weight 4 /s lifted the
distance of the piston-displacement #/%. Inthe second
case, the mass that the piston displaces 1s not lifted to
the upper surface of the fluid, but suffers a displace-
ment whichis much smaller—the displacement, namely,
of the piston. If 4, @ are the sectional areas respect-
ively of the greater and the less cylinder, and % and /
their respective heights, then the virtual moment of the
present case is Adas. b+ adhs = (ALl -+ al)s.dh;
which is equivalent to the lifting of a much smaller
weight (4% 4 al) s, the distance Z/4.

16. The laws relating to the lateral pressure of
liquids are but slight modifications of the laws of basal
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pressure. If we have, for example, a cubical vessel The lawsof
of 1 decimetre on the side, which is a vessel of litre Efsrsaulre.
capacity, the pressure on any one of the vertical lateral

walls ABCD, when the vessel is filled with water, is

easily determinable. The deeper the migratory element
considered descends beneath the surface, the greater

the pressure will be to which it is subjected. We easily
perceive, thus, that the pressure on a lateral wall is rep-
resented by a wedge of water A8 CLOHT resting upon

the wall horizontally A E
placed, where /22 1s at A

right angles to A7 and
R —He— e The

K
lateral pressure accor- £/ ‘ b\[,
dingly is equal to half E / ' 5
a kilogramme.

Fig. 75.

/3

To determine the
point of application of the resultant pressure, conceive
ABCD again horizontal with the water-wedge resting
upon it. We cut off 4K —=FBL—24C, draw the
straight line AZ and bisect it at 4/ ; 4/ is the point of
application sought, for through this point the vertical
line cutting the centre of gravity of the wedge passes.

A plane inclined figure forming the base of a vessel The pres-

filled with a liquid, is divided into the elements a, a',_i‘fﬁﬁé’?ﬁ
a” . .. with the depths %, #', 4" . .. below the level of el i

the liquid. The pressure on the base is
(ah+a 4+ a" X'+ .. ) s
If we call the total base-area 4, and the depth of its
centre of gravity below the surface /7, then
ak 4 ok + a"h ... e ol
ata +a" ... A

whence the pressure on the base is .4 Hs.

— 7
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The deduc-  17. The principle of Archimedes can be deduced in
tion of the

principle of various ways. After the manner of Stevinus, let us
Archime-

des maybe conceive in the interior of the liquid a portion of it

effected in S e . . .

various  solidified. This portion now, as before, will be sup-

i ported by the circumnatant liquid. The resultant of
the forces of pressure acting on the surfaces is accor-
dingly applied at the centre of gravity of the liquid dis-
placed by the solidified body, and is equal and opposite
to its weight. If now we put in the place of the solid-
ified liguid another different body of the same form, but
of a different specific gravity, the forces of pressure at
the surfaces will remain the same. Accordingly, there
now act on the body two forces, the weight of the body,
applied at the centre of gravity of the body, and the up-
ward buoyancy, the resultant of the surface-pressures,
applied at the centre of gravity of the displaced liquid.
The two centres of gravity in question coincide only in
the case of homogeneous solid bodies.

One meth- It we immerse a rectangular parallelepipedon of al-

' titude /2 and base «, with edges vertically placed, in a

liquid of specific gravity s, then the pressure on the
upper basal surface, when at a depth # below the level
of the liquid is a#s, while the pressure on the lower
surface is & (4 + %) 5. As the lateral pressures destroy
each other, an excess of pressure «/s upwards re-
mains; or, where » denotes the volume of the paral-
lelepipedon, an excess 7. s.

Another We shall approach nearest the fundamental con-

method in- : = N
volving the ception from which Archimedes started, by recourse to

principle of i = i =

;]l?cueigﬁfa the principle ojf virtual displacements. Let a paral-
lelepipedon (Fig. 76) of the specific gravity &, base a,
and height % sink the distance Z4. The virtual mo-
ment of the transference from the upper into the lower

shaded 'space of the figure will be ad%. 6 /4. But while
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this is done, the liquid rises from the lower into the up-
per space, and its moment is ed/%s/% The total vir-
tual moment is therefore ak (6 — ) dh={(p—q)d4%,
where p denotes the weight of the body and ¢ the weight
of the displaced liquid.

Fig. 76. Fig. 77.
18. The question might occur to us, whether the Slgeopgoy-
upward pressure of a body in a liquid is affected by the Rg‘iﬁrﬁ
immersion of the latter in another liquid. As a fact, focted by

this very question has been proposed. Let therefore ?iislx:isthtlhjt
(Fig. 77) a body A be submerged in a liquid 4 and the Sﬁﬂ;
liquid with the containing vessel in turn submerged in

another liquid A. If in the determination of the loss

of weight in 4 it were proper to take account of the

loss of weight of 4 in A, then A”s loss of weight would
necessarily vanish when the fluid & became identical

with 4. Therefore, A immersed in 4 would suffer a

loss of weight and it would suffer none. Such a rule

would be nonsensical. :

With the aid of the principle of virtual displace- The eluci-
ments, we easily comprehend the more complicated more com-
cases of this character. If a body be first gradually e S
immersed in /7, then partly in A and partly in 4, ek
finally in A4 wholly ; then, in the second case, consider-
ing the virtual moments, both liquids are to be taken
into account in the proportion of the volume of the
body immersed in them. But as soon as the body is

wholly immersed in 4, the level of 4 on further dis-
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placement no longer rises, and therefore 7 is no longer
of consequence.
The Archi- 19. Archimedes’s principle may be illustrated by a

medean

principleil- pretty experiment. From the one extremity of a scale-
lustrated by

&n experi; beam (Fig. 78) we hang a hollow cube /4, and beneath
i 1t a solid cube 47, which exactly fits into
the first cube. We put weights into the
opposite pan, until the scales are in
equilibrium. If now 4/ be submerged
in water by lifting a vessel which stands
H beneath it, the equilibrium will be dis-
turbed ; but it will be immediately re-
stored if A, the hollow cube, be filled

with water.

The coun- A counter-cxperiment is the follow-
e s ing. A is left suspended alone at the
- one extremity of the balance, and into

the opposite pan is placed a vessel of

Hie78. water, above which on an independent

support # hangs by a thin wire. The scales are brought
to equilibrium. If now A be lowered until it is im-
mersed in the water, the equilibrium of the scales will
be disturbed ; but on filling A with water, it will be
restored.

Remarks on At first glance this experiment appears a little para-

the experi- Joxical. We feel, however, instinctively, that 47 can-
not be immersed in the water without exerting a pres-
sure that affects the scales. When we reflect, that the
level of the water in the vessel rises, and that the solid
body 44 equilibrates the surface-pressure of the water
surrounding 1it, that is to say represents and takes the
place of an equal volume of water, it will be found
that the paradoxical character of the experiment van-
ishes.
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20. The most important statical principles have The gene-

’ 5 . k . B . ral princi-
been reached in the investigation of solid bodies. This ples of stat-

- - 5 2 AT ics migh

course is accidentally the Zistorical one, but it is by no have been
. . reached 1m

means the only possible and necessary one.  The dif- the investi-

= 2 5 gation of
ferent methods that Archimedes, Stevinus, Galileo, and fiuid bodies

the rest, pursued, place this idea clearly enough before
the mind. As a matter of fact, general statical princi-
ples, might, with the assistance of some very simple
propositions from the statics of rigid bodies, have been
reached in the investigation of liquids. Stevinus cer-
tainly came very near such a discovery. We shall stop
a moment to discuss the question.

Let us imagine a liquid, the weight of which we neg- The dis-
lect. Let this liquid be enclosed in a vessel and sub- ﬁ?ﬁiﬁ:&gf
: : : . .3 ofthis
jected to a definite pressure. A portion of the liquid, statement.
let us suppose, solidifies. On the closed surface nor-
mal forces act proportional to the elements of the area,
and we see without difficulty that their resultant will
always be = 0. j )

If we mark off by a closed curve a portion of the
closed surface, we obtain, on either side of it, a non-
closed surface. All surfaces which are bounded by the
same curve (of double curvature) and on which forces
act normally (in the same sense) pro- !
portional to the elements of the area, P

have lines coincident in position for
the resultants of these forces.

Let us suppose, now, that a fluid i
cylinder, determined by any closed 7 T \\‘
plane curve as the perimeter of its Fig. 79.

base, solidifies. We may neglect the two basal sur-
faces, perpendicular to the axis. And instead of the
cylindrical surface the closed curve simply may be con-
sidered. From this method follow quite analogous
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The dis- propositions for normal forces proportional to the ele-

cussion and
illustration ments of a plane curve.
statement, If the closed curve pass into a triangle, the con-
sideration will shape itself thus. The resultant normal
forces applied at the middle points of the sides of the
triangle, we represent in direction, sense, and magni-
\ tude by straight lines (Fig. 80). The
Ai——- lines mentioned intersect at a point—
T the centre of the circle described about
the triangle. It will further be noted,
that by the simple parallel displace-
ment of the lines representing the forces a triangle is
constructible which is similar and congruent to the
original triangle.

Fig. 8a.

The deduc- Thence follows this proposition :

tion of the . . .

triangle of Any three forces, which, acting at a point, are pro-
forces by

this method portional and parallel in direction to the sides of a tri-
angle, and which on meeting by parallel displacement
form a congruent triangle, are in equilibrium. We see
at once that this proposition is simply a different form
of the principle of the parallelogram of forces.

If instead of a triangle we imagine a polygon, we
shall arrive at the familiar proposition of the polygon
of forces.

We conceive now in a heavy liquid of specific gravity
x a portion solidified. On the element « of the closed
encompassing surface there acts a normal force a 2,
where z1s the distance of the element from the level of
the liquid. We know from the outset the result.

Similar de- If normal forces which are determined by axz,

duction of .

another im- where o denotes an element of area and z its perpen-

portant pro- 4 = o

position.  dicular distance from a given plane £, act on a closed
surface inwards, the resultant will be V., in which ex-

pression J represents the enclosed volume. The
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resultant acts at the centre of gravity of the volume,
is perpendicular to the plane mentioned, and is directed
towards this plane.

Under the same conditions let a rigid curved surface The propo-

sition here

be bounded by a plane curve, which encloses on the deduced, a
special case

plane the area 4. The resultant of the forces acting of Green's
Theoren.

on the curved surface is &, where
02 = (AL )2 + (V)2 — ALV x? cos v,

in which expression 7 denotes the distance of the
centre of gravity of the surface 4 from 7, and » the
normal angle of £ and 4.

In the proposition of the last paragraph mathe-
matically practised readers will have recognised a par-
ticular case of Green's Theorem, which consists in the
reduction of surface-integrations to volume-integra-
tions or wice versa.

We may, accordingly, se¢ znfo the force-system of a rhe impli-
fluid in equilibrium, or, if you please, se¢ ouz of it, sys- ‘fﬁé“éi‘.iﬁ‘
tems of forces of greater or less complexity, and thus e
reach by a short path propositions a pesferiors. It is a
mere accident that Stevinus did not light on these
propositions. The method here pursued corresponds
exactly to his. In this manner new discoveries can
still be made.

21. The paradoxical results that were reached in Fruiteu] re-
the investigation of liquids, supplied a stimulus to fur- i}r?\lifagiihb
ther reflection and research. It should also not be left il
unnoticed, that the conception of a physico-mechanical
continunm was first formed on the occasion of the in-
vestigation of liquids. A much freer and much more
fruitful mathematical mode of view was developed

thereby, than was possible through the study even of
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systems of several solid bodies. The origin, in fact,
of important modern mechanical ideas, as for instance
that of the potential, 1s traceable to this source.

VIIL.

THE PRINCIPLES OF STATICS IN THEIR APPLICATION TO
GASEOUS BODIES.
Sl 1. The same views that subserve the ends of science
partmentof in the investigation of liquids are applicable with but
W slight modifications to the investigation of gaseous
bodies. To this extent, therefore, the investigation of
gases does not afford mechanics any very rich returns.
Nevertheless, the first steps that were taken in this
province possess considerable significance from the
point of view of the progress of civilisation and high
import for science generally.
The elus- Although the ordinary man has abundant oppor-
:f::ﬁ;?eucfz tunity, by his experience of the resistance of the air, by
MAMET ihe action of the wind, and the confinement of air in
bladders, to perceive that air is of the nature of a body,
yet this fact manifests itself infrequently, and never in
the obvious and unmistakable way that it does in the
case of solid bodies and fluids. It is known, to be sure,
but is not sufficiently familiar to be prominent in popu-
lar thought. In ordinary life the presence of the air is
scarcely ever thought of.
The eftect Although tl'lt‘. alllcients, as we may learn from .the
disclosures accounts of Vitruvius, possessed instruments which,
oo P like the so-called hydraulic organs, were based on the
condensation of air, although the invention of the air-
gun is traced back to Ctesibius, and this instrument
was also known to Guericke, the notions which people

held with regard to the nature of the air as late even
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as the seventeenth century were exceedingly curious
and loose. We must not be surprised, therefore, at the
intellectual commotion which the first more important
experiments in this direction evoked. The enthusiastic
description which Pascal gives of Boyle’s air-pump ex-
periments is readily comprehended, if we transport our-
selves back into the epoch of these discoveries. What
indeed could be more wonderful than the sudden dis-
covery that a thing which we do not see, hardly feel,
and take scarcely any notice of, constantly envelopes
us on ‘all sides, penetrates all things ; that it is the most
important condition of life, of combusticn, and of gi-
gantic mechanical phenomena. It was on this occa-
sion, perhaps, first made manifest by a great and strik-
ing disclosure, that physical science is not restricted
to the investigation of palpable and grossly sensible
processes.

2. In Galileo’s time philosophers explained the
phenomenon of suction, the action of syringes and
pumps by the so-called /feorro7 vacui—nature’'s abhor-
rence of a vacuum. Nature was thought to possess
the power of preventing the formation of a vacuum by
laying hold of the first adjacent thing, whatsoever it
was, and immediately filling up with it any empty space
that arose. Apart from the ungrounded speculative
element which this view contains, it must be conceded,
that to a certain extent it really represents the phe-
nomenon. The person competent to enunciate it must
actually have discerned some principle in the phenom-
enon. This principle, however, does not fit all cases.
Galileo is said to have been greatly surprised at hearing
of a newly constructed pump accidentally supplied
with a very long suction-pipe which was not able to
raise water to a height of more than eighteen Italian

THE PRINCIPLES OF STATICS. I13

ells. His first thought was that the /er7er wacui (or the
resistenza del vacuo) possessed a measurable power. The
greatest height to which water could be raised by suc-
tion he called altczza limitatissima. He sought, more-
over, to determine directly the weight ablé to draw out
of a closed pump-barrel a tightly fitting piston resting
on the bottom. .

3. TorricrLLI hit upon the idea of measuring the Torricelli's
resistance to a vacuum by a column of mercury instead ot
of a column of water, and he expected to obtain a col-
umn of about {4 of the length of the water column.
His expectation was confirmed by the experiment per-
formed in 1643 by Viviani in the well-known manner,
and which bears to-day the name of the Torricellian
experiment. A glass tube somewhat over a metre in
length, sealed at one end and filled with mercury, is
stopped at the open end with the finger, inverted in a
dish of mercury, and placed in a vertical position. Re-
moving the finger, the column of mercury falls and re-
mains stationary at a height of about 76 cm. By this
experiment it was rendered quite probable, that some
very definite pressure forced the fluids into the vacuum.
What pressure this was, Torricelli very soon divined.

Galileo had endeavored, some time before this, to Galileo's
determine the weight of the air, by first weighing a&téieénhpatii.o
glass bottle containing nothing but air and then again
weighing the bottle after the air had been partly ex-
pelled by heat. It was known, accordingly, that the
air was heavy. But to the majority of men the horror
vacns and the weight of the air were very distantly
connected notions. It is possible that in Torricelli’s
case the two ideas came into sufficient proximity to
lead him to the conviction that all phenomena ascribed
to the JLorror vacui were explicable in a simple and
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logical manner by the pressure exerted by the weight
of a fluid column-—a column of air. Torricelli discov-
ered, therefore, the pressure of the atmosphere ; he also
first observed by means of his column of mercury the
variations of the pressure of the atmosphere.

4. The news of Torricelli's experiment was circu-
lated in France by Mersenne, and came to the knowl-
edge of Pascal in the year 1644. The accounts of the
theory of the experiment were presumably so imper-
fect that Pascar found it necessary to reflect indepen-
dently thereon. (Pesanteur de Pair.  Paris, 1603.)

Pascal'sex-  He repeated the experiment with mercury and with

periments,

T

a tube of water, or rather of red wine, 4o feet in length.
He soon convinced himself by inclining the tube that
the space above the column of fluid was really empty ;
and he found himself obliged to defend this view against
the violent attacks of his countrymen. Pascal pointed
out an easy way of producing the vacuum which they
regarded as impossible, by the use of a glass syringe,
the nozzle of which was closed with the finger under
water and the piston then drawn back without much
difficulty. Pascal showed, in addition, that a curved
siphon 40 feet high filled with water does not flow, but
can be made to do so by a sufficient inclination to the
perpendicular.  The same experiment was made on a
smaller scale with mercury. The same siphon flows
or does not flowaccording as it is placed in an inclined
or a vertical position.

In a later performance, Pascal refers expressly to
the fact of the weight of the atmosphere and to the
pressure due to this weight. He shows, that minute
animals, like flies, are able, without injury to them-
selves, to stand a high pressure in fluids, provided only
the pressure is equal on all sides ; and he applies this
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at once to the case of fishes and of animals that live in Tbe agal-

: - Erfasi o = ogy bet
the air. Pascal’s chief merit, indeed, is to have estab- laaid and

lished a complete analogy between the phenomena con- f‘é‘;?éfé&'ié
ditioned by liquid pressure (water-pressure) and those
conditioned by atmospheric pressure.

5. By a series of experiments Pascal shows that
mercury in consequence of atmospheric pressure rises
into a space containing no air in the same way that,
in consequence of water-pressure, it rises into a space
containing no water. If into a deep ves-
sel filled with water (Fig. 81) a tube be
sunk at the lower end of which a bag of
mercury is tied, but so inserted that the
upper end of the tube projects out of the
water and thus contains only air, then
the deeper the tube is sunk into the water
the higher will the mercury, subjected Fig. b1,
to the constantly increasing pressure of the water, as-
cend into the tube. The experiment can also be made,
with a siphon-tube, or with a tube open at its lower end.

Undoubtedly it was the attentive consideration of The height
this very phenomenon that led Pascal to the idea that Easi?smcligzer—
the barometer-column must necessarily stand lower at Pebaris
the summit of a mountain than at its base, and that o
it could accordingly be employed to determine the
height of mountains. He communicated this idea to
his brother-in-law, Perier, who forthwith successfully
performed the experiment on the summit of the Puy
de Déme. (Sept. 19, 1648.)

Pascal referred the phenomena connected with ad- Adhesion
hesion-plates to the pressure of the atmosphere, and it
gave as an illustration of the principle involved the re-
sistance experienced when a large hat lying flat cn a
table is suddenly lifted. The cleaving of wood to the

e S
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atmosphere, will rise in ¢ to the height of the barom-
eter-column. Without an air-pump it was hardly pos-

bottom of a vessel of quicksilver is a phenomenon of
the same kind.

A siphon Pascal imitated the flow produced in a siphon by sible to combine the experiment and the counter-
which scts atmospheric pressure, by the use of water-pressure. experiment in a simpler and more ingenious manner
RiEnstis. The two open unequal arms e and than Pascal thus did.
4 of a three-armed tube @ 4 ¢ (Fig. 6. With regard to- Pasc‘al’s mountain-experiment, iﬁﬂi} -
82) are dipped into the vessels of we shall add the following brief supplementary remarks. marks on
5 asca E:-
mercury ¢ and 4. If the whole © Let &, be the h(-31ght of the barometer'at the level of::;::m:gt
arrangement then be immersed in the sea, and let it fall, say, at an elevation of 7 metres,
a deep vessel of water, yet so that ~ to £&,, where % is a proper fraction. At a further eleva-
the long apen branch shall always tion of 7 metres, we must expect to obtain the barom-
project above the upper surface, eter-height . 2 4, since we here pass through a stratum
the mercury will gradually rise in .H v of air the density of which bears to that of the first the
Fig. sz. the branches ¢ and 2, the columns - proportion of £ : 1. If we pass upwards to the altitude
finally unite, and a stream begin to flow from the vessel /= n . m metres, the barometer-height corresponding
d to the vessel ¢ through the siphon-tube open above thereto will be
to the air. e ; ; by="F".bor n = log 4, — log 4,
Pascal’s 4 : The Torricellian experiment was modi- log %
{?g]?l:t??he W fied by Pascal in a very ingenious manner. p mn s b
Torricelli- : 8 f Lo log £ ( 08 o, — logs,).
an experi- A tube of the form aédcd (Flg- 3% © L og <
ment.

double the length of an ordinary barom-
eter-tube, is filled with mercury. The
openings ¢ and 4 are closed with the fin-
gers and the tube placed in a dish of
mercury with the end ¢ downwards. If

The principle of the method is, we see, a very simple
one; its difficulty arises solely from the multifarious
collateral conditions and corrections that have to be
looked to.

7. The most original and fruitful achievements in The experi.

= 5 o ments of
the domain of aérostatics we awe to Q110 vON GUE- Ofe ven

now a be opened, the mercury in ¢4 will
all fall into the expanded portion at ¢, and

the mercury in @4 will sink to the height

of the ordinary barometer-column. A vac-

uum is produced at ¢ which presses the

finger closing the hole painfully inwards.

Fig.83.  If 4 also be opened the column in @& will
sink completely, while the mercury in the expanded
portion ¢, being now exposed to the pressure of the

3 2 5 : Guericke.
RICKE. Hisexperiments appear to have been suggested =" "

in the main by philosophical speculations. He pro-
ceeded entirely in his own way; for he first heard of
the Torricellian experiment from Valerianus Magnus
at the Imperial Diet of Ratisbon in 1654, where he dem-
onstrated the experimental discoveries made by him
about 1650. This statement is confirmed by his method
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of constructing a water-barometer which was entirely
different from that of Torricelli.

CT;ievgﬁt:réE Guericke’s book (Zxperimenta nova, ut vocantur,
fotickes Magdeburgica. Amsterdam. 1672) makes us realise
the narrow views men took in his time. The fact that
he was able gradually to abandon these views and to
acquire broader ones by his individual endeavor speaks
favorably for his intellectual powers. We perceive ;
with astonishment how short a space of time separates 1
us from the era of scientific barbarism, and can no lon-
ger marvel that the barbarism of the social order still
SO Oppresses us.
s specula- In the intljoduct-ion to th_is book a-nd in va_rious ot}_1er .
ter, places, Guericke, in the midst of his experimental in-
vestigations, speaks of the various objections to the
Copernican system which had been drawn from the
Bible, (objections which he seeks to invalidate,) and
discusses such subjects as the locality of heaven, the
locality of hell, and the day of judgment. Philoso-
phemes on empty space occupy a considerable portion
of the work. i
Crcagics Guericke regards the air as the exhalation or pdor
theair.  of bodies, which we do not perceive because we have

been accustomed to it from childhood. Air, to him,
is not an element. He knows that through the effects of
heat and cold it changes its volume, and that it is
compressible in Hero’s Ball, or Pila Heronis; on the
basis of his own experiments he gives its pressure at
20 ells of water, and expressly speaks of its weight, by
which flames are forced upwards.

8. To produce a vacuum, Guericke first employed
a wooden cask filled with water. The pump of a fire-
engine was fastened to its lower end. The water, it
was thought, in following the piston and the action of h

Guericke's First Experiments, (Experim. Magdeb.)
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gravity, would fall and be pumped out. - Guericke ex-
pected that empty space would remain. The fastenings
of the pump repeatedly proved to be too wealk, since in
consequence of the atmospheric pressure that weighed
on the piston considerable force had to be applied to
move it. On strengthening the fastenings three power-
ful men finally accomplished the exhaustion. DBut,
meantime the air poured in through the joints of the
cask with a loud blast, and no vacuum was obtained.
In a subsequent experiment the small cask from which
the water was to be exhausted was immersed in a larger
one, likewise filled with water. But in this case, too, the
water gradually forced its way into the smaller cask.

Wood having proved in this way to be an unsuit-
able material for the purpose, and Guericke having re-
marked in the last experiment indications of success,
the philosopher now took a large hollow sphere of
copper and ventured to exhaust the air directly. At
the start the exhaustion was successfully and easily
conducted. But after a few strokes of the piston, the
pumping became so difficult that four stalwart men
(viri guadrati), putting forth their utmost efforts, could
hardly budge the piston. And when the exhaustion
had gone still further, the sphere suddenly collapsed,
with a violent report. Finally by the aid of a copper
vessel of perfect spherical form, the production of the
vacuum was successfully accomplished. Guericke de-
scribes the great force with which the air rushed in on
the opéning of the cock.

9. After these experiments Guericke constructed
an independent air-pump. A great glass globular re-
ceiver was mounted and closed by a large detachable
tap in which was a stop-cock. Through this opening
the objects to be subjected to experiment were placed

THE PRINCIPLES OF STATICS. 121

in the receiver. To secure more perfect closure the Guericke's
5 : i air-pump.

receiver was made to stand, with its stop-cock under

water, on a tripod, benecath which the pump proper was

Guericke’s Air-pump. (Experine, Magded.)

placed. Subsequently, separate receivers, connected
with the exhausted sphere, were also employed in the
experiments.
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gllln:ncouurli;#as The phenomenzf. which Guer%cke observcd.with t}lis
sbserved by apparatus are manifold and various. The noise which
the air-  water in a vacuum makes on striking the sides of the
i glass receiver, the violent rush of air and water into
exhausted vessels suddenly opened, the escape on ex-
haustion of gases absorbed in liquids, the liberation of
their fragrance, as Guericke expresses it, were imme-
diately remarked. A lighted candle is extinguished
on exhaustion, because, as Guericke conjectures, it
derives its nourishment from the air. Combustion, as
his striking remark is, is not an annihilation, but a
transformation of the air.
A bell does not ring in a vacuum. Birds die in it.
Many fishes swell up, and finally burst. A grape is kept
fresh #n vacwe for over half a year.
By connecting with an exhausted cylinder a long
tube dipped in water, a water-barometer 18 constructed.
The column raised is 1g-20 ells high; and Von Guericke
explained all the effects that had been ascribed to the
fLorror vacud by the principle of atmospheric pressure.
An important experiment consisted in the weighing
of a receiver, first when filled with air and then when
exhausted. The weight of the air was found to vary
with the circumstances; namely, with the temperature
and the height of the barometer. According to Gue-
ricke a definite ratio of weight between air and water
does not exist.
ey But the deepest impression on the (?ontemporary
}ggsg’hi(r_ic world was made by the experiments relating to atmos-
pressure.  pheric pressure.  An exhausted sphere formed of two
hemispheres tightly adjusted to one another was rent
asunder with a violent report only by the traction of

sixteen horses. The same sphere was suspended from

T
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a beam, and a heavily laden scale-pan was attached to
the lower half.

The cylinder of a large pump is closed by a piston.
To the piston a rope is tied which leads over a pulley
and is divided into numerous branches on which a
great number of men pull. The moment the cylinder is
connected with an exhausted receiver, the men at the
ropes are thrown to the ground. In a similar manner
a huge weight is lifted.

Guericke mentions the compressed-air gun as some- Guericke's
thing already known, and constructs independently an i
instrument that might appropriately be called a rari-
fied-air gun. A bullet is driven by the external atmos-
pheric pressure through a suddenly exhausted tube,
forces aside at the end of the tube a leather valve which
closes it, and then continues its light with a consider-
able velocity.

Closed vessels carried to the summit of a mountain
and opened, blow out air; carried down again in the
same manner, they suck in air. From these and other
experiments Guericke discovers that the air 1s elastic.

10. The investigations of Guericke were continued Theinvesti-
by an Englishman, Rosert Bovie.* The new experi- e
ments which Boyle lad to supply were few. He ob- B
serves the propagation of light in a vacuum and the
action of a magnet through i1t ; lights tinder by means
of a burning glass; brings the barometer under the re-
ceiver of the air-pump, and was the first to construct
a balance-manometer [‘‘the statical manometer’].

The ebullition of heated fluids and the freezing of water
on exhaustion were first observed by him.

Of the air-pump experiments common at the present
day may also be mentioned that with falling bodies,

* And published by him in 1660, before the work of Von Guericke,— 7ra#s.
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above into the one and light hydrogen from beneath
into the other. In both instances the balance turns in
the direction of the arrow. To-day, as we know, the
decanting of gases can be made directly visible by the
optical method of Foucault and Toeppler.
12. Soon after Torricelli’s discovery, attempts were The mercu-

5 rial air-
made to employ practically the vacuum thus produced. pump.

The fall of which confirms in a simple manner the view of Galileo

bodies in a s 5 ol

vacuum. that when the resistance of the air has been eliminated
light and heavy bodies both fall with the same velo-
city. In an exhausted glass tube a leaden bullet and a
piece of paper are placed. Putting the tube in a ver-
tical position and quickly turning it about a horizontal

axis through an angle of 180° both bodies will be seen

to arrive simultaneously at the bottom of the tube.

The so-called mercurial air-pumps were tried. But no

Phowies Of the quantitative data we will mention the fol- such instrument was Suc?cessful until t.he present cen-

lowing. The atmospheric pressure that supports a tury. The mercurial air-pumps now in common use

column of mercury of 76 cm. is easily calculated from are really barometers of which the extremities are sup-

the specific gravity 13-60 of mercury to be 1-0336 kg. plied with large expansions and so connected that their

to 1 sq.cm. The weight of 1000 cu.cm. of pure, dry difference of level may be easily varied. The mercury

air at 0° C. and 760 mm. of pressure at Paris at an ele- takes the place of the piston of the ordinary air-pump.

vation of 6 metres will be found to be 1'293 grams, 13. The expansive force of the air, a property ob- Boyle'slaw.

and the corresponding specific gravity, referred to served by Guericke, was more accurately investigated

water, to be 0-001293. by BoviE, and, later, by MariortE. The law which
Thediscov-  11. Guericke knew of only one kind of air. We both found is as follows. If I be called the volume of

ery of other
gaseous

substances. .

may imagine therefore the excitement it created when
i 1755 Brack discovered carbonic acid gas (fixed air)
and CAVENDISH in 1766 hydrogen (inflammable air),
discoveries which were soon followed by other similar
ones. The dissimilar
physical properties of
gases are very strik-
ing. Faraday has il-
lustrated their great
inequality of weight
., by a beautiful lecture-
experiment. If from
a balance in equilib-
rium, we suspend (Fig. 84) two beakers 4, 7, the one
in an upright position and the other with its opening
downwards, we may pour heavy carbonic acid gas from

P

O

@Tn

Fig. 84.

a given quantity of air and 2 its pressure on unit area
of the containing vessel, then the product V. P is
always = a constant quantity. If the volume of the
enclosed air be reduced one-half, the air will exert
double the pressure on unit of area; if the volume of
the enclosed quantity be doubled, the pressure will
sink to one-half; and so on. It is quite correct—as a
number of English writers have maintained in recent
times—that Boyle and not Mariotte is to be regarded
as the discoverer of the law that usually goes by
Mariotte’'s name. Not only is this true, but it must
also be added that Boyle knew that the law did not
hold exactly, whereas this fact appears to have escaped
Mariotte.

The method pursued by Mariotte in the ascertain-
ment of the law was very simple. He partially filled
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from the rest of the atmosphere and therefore not Theexpan-
: . < sive force of
directly affected by the latter’s weight, also supported isolated 4
¥ 3 ¢ ortions of

the barometer-column ; as where, to give an instance, et

Mariotte's ‘Torricellian tubes with mercury, measured the volume
experi- 5 N z
ments, of the air remaining, and then performed the Torricel-

2 lian experiment. The new volume of
phere.

air was thus obtained, and by subtract-
ing the height of the column of mer-
cury from the barometer-height, also
the new pressure to which the same
quantity of air was now subjected.
To condense the air Mariotte em-
: ployed a siphon-tube with vertical
Fig. 85. arms. The smaller arm in which the
air was contained was sealed at the
upper end ; the longer, into which the
mercury was poured, was open at the
upper end. The volume of the air
was read off on the graduated tube,
and to the difference of level of the
mercury in the two arms the barometer-
height was added. At the present day
1H both sets of experiments are performed
in the simplest manner by fastening a
cylindrical glass tube (Fig. 86) 77,
closed at the top, to a vertical scale
and connecting it by a caoutchouc
tube £ % with a second open glass tube
# #, which is movable up and down
the scale. If the tubes be partly filled
with mercury, any difference of level
whatsoever of the two surfaces of mer-
Fig. 86. cury may be produced by displacing
#' 7', and the corresponding variations of volume of the

w
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air enclosed in #» 7 observed.
It struck Mariotte on the occasion of his investiga-
tions that any small quantity of air cut off completely

the open arm of a barometer-tube is closed. The simple
explanation of this phenomencn, which, of course,
Mariotte immediately found, is this, that the air before
enclosure must have been compressed to a point at
which its tension balanced the gravitational pressure
of the atmosphere ; that is to say, to a point at which
it exerted an equivalent elastic pressure.

‘We shall not enter here into the details of the ar-
rangement and use of air-pumps, which are readily
understood from the law of Boyle and Mariotte.

14. It simply remains for us to remark, that the dis-
coveries of aérostatics furnished so much that was new
and wonderful that a valuable inteliectual stimulus pro-
ceeded from the science.



Dynamics
wholly a
modern
science.

CHAPTER 1L

THE DEVELOPMENT OF THE PRINCIPLES OF
DYNAMICS.

I.
GALILEO’S ACHIEVEMENTS.

1. We now pass to the discussion of the funda-
mental principles of dynamics. This is entirely a mod-
ern science. The mechanical speculations of the an-
cients, particularly of the Greeks, related wholly to
statics. Dynamics was founded by GALILEO. We shall
readily recognise the correctness of this assertion if we
but consider a moment a few propositions held by the
Aristotelians of Galileo’s time. To explain the descent
of heavy bodies and the rising of light bodies, (in li-
quids for instance, ) it was assumed that every thing and
object sought its place: the place of heavy bodies was
below, the place of light bodies was above. Motions
were divided into natural motions, as that of descent,
and violent motions, as, for example, that of a pro-
jectile. From some few superficial experiments and
observations, philosophers had concluded that heavy
bodies fall more quickly and lighter bodies more slowly,
or, more precisely, that bodies of greater weight fall
more quickly and those of less weight more slowly. It
is sufficiently obvious from this that the dynamical
knowledge of the ancients, particularly of the Greeks,
was very insignificant, and that it was left to modern
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times to lay the true foundations of this department of
inquiry.

Wf””m’f’fﬁf g

T

2. The treatise Discorsi ¢ dimostrazioni malematiche
in which Galileo communicated to the world the fir@
. b
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investiga-
tion of the
laws of fal
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dynamical investigation of the laws of falling bodies,

: appeared in 1638. The modern spirit that Galileo dis-

ing bodiss. covers is evidenced here, at the very outset, by the fact

His first,

that he does not ask w4y heavy bodies fall, but pro-
pounds the question, //ew do heavy bodies fall? in
agreement with what /ez do freely falling bodies move?
The method he employs to ascertain this Jaw is this.
He makes certain assumptions. He does not, however,
like Aristotle, rest there, but endeavors to ascertain by
trial whether they are correct or not.

The first theory on which he lights is the following.

GITONCOUS 1t seems in his eyes plausible that a freely falling body,

theory.

inasmuch as it is plain that its velocity is constantly
on the increase, so moves that its velocity is double
after traversing double the distance, and triple after
traversing triple the distance ; in short, that the veloci-
ties acquired in the descent increase proportionally
to the distances descended through. Before he pro-
ceeds to test experimentally this hypothesis, he reasons
on it logically, implicates himself, however, in so doing,
in a fallacy. e says, if a body has acquired a certain
velocity in the first distance descended through, double
the velocity in double such distance descended through,
and so on; that is to say, if the velocity in the second
instance is double what it is in the first, then the double
distance will be traversed in the same time as the origi-
nal simple distance. If, accordingly, in the case of
the double distance we conceive the first half trav-
ersed, no time will, it would seem, fall to the account
of the second half. The motion of a falling body ap-
pearaictherefore, to take place instantancously ; which
is sufficientlyntradicts the hypothesis but also ocular evi-
knowledge of t shall revert to this peculiar fallacy of

was very insignifion.
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3t ‘After Galileo fancied he had discovered this
sul‘lll?tlon to be untenable, he made a second one- ac-
cordmg_ to which the velocity acquired is proporti,onal
to the time of the descent. That is, if a body fall onc
a-nd ther.l fall again during twice as long an interval e,f
time as it first fell, it will attain in the Zecond instancoe

double the velocity it acquired in the first. He found
no self-contradiction in this theory, and he accordin 3(
procecdt?d to investigate by experiment whether f’hy
assumption accorded with observed facts. It was difC
ﬁcult. to prove by any direct means that the velocit‘
ElC,qull'ed. was proportional to the time of descent I}tl
was casier, however, to investigate by what Iaw' th
distance increased with the time ; and he consequentl(i
deduced from his assumption the relation that thainec}l
bet\ve.en the distance and the time, and tested this I
experiment. The deduction .
is simple, distinct, and per- i
fectly correct. He draws : dome’
(Fig. 87) a straight line, and T
on it cuts off successive por- ;
tmns'that represent to him Fig. 8. A
‘tri};ensnijaes elapsed. At .the extremities of these por-
erects perpendiculars (ordinates), and thes
repre.sent the velocities acquired. Any po;tion OG\Ef:
the line 04 denotes, therefore, the time of d i
elaps?d, and the corresponding perpendicular Gi'sfcent
velocity acquired in such time. i
If3 nOW, we fix our attention on the progress of th
velocities, we shall observe with Galileo the followi ;
fact: namely, that at the instant C, at which o O“gnlg
(GAE (.3f the time of descent 04 has elapsed, the 111‘1'3‘ -
CD is also one-half of the final velocity A,B o
If now we examine two instants of time, & and &
2 b

ocity

aS- His second,

B Discussion
and eluci-
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4. The relation obtaining between 7 and s Z-Idn‘lits]lﬁperigrj‘!en-
tal verilica-

Unitormty _equally distant in opposite directions from the instant
accelerated

A F

e C, we shall observe that the velocity /G exceeds the of experimental proof; and this Galileo accomplished %(;x'm of the
mean velocity €D by the same amount that £ZF falls in the manner which we shall now describe.
short of it. For every instant antecedent to C there We must first remark that no part of the knowledge
exists a corresponding one equally distant from it sub- and ideas on this subject with which we are now so
sequent to €.  Whatever loss, therefore, as compared . familiar, existed in Galileo’s time, but that Galile? had
with wniform motion with half the final velocity, is suf- : to create these ideas and means for us. Accordingly,
fered in the first half of the motion, such loss is made E it was impossible for him to proceed as we should do
up in the second half. The distance fallen through we f to-day, and he was obliged, therefore, to pursue a (-iif-
may consequently regard as having been wniformly de- ferent method. He first sought to retard the motion
scribed with half the final velocity. If, accordingly, of descent, that it might be more accurately observed.
we make- the final velocity z proportional to the time Hg made observations on balls, which he caused to
of descent 7, we shall obtain 7 = g7, where g denotes roll down inclined planes (grooves); assuming that only
the final velocity acquired in unit of time—the so-called the velocity of the motion would be lessened here, but
acceleration. The space s descended through is there- that the form of the law of descent would remain un-
fore given by the equation s = (g7/2) 7 0r s = git2/a8 modified. - If, beginning from the upper extremity, the
Motion of this sort, in which, agreeably to the assump- distances 1, 4, 9, 16 . . . be notched off on the groove, ployed.
tion, equal velocities constantly accrue in equal inter- the respective times of descent will be representable,
vals of time, we call wniformly accelerated motion. it was assumed, by the numbers 1, 2, 3, 4 ...; aresult
rableotthe  If we collect the times of descent, the final veloci- which was, be it added, confirmed. The observation of
e ties, and the distances traversed, we shall obtain the the times involved, Galileo accomplished in a very in-
i?;é’é‘ﬁﬁs"f following table: genious manner. There were no clocks of the modern
5 o 5. kind in his day: such were first rendered possible by
Sl the dynamical knowledge of which Galileo laid the
1. 1g. Ly ; foundations. The mechanical clocks which were used
9. B 2% 2. ;’i [ were very inaf:curate, and were ava.lilable only for th_e
= | measurement of great spaces of time. Moreover, it
3 3¢. Lk %’_ 'i was ci.lieﬂy waterjclock.s and sand-glasses that were in
5 | use—in the form in which they had been handed down
4. 4g. 43 4. ‘S; !i . from the ancients. Galileo, now, constructed a very
\ simple clock of this kind, which he especially adjusted
3 S ( to the measurement of small spaces of time; a thing
g | not customary in those days. It consisted of a vessel of
Zg. e i water of very large transverse dimensions, having in
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the bottom a minute orifice which was closed with the
finger. As soon as the ball began to roll down the in-
clined plane Galileo removed his finger and allowed the
water to flow out on a balance ; when the ball had ar-
rived at the terminus of its path he closed the orifice.
As the pressure-height of the fluid did not, owing to
the great transverse dimensions of the vessel, percept-
ibly change, the weights of the water discharged from
the orifice were proportional to the times. It was in
this way actually shown that the times increased simply,
while the spaces fallen through increased quadratically.
The inference from Galileo’s assumption was thus con-
firmed by experiment, and with it the assumption itself.
g 5. To form some notion of the relation which sub-
e T sists between motion on an inclined plane and that of
plaucio | free descent, Galileo made the assumption, that a body
that of iree which falls through the height of an inclined plane
attains the same final velocity as a body which falls
through its length. This is an assumption that wili
strike us as rather a bold one; but in the manner in
which it was enunciated and employed by Galileo, it i5
quite natural. We shall endeavor to explain the way by
which he was led to it. He says: Ifa body fall freely
downwards, its velocity increases proportionally to the
time. When, then, the body has arrived at a point be-
let us imagine its velocity reversed and directed
upwards ; the body then, it is clear, will rise. We make
the observation that its motion in this case is a reflection,
speak, of its motion in the first case. As then its
o the time of descent,

Galileo's
clock.

The rela-

low,

so to
_velocity increased proportionally t
it will now, conversely, diminish in that proportion.
When the body has continued to rise for as long a
time as it descended, and has reached the height from
which it originally fell, its velocity will be reduced to
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zero. We percei o i
o e e
3 ; its descent, just as assum Co
high as it has fallen. TIf, accordingly, a body falli t'ha“hpe :
down an inclined plane could ac i L alh'ng ies i
- quire a velocity which e L
would enah_ﬂe it, when placed on a differently inclined the e,
plane, to rise higher than the point from which it had
fal]e.n, we should be able to effect the elevation of
?)OdlCS- by gravity alone. There is contained, accord
ingly, in this assumption, that the velocity acc,luired b ;
a body in descent depends solely on the wertical hei“h{
fallen through and is independent of the inclinqtionb f
the path., nothing more than the uncontradictcor ao
prehension and recognition of the fzc# that heavy bzd'pi
do not possess the tendency to rise, but only t)he t;es
f}ency to fall. If we should assume that a body f II;-
ing down the length of an inclined plane in somi il
or other attained a greater velocity than a bod :‘}’]ﬂy
fell through its height, we should only have to lj;t tlat
b(?dy pass with the acquired velocity to another irlle
c_lmed or vertical plane to make it rise to a greater -
t1‘c;11 helght than it had fallen from. And if the v::ri
city attained on the inclined plane were less, we sho ?ci
only have to reverse the process to obtain tI}qe sar :
sult. 'In both instances a heavy body could bl : a,ne ot
PI’OP‘I‘IEL.‘[E’. arrangement of inclined plaues’ bé f(? apc{
C?ntn{ually upwards solely by its own weigl,lt—a sl:cilie
Enot‘:;:dgs which wholly contradicts our instinctive
ge of the nature of heavy bodies.
thei;]e?;lhl}e}% in tI:us case, again, did not stop with
- > phi osophical zfmd logical discussion of his
ssumption, but tested it by comparison with
rlence, o
heaile Lc;cﬁi a simple ﬁlar' Pcrdulum (Fig. 88) with a
y attached. Lifting the pendulum, while
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Galileo’s elongated 1t

experimen- 3 (b o Jetting it fall, it asceh
It it does not do so exactly,

tal verifica- &I}
tion of this i o
on the opposite side.

i SCIENCE OF

s full length, to the level of a

MECHANICS.

given altitude,
ded to the same level

air must be the cause

assumption
Galileo said, the resistance of the
of the deficit. This is inferrible from the fact that the

deficiency is greater in the case of 2 cork ball than it 18

c

Fig. 88.

{ a heavy metal one. However, this neg-

Affacted By i1l theicase O
cends to the same altitude on the

partially octed, the body as

impeding

the motion > 5 e Al

o pendu- Opposite side. Now 1t 18 pemuss1ble to regard the mo-
c of a circle as a motion

Jum string. - :
08 4ion of a pendulum in the ar
of descent along 2 series of inclined planes of different

inclinations. This seen, we. can, with Galileo, easily
cause the bedy to rise on a different arc—on a different
series of inclined planes. This we accomplish by driv-
ing in at one side of the thread, as it vertically hangs,
a nail for & which will prevent any given portion of
the thread from taking partin the second half of the
The moment the thread arrives at the line of
and strikes the nail, the ball, which has
h e, will begin to ascend by a different
nes, and describe the arc am o @
of the planes had any influence

motion.
equilibrium
fallen throug
series of inclined pla
Now if the inclination
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on the velocity of descent, the body could - 11
g]etsixqzle horgontal level from which it ESS :‘]TE 4
“ s ; allen.
R S sl
e or half of an oscillati
?Vsa;;urcel;lz;sinx;Ltl?el(—,dsc; the phenomenon, howcval-rq,tlz(ljll:1
o th.e i Sa-me. If the nail /% be driven so low
e them;uadcr_ of the string cannot reach to
T thr,ead roua 1w111 tu.rn completely over and
o nd t_he nz.ul; because when it has
: greatest height it can reach it sti
residual velocity left. el

7. 1f we ass
ume thus, that the same final velocity is The
as=

attained on an incli
- hﬁlq;nchned plane whether the body fall sumption
&) S
ight or the length of the plane,—in whicl 1_aw aa
2 1 tive accel-

assumption nothii nore is containe han that a body sou
mng 1 i !

gm 1 1 ined than th a body [gl]:

t t 1t.

rises by vi
just :1)9: ;;;tl?eazf 'tp‘f velocity it has acquired in falling
o oy t}li has fall_ell,—we shall easily Elrriveb
scent along ’the hlL- %emeptloﬂ that the times of the de’—
B e mg ht and the length of an inclined
the length ; or Wﬁlm})le proportion of the height and
are inversély ,pms:);fi;:‘zlsfizhe, 1that the accelerations
b aic : al to the times of des
bear to ‘:}11‘3;’ a;i?:l(lgl alm?g the height will ConseQu::tllt.
eration along 4 Y

the length the proportion of the

length to the height. Let A5

Elf‘églr 89) be the height and 4 C B &
ength of the inclined plane Fi 3
< 1g. 89.

‘Both wil
il be descended through in uniformly accel

erated motion i .
; in the times # :
locity ».  Therefore andsswith dreminalives

? AR 4
) z‘l’ fam— -
9 Cln

1

v
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length be ;
g case the chords 4G, 4 A drawn in this o

:}i:per extn'amity of the diameter will bgll’tcrlaeviron:ithe

! sam : r i
ter itself(? U?iifi iéiﬁgﬁi; OdY1 as I‘Ehe vertical g?amlelf

o 5 , only th i
. aqndessgon from the lower extremity of the
s descr}:,[ 8‘;1161'&1137; The vertical diamete(:

. Chi)lzc by a falling particle in the sam
described rd through either extremity ; 5
: Y 18 so

If the accelerations along the height and the
called respectively & and g,, we also have

2 4 /I_B .
pv=ygtand 2=¢, % whence ’”é == = == sin .
In this way we are able to deduce from the accel-
eration on an inclined plane the acceleration of frec

descent. ;
' From this proposition Galileo deduces several cor-
ave passed into our elementary

he height and

A corollary
of the pre- - A
Ceding 1aw. ollaries, some of which h

The accelerations along t

text-books.
length are in the inverse proportion of the height and We shall present anoth
er il
length. If R WE cause one b‘ody to fall along the pretty form in which Galileo corollary, which, in the . £
1 ’ o . ur
n inclined plane and simultaneously another longer incorporated in elem fave it, 1s usually no Eﬁyilg;’?xjies
EUar_yeXO-- bodies fall-
positions. We ":fll‘zérlgsu‘;?

length of a
to fall freely along its
tances are that are trave
vals of time, the solution of t
found (Fig. go) by sim
dicular on the length.
be the distance traversed by t
clined plane, while the second bod

through the height of the plane.
A

imagine gutters 1ati 1

o Arj:i;atmg 1 a vertical plane from g ®™les
number of different
degrees of inclination
to the horizon (Fig.
92). We place at their
co.mmon extremity 4
alike number of heavy
bodies and cause them

height, and ask what the dis-

rsed by the two in equal inter-
he problem will be readily

ply letting fall from B a perpen-
The part A0, thus cut off, will
he one body on the in-
y is freely falling

tobegin simultaneous-
ly their motion of des.
i ;rhe bodies will 5
ays
ysform atany one Al

Instant of ti 1
b Wmf ;;nfza c(1ir<.:1e. A.fter the lapse of a longer ti
e und in a.mrcle of larger radius, and lt?xe
e J'Hllz)r(‘Jl'portmnally to the square,s of the
e planzglrile the gutters to radiate in a spa :
o L 1e falling bodies will always 1? =
. radii of the spheres will increase Ofm
€ squares of the times. This ;?Ifll?»
e

Fig. go.
Relative i we describe (Fig. 1) a circle on AFE as diame-
imes of de- . : :
eehiprien t ter, 'the circle will pass through D, because D 1s a
the chords - - . 5
right angle. It will be seen thus, that we can 1magine
of inclined planes, AZ, AF, of any degree

and diame-
ters of cir-
any number
A, and that in every

cles.
of inclination, passing through
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perceived by imagining the figure revolved about its

perpendicular A [
SF?}I;S?SE‘S q. We see thus,
inquiries. noticed,—that Galileo di
of the falling of bodies,
lished, wholly without preformed opinions,
facts of falling.
Gradually adapting, on this occasion, his thoughts

to the facts, and everywhere logically abiding by the

‘deas he had reached, he hit on a conception, which to
himself, perhaps less than to his successors, appeared

in the light of a new law. Tn all his reasonings, Galileo
followed, to the greatdst advantage of science, a prin-

ciple which might appropriately be called the principle

| : Once we have reached a theory that ap-
. plies to a particular case, Wwe proceed gradually to
modify in thought the conditions of that case, as far

as it is at all possible, and endeavor in so doing to

adhere throughout as closely as we can 1o the concep-

tion originally reached. There is no method of pro-

cedure more surely calculated to lead to that compre-
hension of all natural phenomena which is the simplest
and also attainable with the least expenditure of men-

tality and feeling. {Compare Appendix, 1)

A particular instance will show more clearly than
t we mean. Galileo con-

__as deserves again to be briefly
d not supply us with a zheory
but investigated and estab-
the actual

The prin- Qf continuity.

any general remarks wha

Fig. 03.
ng down . the in-

siders (Fig. 93) a body which is falli
placed with the

clined plane A5, and which, being

~ Produced ; i
ed is umformly accelerated.”
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4 4T
velocity thus 1 r ex-G
us acqu}red on a second pIELIlG BC fo
a Ple, ascends this second pla ; - diens
m plane. On-all planes A it
»

BD, and s i : g
: o} for]thJ it ascends to the horizontal gaf]gg ?Zw

th-ali fasses through 4. But, just as it falls onplla;; e o
Tt -Hess acceleration than it does on AC, so similarl
: : ilar
;nwécasc%?cl on B0 with less refardation than it W'lji
1, ; 1}@ nearer the planes BC, BD, B, BF :
proach to the horizontal i - s
' plane £/7, the less wi
wvill
;Etardatm; of the b(_}dy on those planes be, and :Ee
on%e{ aln further will it move on them On’ the h 'e
zonta / i : el
i Cllan‘e BH the %‘etardatlon vanishes eznéirely (thalt
th, ke ur.s;, neglecting friction and the resistan f
e air), and the body will i ieal
. continue t 1 i
e : . 0 move infi
vang(;iandtmﬁmte'ly. f:ar with constant velocity Tht?;te:ly
Gal.lengd'o the limiting case of the problem prese tad_
l n
S Wh'ol 1scovers the so-called law of inertia, acco djcJ ,
ich a body not under the influence of }orcesr it
, 1. e

of special cir
cumstances th: n
1at change i :
ge motion, will
re-

v d (0] < -
tain f rever its VelOC]tJ" (}.I (‘1 dlIeCt]On) V\r\‘e Shaﬂ

presen’?y revert to this subject
9. The moti i :
1on of falling that Galileo found actually The d
[he deduc-

to €x15t el O S/ 5
18 cC rdl]l 1 ar
2’ 3 g ) motion f th}l L] elo 1t Ela 1
Ol W lh. V C idea of uni

~ Increases pr i
i oport :
portienally to the time—a so-called uni- oS

f
ormly accelerated motion celerated
It would be an e 5 motion,
 toatt 3 chronism and ut* .| e
: accelempt, as 1s sometimes done, to deviv i
erated motion of falling bodies fro

g m the ¢
. : f the force of gravity. < Gravity i e
- ravity 1s a constant

: s CONSeqi 1t o (o)

. f fﬂ.l'z,_’j} lt_ generates in equal elements 1

time equal ncrements of VeIOCity 3 thus, the motion
2

e the uniformly

Any exposition
would put the
reason that the
as first created

Such as thj
this would be unhistorical, and

Whole d; A
‘D'Otioztilfscfvery n a false light, for the
orce as we hold it to-day w
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Before Galileo force was known solely as
Now, no one can know, who has not learned
that generally pressure produces
what manier pressure passes into
nor velocity, but accelera-

Forces and by Galilco.
a_ccelera»
tions. pressure.
it from experience;
motion, much less in

- motion ; that not position,
tion, is determined by it. This cannot be philosophi-

cally deduced from the conception, itself. Conjectures
may be set up concerning it. But experience alone can
definitively inform us with regard to it.

1o. It is not by any means self-evident, therefore,
that the circumstances which determine motion, that
is, forces, immediately produce accelerations. A glance
at other departments of physics will at once make this

) clear. The difterences of temperature of bodies also
determine alterations. However, by differences of tem-
perature not compensatory accelerations are deter-
mined, but compensatory velocities.

That it is accelerations which are the immediate ef-
fects of the circumstances that determine motion, that
Honeisan is, Of the forces, is a fact which Galileo perceived in the
expeniilel” natural phenomena. Others before him had also per-

tal fact.
ceived many things. The assertion that everything seeks
s a correct observation. The ob-

oes not hold good in all cases,
and it is not exhaustive. If we cast a stone into the
air, for example, it no longer seeks its place; since its
place is below. But the acceleration towards the earth,
the retardation of the upward motion, the fact that Ga-
lileo perceived, is still present. His observation always
remains correct; it holds true more generally; it em-

braces in ¢ne mental effort much more.
11. We have already remarked that Galileo dis-

covered the so-called law of inertia quite incidentally.
A body on which, as we are wont to say, a force acts,

The fact
that forces
determine
accelera-

its place also involve
servation, however, d
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jIEn—,gsewes its direction and velocity unch
. n

ortunes of this law of inertia have b P
appears never to have played Eras
leo’s thought. 3
Huygens and N

The History of

trange. It soneg

prominent : z 0?_3 law

But Galileo’s succe part in Galj. °fiertia.
ssors, particularly

ewton form I &

law. ; ulated it as an i

w. Nay, some have even made 1 jan independent
n

property of matter. We shal] i

gver, fhat the law of inertia is zf:f (:iy
: é;;;ttic’;:;r;ait)ut 1s contained implicitly ia

all circumstances det i
or forces, produce accelerations s

: In fact, if a force determin -.

city, but acceleration, chanee e
reason that where there 1'; n

ertia a general
perceive, how-
II an indepen-
n Galileo’s per-
ative of motion,

ositi
bosition, not velo- The faw a

of v : . :
elocity, it stands to ?;jglle in-
ce

c : o for : .
h_anlge of velocity. It is ce there will be no joom G20
thls in ]nd not necessary t - = s funda
ependent form Y to enunciate Serpac”

. ion,

neophyte, whic The embarrassme
: h also overcame the great inventt' of the
stigators

in the face of th
€ great.ma
alone could h ss of new material pre
two different fave led them to concejve the L
acts and to formulate it twi same fact as
wice,

III any p
EUent, to represent nertia as 561{

deriVe 1

1t from th

fec € gEHEral I £ .

t of a cause persists, ” Proposition that ¢ the ef. Dothods of
3

mistake =l is totall deducing it
’f the Wz;tr;]:':ﬁg af-ter rigid logic ga:lézg usonly i
ust cited. We Stic propositions lik b
3 Ntrary proposiltrilsg e‘E:SllY convince ourselve: t;haet Olrl:e
as well o > ""cessante causa cessat eff t i,
Velocity « the of € f)y reason. If we call the ectus,’
Ct; if we cal] tict, then the first propositioacguur ed ”
ond propositio e acceleration << effect.’ n 1is cor-
i n holds. ,”" then the see-
2. We shall no * Sl
other side.

to ‘
eV1dent, OT Erroneous

s researches fro
cstli
R g

- W examine Galileo’
€ began his iny,
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o his time—notions developed mainly
One notion of this kind was that
adily obtained from the con-

1f a body traverse in

notions familiar t
in the practical arts.
of velocity, which isveryre

sideration of a uniform motion.
every second of time the same distance ¢, the distance

traversed at the end of 7 seconds will be s= ¢t The
distance ¢ traversed In a second of time we call the ve-
locity, and obtain it from the examination of any per-
tion of the distance and the corresponding time by the
help of the equation ¢ == s/t, that s, by dividing the
aumber which is the istance traversed

by the npumber whichis the measure of the time elapsed.
Now, Galileo could not complete his investigations
without tacitly modifying and extending the traditional

idea of velocity. Tet us represent for distinctness sake
Bi ;

measure of the d

B

U ot A0
Fig. 94.

in 1 (Fig.94) 2 uniform motion, in 2 a variable motion,

by laying off as abscissa in the direction 04 the elapsed
times, and erecting as ordinates in the direction AB the
distances traversed. Now, 1n T, whatever increment
of the distance we may divide by the corresponding in-
crement of the time, in all cases W€ obtain for the ve-
locity ¢ the same alue, Bufabwegesis thus to proceed
in 2, we should obtain widely differing values, and
ore the word ¢eyelocity ” as ordinarily understood,
be unequivocal. 1f, however, We
f the distance ina sufficiently

“theret
 ceases in this case to

consider thye-increase 0

T ¢
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in 2 approaches to a straight line
3

l-ncrease as uni orm he velocit ]
< 1 ¢ i Y ill t iS ele] t
ent o

the motion we m
of the element O?Ytlz};i]} deﬁ.ne as the quotient, 4 s/ ¢
1me into tI .
ment of the di ; b T TR T
o jnstantst.ance. Still more preCiSerpthgli,n? e‘le~
the ratio s/ 1;’ :eﬁned as the limiting’valueewolf‘ltf
finitely small—a Valzsglgnes- as the elements become li(;ll
ion i esignated b : 2
notion includ - v ds/dt. T
mOreover im:et(};-‘: old one as a particul/ar Chse h;ls ;ew
Although’ e iately applicable to uniform ’m 1. 15,
extended, did n Izress formulation of this idea aonlon-
see none ,the 1350 t}j‘ke place till long after Gq’lﬂ s thus
ings s that he made use of it in h; €0, we
1 s reason-
& AT
e idew of e ;
eleratio .
ate. .otion 2 2. In uniforml
agreeably to t}:he. velocities increase with z}accte.ler‘ tion.
¢ same law : : 1e time
spaces increa : as in uniform ;
city acquf:re\;s.e with the times. If we calllhotlon the
ir : 2
the incremz tm time ¢4, then v = g7 Her v the velo-
. < * e
celeration xlirh?fhthe velocity in unit of time g;ignmes
1 -
L g=u/s ,Whe(; t}We _also obtain from the ec uletflc'
- erated motions w. 1e investigation of variabl 1aa i
- EOn had 10 exne a3 begun, this notion of a};c ;:cel_
- the notion of thlof:li{incel?n extension similar to t:rletra:f
g dr ‘ A iIl T ; at o
. drawn as abscisse, but nov }and 2 the times be again
f € may go throucl w the welociires as ordinate
eding reasoning . ldaneW the whole train of th S,
wher and define the acce : e pre-
i dv denotes an infinitely s cceleration as /2 /d,
city and &7 the corr i fnr}lall increment of the
In the notation OfstiOnél.l;g increment of the
e differential cal
culus we

sma el(;ﬂl n alileo’s
:ime of t1 whnere [0} urve Galil
me, h the e]eme f the C
t f ’

we m
ay regard the tion of this

13. An enti
1 irely new 1
notion to which Galileo was T
he notion
of accelera-
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have for the acceleration of o rectilinear motion, P =
rz"a/{itr;d‘-’- sjdi®.
The ideas here developed are susceptible, MOTEOVer,
of graphic representation. If we lay off the times as
abscisse and the distances as ordinates, We shall per-
ceive, that the velocity at each instant is measured by
the slope of the curve of the distance. 1fina similar
d velocities together, We¢ shall
see that the acceleration of the instant is measured by
the slope of the curve of the velocity. The course of
the latter slope 1s, indeed, also capable of being traced
in the curve of distances, as will be perceived from
the following considerations. Let us imagine, in the

Graphic
representa-
tion of
these ideas,

manner we put times an

E
D
e
G
Fig. 95 Fig, 96.

a uniform motion represented

Let us compare with this a
f which in the second hali
d another motion OCF of

o) usual ma}mer (.Fig. 95),
by a straight line oCcD.
motion OCZL the velocity o

of the time is greater, an
which the velocity is in the same proportion smaller.

In the first case, accordingly, we shall have to erect for
the time O =2 04, an ordinate greater than JaBl—
2 AC; in the gsecond case, an ordinate less than BD.
We see thus, without difficulty, that a curve of dis-
tance convex to the axis of the time-absciss®e corre-
sponds to accelerated motion, and a curve concave
thereto to retarded motion. 1f we imagine a lead-pen-
cil to perform 2a vertical motion of any kind and in

THE PRINCIPLES OF D VYNAMICS
front of it during its motion a pi .
i n a piece of paper i
{hi?eizlzi\;nﬂ?iogg fr-om 'rlght to left agdpthet;elixecilintl_
e J(rivvm'g in Fig. 96, we shall be able tg

. Ve}ga-wmg the peculiarities of the mo-

L e city of the pencil was directed

e sdgreater,_ at ¢ it was =— (), at « it i

o ards, at ¢ it was again —0. A i

; eration was directed u e

wards ; at ¢ and ¢ it was greatest g

14. The sum
mary representation of what Galil
€0 Tabular

discovered 1
is best m
ade by a table of times, acquired ment of
ment of Ga

Z. 7. lileo's dis-
I covery.
: i 1.8
2
: 2 s
2
E 3‘3’ 9 &
2
‘ ty E
%

~ velociti :
cities, and traversed distances

~ follo -
W B
k- so simple a law, ut the numbers The table

N —one 1 i
e immediately recognisable, plaseste
.. - g to prevent our i Bl o
L 73‘;!5]: replacmcr * es for its

relation th or It5s consiriction. e
o that connects the first and s &
e I%d t'hat it is expressed by th

| » 10 1ts last analysis, is nothi

ated dj i
. tlarl;aftlon for constructing th
e. The relation connecti

If we examine the '
econd columns, we
€ equation o = g/,
ng but an abbrevi-
e first two columns
e ng the first and third
e quation s — g 72 /2. The con-

and third columns is represented
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The rules. Of the three relations
=t
T 11) i
2
f— 25’,
strictly, the first two only were employed by Galileo.
Huygens was the first who evinced a higher apprecia-
tion of the third, and laid, in thus doing, the founda-
tions of important advances.
A remark 15. We may add a remark in connection with
aluable. It has been stated

?i%;lffiﬁlea- this table that is very v
iﬁ:ctfﬁgs‘d previously that a body, by virtue of the velocity it has
acquired in its fall, is able to rise again to its origi-
nal height, in doing which its velocity diminishes in
the same way (with respect to time and space) as it
increased in falling. Now a freely falling body ac-
quires in double time of descent double velocity, but
falls in this double time through four times the simple
distance. A body; therefore, to which we impart a ver-
tically upward double velocity will ascend twice as

long a time, but Sfour limes as high as a body to which
the simple velocity has been imparted.
The dispute It was remarked, very soolt after Galileo, that there

of the Car- . . 3 7 2

tesians “Cis inherent in the velocity of a body 2 something that
eibnitz- . . .

s omithe corresponds to 2 force—a something, that s, by which

measure of c 3 o

force. 4 force can be overcome, a certain ¢fefficacy,” as it has

been aptly termed. The only point that was debated

e reckoned propor-

or to the square of the velocily.

was, whether this efficacy was to b
he former, the Leibnitzians the

tional to the welocily
ived that the question in-

The Cartesians held t

latter. But it will be perce
The body with the double
force through double the

volves no dispute whatever.
velocity overcomes 2 given

~ lay a third small
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time, bu
SpeC; 2 :i;hero:}igi jfram— f‘z'mc?s the distance. With
iy ’with ctore, its efficacy is proportional rf_
b Velocity,J D’All-espe{:t to distance, to the square ?
e ember.t drew attention to this rn'O
. espec?;ﬂ 1ough in not very distinct terms 1;
thoughts on this}; :em?rked’ o ven thi Htlygém.’

16. The exp erli;fzzfﬁ were perfectly clear. 5
present day, the laws of falflrii;eiuor; by Whu:h_, at the Thepresen:

es are verified, experimen-

somewh i .
at different from that of Galj 18 tal means of
allleo. TWO Inethods verifying

may be employed. Ei
. Eith i i
from its rapidity is dif-ﬁecr ﬁl e motion of falling, which il
5% S ult to observe di i :
Serizjied, w1t£out altering the law, as Etodl’t:ealy, %
y : A € easi
. Our, mmn: metl(f)n of falling is not alteredsi}tf 01]:1,-
ans of observatio 1 o
. bse n are impro i i
acy. On the first principle Galileo’s ; gt s
gutter and Atwood’ i T
A s _machme rest.  Atwood’s
i nsists (Flg 97) of an easily run-
o Yy, over which is thrown a tl
) e
i M; extremities two equal weight ijead’
hed. l .
If upon one of the weights Pi\fe
: ve
‘erated motion W‘i‘lrfliht sl el
e ¢ set up by the over-
- Wi,n EllJvmbr the acceleration (p/2 15—}_-Yer 3
; ; gy
e e ree-tdlly obtained when we s.hjj)<5 s
e de notion of ‘“mass.” Now b pobiccy
£ ed vertics l
o e;ti()cll standard connected 1vj§t111](;1ans i
. distancg ¢ shown that in the times 1 B
b Corrs T, _9, TR ot traverse,d 2"?[3” s
inVestigated T)spondmg to any given time of. de i ﬁnél
g Shapgdcatchmg the small additional y S'C‘;nt ;
y . . Ve
E . e SO as to project beyond the o 1]% by
o rough which the falling b o
the motion continues wi e
s without acceleration

ig. o7,
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The appa- The apparatus of Morin is based on a different prin- . :

ra:s;opga i pparatus o : 1 bz ; 'er nt p nute portions of time 2 rapidly operating ¢l

Morin, La- ¢iple. A body to which a writing pencil is attached g clock-work The ge.

called a chronoscope, which is set in motion at the be- v, of

I £ ; ~ Wheat-
ginning (?f the time to be measured and st Sronchnd
termination of it.

borde, Lip- 3 : 2 &
pich, and describes on a vertical sheet of paper, which is drawn

Von Babo. . : : :
s uniformly across it by a clock-work, a horizontal straight opped at the Hipp,

line. If the body fall while the paper is not in motion,
it will describe a vertical straight line. 1f the two
motions are combined, a parabola will be produced,
of which the horizontal abscisse correspond to the
elapsed times and the vertical ordinates to the dis-
tances of descent described. For the abscissz 1, 2,
3, 4....we obtain the ordinates 1, 4, g, 16. ... By
an unessential modification, Morin employed instead of
a plane sheet of paper, a rapidly rotating cylindrical
drum with vertical axis, by the side of which the body
fell down a guiding wire. A different apparatus, based
on the same principle, was invented, independently, by
Laborde, Lippich, and Von Babo. A lampblacked
sheet of glass (Fig. 98«) falls freely, while a horizon-
tally vibrating vertical rod, which in its first transit
through the position of equilibrium starts the motion
of descent, traces, by means of a quill, a curve on the
lampblacked surface. Owing to the constancy of the

period of vibration of the rod combined with the in-

creasing velocity of the descent, the undulations traced
by the rod become longer and longer. Thus (Fig. g8)
be=3ab, cd=s5ab, de=17ab, and so forth. The
law of falling bodies is clearly exhibited by this, since
@b+ cb=4ab, ab-+bc-} cd=9ab, and so forth.
The law of the velocity is confirmed by the inclinations
of the tangents at the points a, 4, ¢, &, and so forth. If
the time of oscillation of the rod be known, the value
of ¢ is determinable from an experiment of this kind
with considerable exactness.

Wheatstone employed for the measurement of mi-

- arapidly moving wheel-worl regu

Hipp has advantageously modified

Fig, g8a.
¥ simply causing a light index-hand to
means of a clutch in and oyt of gear with
lated by a vibrating
and acting as an es-

this method b
be thrown by

Teed of steel tuned to a high note
£
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capement. The throwing in and out of gear is effected
by an electric current. Now if, as soon as the body be-
gins to fall, the current be interrupted, that is the hand
thrown into gear, and as soon as the body strikes the
platform below the current is closed, that is the hand
thrown out of gear, we can read by the distance the
index-hand has travelled the time of descent.
Galileo's 17. Among the further achievements of Galileo we
vestige have yet to mention his ideas concerning the motion
i of the pendulum, and his refutation of the view that
bodies of greater weight fall faster than bodies of less
weight. We shall revert to both of these points on an-
other occasion. It may be stated here, however, that
Galileo, on discovering the constancy of the period of
pendulum-oscillations, at once applied the pendulum
to pulse-measurements at the sick-bed, as well as pro-
posed its use in astronomical observations and to a cer-
tain extent employed it therein himself.
grhg:gioctci_on 18. Of still greater importance are his investiga-
tiles. tions concerning the motion of projectiles. A free body,
according to Galileo’s view, constantly experiences a
vertical acceleration ¢ towards the earth. If at the
beginning of its motion it is affected with "a vertical
- v velocity ¢, its velocity at the
S end of the time 7 will be z =
: ¢ + ¢ Aninitial velocity up-
wards would have to be reck-
oned negative here. The dis-
tance described at the end of
Fig 90- time # is represented by the
equation s =a + ¢7 + }g¢2, where ¢? and lg#2 are the
portions of the traversed distance that correspond re-
spectively to the uniform and the uniformly accelerated
motion. The constant « is to be put = 0 when we reckon

the distance from the point that the body passes at ti
— 0. When Galileo had once reached his fundamellltzl?
concel?tion of dynamics, he easily recognised the ¢ r
of horizontal projection as a combination of two 'a;e
ng{’mt motions, a horizontal uniform motion amc;g_
Vernca} uniformly accelerated motion. He thu; irilt n
d-uced into use the principle of the parallelogram of 1r0-
 tions. Even oblique projection no longer prese ted -
slightest difficulty. R T o
If a body recei 7 i
scribes in they horizc:;iftl Zifeizlii)c:ln;zlt'VEIOCIty [" e ;rfhe ojee”
he horiz, ume 7 the distance tion aper
,y.: ¢ ¢, while stmultaneouslyjt falls in a vertical dire sbola. "™
t1c?n ﬂ.]e d{stance x =g7? /2. Different motion~d:31;ec—
minative circumstances exercise no mutual effecto i
another, and the motions determined by then ntof(le
pl‘ace independently of eackh other. Galileo was Iedate
this assumption by the attentive observation of tho
phenomena; and the assumption proved itself true e
For t}_le curve which a body describes when the t-
motl_ons In question are compounded, we find, b e
5 pliym/g” thjfvf_o_ equations above given, the exl)rgsseilclbln—
‘ }ifng i];g(ngra{ge:;. Itis the parabola of Apollonius hav-
o kne’W.er equal to ¢2/¢ and its axis vertical,
We readil ive wi i
jection i11volv3;spr(1elc;:1ili‘118gr i:\lzr G’;llrllleo, lt ha't 0[’[{?”5 o Srl;l‘iq?
. toabody at the angle a wi h e Y
el fompomt t‘che horizon is resolvable
- - onent ¢. cosa and the vertica
4 as(:EZEE;l:I;. sina. With 'the latter velocity the bod;
R i tng the: samfa interval of time ¢ which it
R © acquire this velocity in falling verticall
; wards. Therefor i 4
e ¢ ¢.sma =gz When it has
E greatest height the vertical ¢

. : : omponent of
- 1al velocity has vanished, and from the point .§

X
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onward (Fig. 100) it continues its motion as a horizon-
If we examine any two epochs equally
before and after the transit through S5,
we shall see that the body at
these two epochs is equally
distant from the perpendicu-
Jar through S and situated the
c/ same distance below the hori-
(A

tal projection.
distant in time,

S.———o

zontal line through .S.  The
Fig. 100. curve is therefore symmet-

rical with respect to the vertical line through S. It
h vertical axis and the parameter

is ‘a parabola wit

(ccosa)?/g.

To find the so-called range of projection, we have

The range
of projecs  gimply to consider the horizontal motion during the
time of the rising and falling of the body. For theascent
this time is, according to the equations above given,
t — csina/g, and the same for the descent. With the
horizontal velocity ¢. cosa, therefore, the distance is
traversed
csina g vt c? . :
W—ccosSa. % —— = —28INACOSE= - sin 2 .
& g &
The range of projection is greatest accordingly
when a = 45°, and equally great for any two angles
a = 45° 3= f°
The ;r;:_ua! 19. The recog.nition of t}-xe r.nutua'l independence of
cfi::ccees .of the forces, or motmn-determmajclve cxrcumstax']ces oc-
curring in nature, which was

A & reached and found expression
in the investigations relating to
c D projection,is important. A body -

Fig. ron. may move (Fig. 1o1) in the di-

rection A5, while the space in which this motion oc-
curs is displaced in the direction AC. The body then
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oes fr 1
fircuilztlznietsoéf. t 1_\Iow, this also happens if the two
o a 51mu1ta11.eously determine the mo-
L C, have no influence on one another
181(1)5 1<’3as,y to see thafs we may compound by the parall
e ga;r;z il;tocoirﬁy displacements that have taken place
o placefes and accelerations that simultane-

II,

THE ACHIEVEMENTS OF HUYGENS

I. T
C h g Huyg
he next Il Succession o the reat IHEC}lanlCal m uygens's

quirers i1s Huvge i
GENS, who in every respect must be DiED rank
4as an in-

ranked ileo’
anked as Galileo’s peer. If, perhaps, his philosophical 7"

:}iciodwglelnts were less splendid than those of Galileo
iy e c1ency~ was compensated for by the superiorit :
Y 1: egsee(;mt;.]trlczdhpowers. Huygens not only continueg
rches which Galileo had b !

1 : egun, but he al
:;noczlid tl;e first problems in the zz’yfzam;'cs of seviyjzc}
§, whereas Galileo had through i .

out 1
self to the dynamics of a single bo?:iy S e

P enitu Huyg S nts numera-
I}le l t de ()' ens’s aCllleVeI! ent 18 beStE ra

seen in his Hor : ;
; ‘ : ;
ologium Oscillatorium, which appeared in hono Hur-
gens's

1673. T i :
73- The most important subjects there treated of for M
ments,

the i
tion’ﬁl;itet;lrfzve, a.re : the theory of the centre of oscilla-
i inentlo.n and construction of the pendulum-
- :)f - vention of. the escapement, the determina-
e acceleran_or.l of gravity, ¢, by pendulum-
e tilal Ifaroposatlon regarding the employment
e theg - of the seconds' pendulum as the unit of
mECha,ni 1 eorems respecting centrifugal force, the
cal and geometrical properties of cycloids: the

doctrin
e of evolutes, and
ey N : the theory of the circle of
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n of his
ygens shares with

2. With respect to the form of presentatio
o be remarked that Hu

work, it i1s t

CHRISTIANUS HUGENIUS
natus 14 APrihs 1629.
== denatus 8 Junii 1695 .

A AR
I O s R il
Galileo, in all its perfection, the latter’s exaltc:c.l and
inimitable candor. He is frank without reserve .m tbe
presentment of the methods that led him to his dis-

il
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coveries, and thus always
conducts his reader into the
full comprehension of his
performances. Nor had he
cause to conceal these
methods. 1f, some thou-
sand years hence, it will be
found that he was a man, it
will likewise be seen what
manner of man he was.
In our discussion of the
achievements of Huygens,
however, we shall have to
proceed in a somewhat dif-
ferent manner from that
which we pursued in the
case of Galileo. Galileo’s
views, in their classical sim-
plicity, could be givenin an
almost unmodified form.
With Huygens this is not
possible. The latter deals
with more complicated
problems; his mathematical
methods and notations be-
come inadequate and cum-
brous. For reasons of brev-
ity, therefore, we shall re-
produce all the conceptions
of which we treat, in mod-
ern form, retaining, how-
ever, Huygens’s essential
and characteristic ideas.

Huygens’s Pendulum Clock,

157

Characteri-
sation of
Huygens's
perform-
ances.
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3. We begin with the investigations concerning

Centrifugal
¢ have recognised with

and centri- .
S etal force, centrifugal force. When once W

Galileo that force determines acceleration, we are im-
pelled, unavoidably, to ascribe every change of velocity
and consequently also every change in the direction of
a motion (since the direction is determined by three
velocity-components perpendicular to one another) to
a force. 1i, therefore, any body attached to a string,
say a stone, is swung uniformly round in a circle, the
curvilinear motion which it performs is intelligible only
on the supposition of a constant force that deflects the
body from the rectilinear path. The tension of the
string is this force ; by it the body is constantly deflected
from the rectilinear path and made to move towards
the centre of the circle. This tension, accordingly, rep-
* resents a centripetal force. On the other hand, the axis
also, or the fixed centre, is acted on by the tension of
the string, and in this aspect the tension of the string
appears as a centrifugal force.

11.
25

Fig. 102. Fig. 103.
Let us suppose t
locity has been imparted and
uniform motion in a circle by a
directed towards the centre.
this acceleration depends, itis o
We imagine (Fig. 102) two equal circles uni-

hat we have a body to which a we-

which is maintaineq} in
n acceleration constahlfly
The conditions on which
ur purpose to investi-

gate.
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formly travelled round by two bodies ; the velocities in Uni
the mrcle_s I and II bear to each other the proporéiom e
1:2. Ifin the two circles we consider any same ar . cies
element corresponding to some very small angle a, th -
the .con:esponding element s of the distance thzit t}elz
bodies in consequence of the centripetal acceleration
ha_we departed from the rectilinear path {the tangent
will B’.ISO be the same. If we call ¢, and ti o
spective accelerations, and 7 and 7/2 thle time(%}egle S
for the angle a, we find by Galileo’s law e

B 25 25
Py ="y Pr= 4 =i that is to say @, = 4@,.

T.herefore, by ggneralisation, in equal circles the
centrlpete}l acceleration is proportional to the square of
‘the velocity of the motion. ' i
L X e
a F(?t us now consider the motion in the circles I and Uniform
: (Fig. 103), the radii of which are to each other asmmDn e
: ‘ une 1
ih s anc.l let us take for the ratio of the velocities of clrcles
tr: nl’llotlons also '1 12, so that like arc-elements are
b velled through in equal times. @,, @,, s, 25 denote
? E]
Cr: chele@hons and the elements of the distance trav-
ed; 7 is the element of the time, equal for b
cases. Then ik T

@ L 45 :
s T =, that is to say @, = 2p,.

If

: One_h;’llﬁf)w we reduce the velocity of the motion in I1

5 , s0 that the velocities in I and II bec

k- qual, @, will thereby b e

E ., toz y be reduced one-fourth, that is

E .cpl/z. G?nerahsing, we get this rule: when

,‘fripeml city olf the circular motion is the same, the cen-

- acceleration is inversel i

E : y proportio

4 adius of the circle described D
8T e

4. The early investigators, owing to their followi-

N
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e‘ratio_n is constantly changing ; and that a change of
vF:lomty (as will appear in the discussion of the prin-
ciple of 25 viva) is connected with an approach of the
bodies that accelerate each other, which does not take
place here. The more complex case of elliptical cen-
tral motion is elucidative in this direction.

5. Th_e expression for the centripetal or centrifugal A different
ac_:celeratlon, @ = v? /r, can easily be putina somewﬁat SR
d}fferent form. If 7 denote the periodic time of the l
cTrcu]ar motion, the time occupied in describing the
circumference, then 27" = 2 7, and consequently @ =
47 m?/7?, in which form we shall employ the expres-
sion later on. If several bodies moving in circles have
the same periodic times, the respective centripetal ac-
celerations by which they are held in their paths, asis
apparent from the last expression, are proportio;ml to
the radii.

Efe:}:;c;i;?_ the con_(:f.::ptions of the ancients, generally obtained .their

el of propositions in the cumbersome form of proportions.

crela  We shall pursue a different method. On a movable
object having the velocity v let a force act during the
clement of time 7 which imparts to the object perpen-
dicularly to the direction of its motion the acceleration
@. The new velocity-component thus becomes @7,
and its composition with the first velocity produces a
new direction of the motion, making the angle & with
the original direction. From this results, by conceiving
the motion to take place in a circle of radius 7, and on
account of the smallness of the angular element putting

X

w7
z ; 61 We _shall take it for granted that the rcader is Some phe-
amiliar with the phenomena that illustrate the con- whion the

si i '
derations here presented : as the rupture of strings of Lﬂ::

Bigkios Fig. 105.

tan @ — a, the following, as the complete expression
for the centripetal acceleration of a uniform motion in

a circle,
7!

W

Pr T
LA g — T — e o
? 7

The idea of uniform motion in a circle conditioned

7

insufficient strength on which bodies are whirled about,
the flattening of soft rotating spheres, and so on. Hu ;
gens was able, by the aid of his conception, to c-expla?n
at once whole series of phenomena. When a,pendulum-
clock, for example, which had been taken from Paris
:iOOCayenlne by R1cher (1671-1673), showed a retarda-
n of its motion, Huygens deduced the apparent

The para-

doxical

oy ' i : i . :

charicter by a conitant centrlpeta}l a.ccele ation 1s a little para timinution of the acceleration of gravity g thus estab

o thiom. doxical. The paradox lies in the assumption of a con- lished, from the greater centrifugal lerati ¢ the
acceleration of the

stant acceleration towards the centre without actual
approach thereto and without increase of velocity. This
is lessened when we reflect that without this centripetal
acceleration the body would be continually moving
7atay from the centre ; that the direction of the accel-

L.

o(l)lt:tmg earth at the equator; an explanation that at
Zrendered the observation intelligible.

0 experiment instituted by Huygens may here be

noti i i
Boticed, on account of its historical interest. When

New i
ton brought out his theory of universal gravitation,
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aninterest- Fluygens belonged to the great number of those who
et were unable to reconcile themselves to the idea of action
HUYBenS: .t a distance. Ile was of the opinion that gravitation
could be explained by a vortical medium. If we enclose

in a vessel filled with a liquid a number of lighter bod-

jes, say wooden balls in water, and set the vessel ro-

tating about its axis, the balls will at once rapidly move

towards the axis. If for instance (Fig. 106), we place

the glass cylinders £ containing the wooden balls KA

by means of a pivot Z on a rotatory apparatus, and ro-

tate the latter about its ver-

L5 7 R_  tical axis, the balls will im-
I £ mediately run up the cyl-

7 inders in the direction away

from the axis. But if the

A tubes be filled with water,

Fig. 106. ' each rotation will force the

balls floating at the extremities £Z towards the axis.
The phenomenon is easily explicable by analogy with
the principle of Archimedes. The wooden balls receive
a centripetal impulsion, comparable to buoyancy,
which is equal and opposite to the centrifugal force
acting on the displaced liquid.

Sl 7. Before we proceed to Huygens’s investigations
on the centre of oscillation, we shall present to the
reader a few considerations concerning pendulous and
oscillatory motion generally, which will make up in ob-
viousness for what they lack in rigor.

Many of the properties of pendulum motion were:

known to GavriLeo. That, he had formed the concep-
tion which we shall now give, or that at least he was
on the verge of so doing, may be inferred from many
scattered allusions to the subject in his Dialogues. The
bob of a simple pendulum of length 7 moves in a circle
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Fig. 107) of radius /2. If we giv i
imall exczxrsion, it will tra:elgIizleitt:"tlislzeﬂl;:tl;hmjl R Eﬁléé?fgi
very small arc which coincides approxim'lte?ns h the v

‘ : 0 y with the pendulum,
chord belonging to it. But this
chord is described by a falling
particle, moving on it as on an
inclined plane (see Sect. 1 of this
Chapter, § 7), in the same time
as the vertical diameter 5/ —
2/ If the time of descent be
called #, we shall have 2/—
$gt?, that is 1 =121"7/¢. But
since the continued movement

Fig. 107,

f%’om B up the line BC’ occupies an equal interval of

time, we have to put for the time 7 of an oscillation

from C'to €/, T'— 4]/% It will be seen that even from

so crude a conception as this the correct Sorm of the
pendulum-laws is obtainable. The exact expression

for the tinle_of very small oscillations is, as we know

W= ]/Z/g" ; ,

AgamZ the motion of a pendulum bob may be viewed peng
as a motion of descent on a succession of inclined motion”"

planes. Tf the string of the pendulum makes the angle motion ** *

a with 'Fhe perpendicular, the pendulum bob receives chen ™

in th.e direetion of the position of equilibrium the accel- R

eration g- sin @. When a is small, ¢. w is the expres-

;silg)n .of this acceleration ; in other words, the accelera-

then ;i:i?;a}ys proportignal and oppositely directed to

e s1on. - When the excursions are small the

: \Sfature of the path may be neglected.

. S;ugroonf) thf-lse prelimil?arifzs, we may proceed to

L %;e ;)scﬂlatory anth)Il-ll’l a simpler manner. A

7 e to move on a straight line 04 (Fig. 108),
onstantly receives in the direction towards the
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s sl point O an acceleration proportional tq its distanm? from
zgﬁ:lgfyos- 0. We will represent these.acceieranon.s by ordinates
motion.  erected at the positions considered. Ordinates upwards

left ; ordinates down-

denote accelerations towards the
: wards represent accel-

O'f every succeeding pair of elements the same ass

tion alsc_> holds true. Therefore, generalising, it erll
Pe readily perceived that the period of oscill;tt' -
independent of its amplitude or breadth o

nce ;
IS S Next, let us conceive two oscil i
l i scillatory motions, I and The «
o ¢ right. The body, left 11, that have equal excursions (Fig. 109); but in, 111 t9;::‘1?1ll;é?g[;]f
> 1, Rl a fourfold acceleration correspond to the ;'un.e dist o T
' er 4 istance al to tl
A S from 0. We divide the amplitudes of sct!u?"tel?m
of the ac-

varied acceleration,

g4 pass through O tod,,

where 04, == 04,

come back to O, and

so again continue its

Eigrod. motion. It is in the

The period first place easily demonstrable that the period of os-
of oscilla- . 3 . . g0

cillation (the time of the motion through 404 ,) 1s1n-

tion inde-

fﬁ?g?ﬁ'ﬁﬁ.ﬁ dependent of the amplitude of the oscillation (the dis-
G tance 0A). To show this, let us imagine in I and
II the same oscillation performed, with single and

double amplitudes of oscillation. As the acceleration

varies from point to point, we must divide 04 and

O'A' — 204 into a very large equal number of ele-

ments. Each element 4’5 of O'A’ is then twice as

large as the corresponding element 45 of 04. The

initial accelerations @ and @' stand in the relation

@ =2 Accordingly, the elements A5 and 4'B' =

2 AB are described with their respective accelerations

@ and 2¢ in the same time 7. The final velocities 2

and ¢ in I and II, for the first element, will be v = @7

and o' = 27, that is o — 2 2. The accelerations and

the initial velocities at B and 5 are therefore again as

1:2. Accordingly, the corresponding elements that
next succeed will be described in the same time. And

A i

parts. These parts are then equal in
I and II. The initial accelerations at
A and 4’ are @ and 4¢; the ele-
ments of the distance described are
AB — .A B = s; and the times are o B4
respectively 7and 7. We obtain, then

BV 55/, ¥ = Vas/ip — T/Qj

The element 4'8’ is accordingly trav-

;I]led 1through in one-half the time Fig.oo.
Bea;:den-;n; AJfB’ 1s.d 1I)‘he final velocities 2 and o' at

re found by the equations
" % #9 . s = @71 and
C_itiesq.a(f(;/z) = z,v. Since, therefore, the initial velo-
e = ; and B’ are to one another as 1:2, and the
erations are again as 1:4, the element of II suc

ceeding the first will again be traversed in half the

time Of i
the Corfespondiﬂg one in I Generalising we
H

get: F i i

g or equal_excursmns the time of oscillation is in
{ Y proportional to t i
4 p he square root of the accelera-

9. The considerations last presented may be put in

~ aver i

2 meth}(:drr;lfu;h abbrelwated and very obvious form by a
o OHCEPUOH' first employed by Newton. New-
. 0se material systems simzlar that have geo-
g y similar configurations and whose homolo-

the oscillations 40 and 0’4’ — 04 : —T] celeration.
into a very large equal number of B
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s masses bear to one another the same ratio. He

ple of simil- 5 5 e
"™ says further that systems of this kind execute similar

homologous points describe simi-
Conformably to the
nt day we should

movements when the
lar paths in proportional times.

geometrical terminology of the prese
not be permitted to call mechanical structures of this

kind (of five dimensions) similar unless their homolo-
gous linear dimensions as well as the times and the
masses bore to one another the same ratio. The struc-
tures might more appropriately be termed affined to

one another.
We shall retain, however, the name phoronomically

similar structures, and in the consideration that is to

follow leave entirely ocut of account the masses.
In two such similar motions, then, let
the homologous paths be s and as,
the homologous times be # and £7; whence

the homologous velo-

iy $ X s
cities are D= and g — e
] o
the homologous accel- :
t' 25 da a 2s
erations .......-.- 7 —=—2H e
7 e & £z 12

Thededus- ~ Now all oscillations which a body performs under
tion of th e i :

flon oLt the conditions above set forth with any two different
illation b : : - : ;
cillation by, - mplitudes 1 and a, will be readily recognised as si-

thismethod
Noting that the ratio of the homologous

#lar motions.
accelerations in this case is ¢ = a, We have o = a/f3%.

Wherefore the ratio of the homologous timep, that is
to say of the times of oscillation, is = =1. We ob-
tain thus the law, that the period of oscillation is inde-
pendent of the amplitude.

If in two oscillatory motions we put for the ratio
between the amplitudes 1 : @, and for the ratio between
the accelerations 1: & 4, we shall obtain for this case
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o= ap=a/F3?, and therefore f = 1/4 1/ j¢; where
Wlﬂ,} the se_cond léw of oscillating motion is ojbtained
: WO u%nform circular motions are always phoronom-
ically s_lmxlar. Let the ratio of their radii be 1 : & and
the ratlo'of their velocities 1: . The ratio of thej
accelerations is then e — a/f3?, and since y l/efjl’r
A 2 - e
al:c;o &¢= y2/a; whence the theorems relative to c ’
tripetal acceleration are obtained i
It i i i o
3 m;s}a p'lty that investigations of this kind respect-
exzczrens;?mcal] a'nd phoronomical affnity are not more
ively cultivated, since they i
; ey promise th
beautiful and most idati ey
' elucidative e i insi
. xtensions of insight
10. Bet i ion i
ween uniform motion in a circle and oscil- The con-

latory motion ind j i

rdati);ﬂ T c‘)jhtil:; i;ndljust dlscusseq an important et

e shall now consider. We as- tomofivis
o ) ystem of rectangular co- it

ordinates, having its origin at the - oo s

centre, O, of the circle of Fig. 110 i

about the circumference of Whicl’jl o

we conceive a body to move uni- A i

ff)rmly. The centripetal accelera- ’/

tfon @ which conditions this mo-

tion, we resolve in the directions Fig. ‘]:0‘

of .
mo)t(io?ir:, :lflfl : tobserve that the X-components of the
s ‘i;;:ved only by the X-components of the
both the a(:(.:ele i regard both the motions and
Now, the twl‘atlons as independent of each other.
t:illatory,rnc>tionso tcomponents of the motion are os- The iden-
sion x the accel 2 _and fro about 0. To the excur-fwp ™
iR R AR Gl
Proportional 1 ¢, corresponds.  The acceleration is
nal, therefore, to the excursion. And accord-

10gly the motion is of the kind just investigated. The



168 THE SCIENCE OF MECHANICS.

time 7 of a complete to and fro movement is also the
periodic time of the circular motion. - With respect to
the latter, however, we know that @ = 472 /T2, or,
what is the same, that 7=2#1Vr/@p. Now @/r is
the acceleration for & = 1, the acceleration that corre-
sponds to unit of excursion, which we shall briefly
designate by £ TFor the oscillatory motion we may
put, therefore, 7= 27 V/1/f. For a single movement
to, or a single movement fro,—the common method of
reckoning the time of oscillation,—we get, then, 7'=
TV'1/f

Thesppli- | 11. Now this result is directly applicable to pen-

tion of . 2 1
e last re- dulum vibrations of wery small excursions, where, ne-

sult to pen- olecting the curvature of the path, it is possible to ad-
brations. p oo to the conception developed. For the angle of
elongation « we obtain as the distance of the pendulum
bob from the position of equilibrium, /& ; and as the

corresponding acceleration, ga; whence

f:iz:-‘(’; and 7'=— n\; :—.

This formula tells us, that the time of vibration is
directly proportional to the square root of the length
of the pendulum, and inversely proportional to the
square root of the acceleration of gravity. A pendulum
that is four times as long as the seconds pendulum,
therefore, will perform its oscillation in two seconds.
A seconds pendulum removed a distance equal to the
earth’s radius from the surface of the earth, and sub-
jected therefore to the acceleration g/4, will likewise
perform its oscillation in two seconds.

12. The dependence of the time of oscillation on
the length of the pendulum is very easily verifiable by
experiment. If (Fig. 111) the pendulums @, &, ¢,
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which to maintain the plane of oscillation invariable Experimen-
are suspended by double threads, have the lengths 1, e
4, 9, then a will execute two oscillations to one 05Ci1~1p2:;sdl?lfutgf

lation of 4, and three to one of .

Fig. 111.

The verification of the dependence of the time of

E oscillation on the acceleration of gravity ¢ is some-

what more difficult ; since the latter cannot be arbi-

- trarily altered. But the demonstration can be effected

£ by allowing one component only of ¢ to act on the
~ pendulum.

If we imagine the axis of oscillation of
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Esperimen- the pendulum A4 fixed in the vertically placed plane

tal verifica-

tion of the

laws of the

pendulum.

of the paper, ZZ% will be the intersection of the plane
of oscillation with the plane of the paper
and likewise the position of equilibrium
of the pendulum. The axis makes with
the horizontal plane, and the plane of os-
cillation makes with the vertical plane, the
angle f#; wherefore the acceleration g.cosf

Fig.1i2.  is the acceleration which acts in this plane.
If the pendulum receive in the plane of its oscillation
the small elongation «, the corresponding acceleration

Fig. 113,

will be (g cos 8) a; whence the time of oscillation is

T=m ']/l/g cos f3.
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We see from this result, that as S is increased the
acceleration g cos 8 diminishes, and consequently the
time of oscillation increases. The experiment may be
easily made with the apparatus represented in Fig. 113.
The frame /2 /& is free to turn about a hinge at C; it can
be inclined and placed on its side. The angle of in-
clination is fixed by a graduated arc @ held by a set-
screw. Every increase of ff increases the time of oscil-
lation. If the plane of oscillation be made horizontal,
in which position & rests on the foot % the time of
oscillation becomes infinitely great. The pendulum

in this case no longer returns to any definite position

but describes several complete revolutions in the same
direction until its entire velocity has been destroyed
by {riction.

13. If the movement of the pendulum do not take Theconical
q pendulum.

place in a plane, but be performed in space, the threa
of the pendulum will describe the surface
ofacone. Themotion of the conical pen-
dulum wasalsoinvestigated by Huygens.
We shall examine a simple case of this
motion., We imagine (Fig. 114) a pen-
dulum of length 7 removed from the ver- ¢
tical by the angle a, a velocity » imparted
to the bob of the pendulum at right e

angles to the plane of elongation, and the pendulum re-
leased. The bob of the pendulum will move in a hori-
zontal circle if the centrifugal acceleration ¢ developed
faxa'ctly equilibrates the acceleration of gravity g; that
15, if the resultant acceleration falls in the directjion of
the pendulum thread. But in that case @/¢ = tan a.
I.f 7 stands for the time taken to describe one revolu-
tion, the periodic time, then @ -= 4772 /T2 0t T
27 l/r/qo. Introducing, now, in the place of 7/ the
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value / sina /g tan @ =/ cos /g, Wé get for the periodic
time of the pendulum, 7’=27m V' / cos a/g. Fortheve-
locity # of the revolution we find v = V7@, and since
@ = gtana it follows that v =1/g/sin « tana. For
very small elongations of the conical pendulum we may
put 7'=2m1///g, which coincides with the regular
formula for the pendulum, when we reflect that a single
revolution of the conical pendulum corresponds to zawoe
vibrations of the common pendulum.

The deter- 14. Huygens was the first to undertake the exact
mination of . i 4 -

hoatel” determination of the acceleration of gravity g by means
eration of 3

gravityby Of pendulum observations. From the formula 7=
the pendu-

lum, 7 V'i/g for a simple pendulum with small bob we ob-
tain directly g = #2//7?. For latitude 45° we obtain
as the value of g, in metres and seconds, g.806. For
provisional mental calculations it is sufficient to re-
member that the acceleration of gravity amounts in
round numbers to 10 metres a second.

A remark 15. Every thinking beginner puts to himself the

ﬁ?;ﬂié?é‘;; question how it is that the duration of an oscillation,

ingthe law. 41, 0t is a zime, can be found by dividing a number that
is the measure of a lemgth by a number that is the
measure of an acceleration and extracting the square
root of the quotient. But the fact is here to be borne in
mind that g= 2s5/#2, that is a length divided by the
square of a time. In reality therefore the formula we
have is 7= = V/({/25)¢2. And since //2s is the ratio
of two lengths, and therefore a number, what we have

under the radical sign is consequently the square of a

time. It stands to reason that we shall find 7'in sec-
onds only when, in determining g, we also take the sec-
ond as unit of time.

In the formula g= 72 //7? we see directly that g is

(T e
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a length divided by the square of a time, according to
the nature of an acceleration.

16. The most important achievement of Huygens
is his solution of the problem to determine the centre
of oscillation. So long as we have to deal with the dy-
namics of a single body, the Galilean principles amply
suffice. But in the problem just mentioned we have to
determine the motion of several bodies that mutually
influence each other. This cannot be done without

resorting to a zew principle. Such a one Huygens
actually discovered.

lations more slowly than short ones. Let us imagine a
hfaavy body, free to rotate about an axis, the centre of
gravity of which lies outside of the axis; such
a body will represent a compound pendulum.
Every material particle of a pendulum of this
kind would, if it were situated alone at the
same distance from the axis, have its own pe-
rf'od of oscillation. But owing to the connec- Fig 115,
t10r_13 of the parts the whole body can vibrate with only
a single, determinate period of oscillation. If we pic-
ture to ourselves several pendulums of unequal lengths
the shorter ones will swing quicker, the longer one;
slower. If all be joined together so as to form a single
p(?ndulum, it is to be presumed that the longer ones
will be accelerated, the shorter ones retarded, and that
a sort of mean time of oscillation will result. There
must exist therefore a simple pendulum, intermediate
“in length between the shortest and the longest, that
has the same time of oscillation as the compound’ pen-
: ?}iﬂmn. If we lay off the length of this pendulum on
sef:;nzfound pendu}um, we shall find a point that pre-
e same period of oscillation in its connection

L73

The prob-
lem of the
centre of
oscillation.

We know that long pendulums perform their oscil- Statement

of the prob-
lem.

e T e
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with the other points as it would have if detached and
left to itself. This point is the centre of oscillation.
MERSENNE was the first to propound the problem of
determining the centre of oscillation. The solution of
DrscarTes, who attempted it, was, however, precipi-
tate and insufficient.

17. Huygens was the first who gave a general solu-
tion. Besides Huygens nearly all the great inquirers
of that time employed themselves on the problem, and
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same result. What Huygens asserted, therefore, no
one had ever really doubted ; on the contrary ex,rer

one had zustinctively perceived it. Huygens, hojwevery
gave this instinctive perception an abstract, cmcepiua:’
form. He does not omit, moreover, to point out, on the
ground of this view, the fruitlessness of endeavors to
establish a perpetual motion. The principle just devel-

oped will be recognised as a gencralisation of one of Ga-
liled’s ideas.

we may say that the most important principles of mod-

3 3 : e 18. Let us now see what inei :
ern mechanics were developed in connection with it. the principle accomplishes Huygens's

in the determination of the centre of oscillation. ILet g;ﬁ?:e%le

The new idea from which Huygens set out, and
which is more important by far than the whole prob-
lem, is this. In whatsoever manner the material par-
ticles of a pendulum may by mutual interaction modify
each other’s motions, in every case the velocities ac-
quired in the descent of the pendulum can be such only
that by virtue of them the centre of gravity of the par-
ticles, whether still in connection or with their connec-
tions dissolved, is able to rise just as /4zg/ as the point
from which it fe//. Huygens found himself compelled,

which Huy- by the doubts of his contemporaries as to the correct-

ness of this principle, to remark, that the only assump-
tion implied in the principle is, that heavy bodies of
themselves do not move upwards. If it were possible
for the centre of gravity of a connected system of falling
material particles to rise higher after the dissolution
of its connections than the point from which it had
fallen, then by repeating the process heavy bodies
could, by virtue of their own weights, be made to rise
to any height we wished. If after the dissolution of
the connections the centre of gravity should rise to a
height less than that from which it had fallen, we
should only have to reverse the motion to produce the

.

04 (Fig. 116), for. simplicity’s sake,
be a linear pendulum, made up of a
large number of masses indicated in
the diagram by points. Set free at
04, it will swing through Zto 0.4,
it 4B — B4'. Its centre of
gravity .S will ascend just as high
on the second side as it fell on the EIg: 3b.

first. : From this, so far, nothing would follow. But
also, if we should suddenly, at the position 0B, re-
lease the individual masses from their connections, the
masses could, by virtue of the velocities impresse::i on
th.em by their connections, only attain the same height
with respect to centre of gravity. If we arrest the free

A o
utward-swinging masses at the greatest heights they

Is)everally at.tain, the shorter pendulums will be found
bz;(;:(;h;ta lgle OA', the longer ones will have passed
) , but t’h.e c'entre of gravity of the system will
on 04’ in its former position.

pm?;‘zolrf:l us note.that the enforced velocities are
o to the distances fr'om the axis; therefore,
s (ig:;lfen, all are detern?med, and the height of

€ centre of gravity given. Conversely,
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therefore, the velocity of any material particle also is
determined by the known height of the centre of grav-
ity. But if we know in a pendulum the velocity cor-
responding to a given distance of descent, we know its

whole motion.
The e aplo: Premising these remarks, we proceed to the
Lﬁgg?eﬁ.the problem itself. On a compound linear pendulum (Fig.
117) we cut off, measuring from the axis, the
portion — 1. If the pendulum move from its
position of greatest excursion to the position
of equilibrium, the point at the distance == 1
from the axis will fall through the height 4.
The masses m, ', " ... at the distances
# o, " ... will fall in this case the dis-
tances &, »" %, 7% ..., and the distance of

Fig. 117, . :
""" the descent of the centre of gravity will be:
mrk 4 w4+ w4 L p Zmr
- — =l
o am L Zm

Let the point at the distance 1 from the axis ac-
quire, on passing through the position of equilibrium,
the velocity, as yet unascertained, . The height of
its ascent, after the dissolution of its connections, will
be 22/2¢. The corresponding heights of ascent of
the other material particles will then be (rz)2/z2g,
(Fey?f2g, (W) /2¢. ... Theheightof ascent of the
centre of gravity of the liberated masses will be

ek Lo\ 2 TR
77 (J;d—)f | —(‘i)m - L gt (—r;)— 4+ 22 Zme?
o =1 e =
A A A S
By Huygens’s fundamental principle, then,

Zmr v Zmrd
/5_2% = e e (a).
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From this a relation is deducible between the distance of
descent £ and the velocity 2. Since, however, all pen-
dulum motions of the same excursion are phoronomi-
cally similar, the motion here under consideration is
in this result, completely determined. ;

To find the length of the simple pendulum that has The tengtn

the same period of oscillation as the compound pen- Sf;l:seoilhm

. dulum considered, be it noted that the same relation pendulum,
must obtain between the distance of its descent and its
velocity, as in the case of its unimpeded fall, If ¥ 1s
the length of this pendulum, Zy is the distance of its

descent, and vy its velocity ; wherefore
(22)?

b g e 2 ,
2g ik §
72
& er TN F (/J)
Multiplying equation (@) by equation {4y we obtain
_ Zmyd
Y e

Employing the principle of phoronomic similitude, somtion of

- We may also proceed in this way. From (a) we get sy

lem by the
S principle of
Zmy similitude.
Zmre
A simpl £
; ple pendulum of length 1, under corresponding
Circumstances, has the velocity

== ]/f_)::gr}g

' fJ'l =t ]/z_gifeii
lCalhng the time of oscillation of the compound pendu-
;ln]}z'/,_jhat of the simple pendulum of length o 70—
I/§ we obtain, adhering to the iti
€qual excursions, 5 g,

T o % 1_77"7
0 *; wherefore 7'— = \j zﬁmy 3
1

- = 3 SITBTE
7 g2 mr
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Huygon s 20. We see without difficulty in the Huygenian
rinciple ¥ L o it

L principle the recognition of @erk as the condition de-

identical
with the e
or, more exactly, the condition

princivle of ferminative of velocily,
VIS TV, " A i A .
determinative of the so-called wis wiva. By the vis

ziva or living force of a system of masses m, 7,
W, . . .., affected with the velocities 2, #,, ¢, - - - ., W€
understand the sum *

o2 7}2,‘2',2 +ﬁl,,f’,,
5 5 =1

The fundamental principle of Huygens is identical with
the principle of vis viza. The additions of later in-
quirers were made not so much to the idea as to the
form of its expression.

If we picture to ourselves generally any system of
weights p, #,, #,, - - - -» Which fall connected or uncon-
nected through the heights %, 2,, 4,, - . . ., and attain
thereby the velocities 2, #,, 7, - - - - then, by the Huy-
genian conception, a relation of equality exists between
the distance of descent and the distance of ascent of the
centre of gravity of the system, and, consequently, the

equation holds

2 e Peiles
TN e
TRy SRR e

2?2
5
If we have reached the concept of ¢‘mass,” which
Huygens did not yet possess in his investigations, we
may substitute for p/¢ the mass z and thus obtain the
form Sph= L= muv?, which is very easily generalised

for non-constant forces.

or Ep/;::rzj?

* This is not the usual definition of English writers, who follow the clder
authorities in making the vis viva twice this quantity.—Z7rans.
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21. With the aid of the principle of living forces General

we can determine the duration of the infinitely small e

0S( llatIOHS Of a[ly Pendulunl WllatSO’ riod of pen-
ever. vv e 1Et fall from the ce tre Of cillations.

gravity s (Fig. 118).a perpendicular on
the axis; the length of the perpendic-
ular is, say, . We lay off on this,
measuring from the axis, the length
—1. Let the distance of descent of
the point in question to the position of gty

equilibrium be 4 and z the velocity acquired. Since
the work done in the descent is determinec.i by the

- motion of the centre of gravity, we have

work done in descent — i izva
?)2
akgM = o Zmr?
3 g

._llf_here we call the total mass of the pendulum and
a.ntl.cl:lpate the expression #is viva. By an inference
similar to that in the precedi i

lar to that in ng case, we ob =
ﬂl/E’fnrz/(ng Z ’ it 1=
OSCizuz.t'We see that the duration of infinitely small The two
; ablons of any pendulum is determined by two fac- Give factors
ors—by the value of the expression Zmr?, which

Euler called the moment of nertia and which Huygens

A : :
ad employed without any particular designation, and

b

S})lr ‘ﬁlebv.alue of agA. The latter expression, which we

a; : riefly t_erm the statical moment, is the product
of the weight of the pendulum into the distance of

its i
-ItS centre of gravity from the axis. If these two values

L
Saemglven,. the length of the simple pendulum of the
e period of oscillation (the isochronous pendulum)

and tlle pOSitiOn e centre -
Of th i 1
i : Of OSCIHatlon arc deter
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Huygens's For the determination of the lengths of the pendu-
;s,fgti‘_g;g‘z? lums referred to, Huygens, in the lack of the analytical
oMo ethods later discovered, employed a very ingenious
= geometrical procedure, which
we shall illustrate by one or
two examples. Let the prob-
lem be to determine the time

é of oscillation of a homogene-

the wedge are consequentl i
_ y at the same distance
the axis, 24C. g
Following out this idea, we readily perceive th

correctness of the followi 1 e

olowing assertions. For a homo- fnect g
- - . . i 5

geneous rectal_lgle of height 4 swinging about one of hepeding

1ts.51_des, the distance of the centre of gravity from the '

axis 1s //2, the distance of the centre of oscill

For a homogeneous triangle of height /4

A

ation 2 4.
the axis of

- " ous, material, and -heavy ‘recf Whidtl passes through the vertex parallel to the b
tangle 4BCD, which swings the distance of the centre of oravity from th 258
on the axis 4ZF (Fig. 119). 4 /4, the distance of the centre of osciflati 3]‘3 axis is
Dividing the rectangle into ing the moments of inertia of the rectan cl>n i ; Call-
f, -+ .. having the distances we get 12 )
A Wy Bppnin e from the axis, the expression for the e = , 4

length of the isochronous simple pendulum, or the dis- g =7 = 57 2.,

tance of the centre of oscillation from the axis, is given P M, 3 M,

by the equation 2

R Lt fo o Consequentlydl_ :_/L;lfi, {l_ggfj_

Jr-b % e
Let us erect on ABCD at C and D the perpendiculars
CE—= DF— AC= BD and picture to ourselves al
homogeneous wedge A BCDEF. Now find the distance
of the centre of gravity of this wedge from the plane
through 423 parallel to CDEZF. We have to consider,
in so doing, the tiny columns f7, /, 7,, f,, #,, - - - - and
their distances #, 7,, 7,, . . . . from the plane referred
to. Thus proceeding, we obtain for the required dis-
tance of the centre of gravity the expression

Frori . v E s S

Bl e e,
that is, the same expression as before. The centre of
oscillation of the rectangle and the centre of gravity of

: By this pretty geometrical conception many prob-
ems can l?e_solved that are to-day treated—more con
veniently it is true—by routine forms

Fig. 120,

Fig. 121.

23. We shall now discuss a

| Sné?nn:;gtsto:rinertia, that Huygens made use of in a
P = ;? 1H¢'arent form. . Let O (Fig. 121) be the
gravity of any given body. Make this the

proposition relating to




The rela-
tion of mo-

ments of in-

ertia re-
ferred to
parallel

axes.

An appli~
cation of
this propo-
sition.
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origin of a system of rectangular cotrdinates, and sup-
pose the moment of inertia with reference to the Z-axis
determined. If m is the element of mass and # its dis-
tance from the Z-axis, then this moment of inertia is
d—= mr2. We now displace the axis of rotation
parallel to itself to O, the distance @ in the X-direction.
The distance 7 is transformed, by this displacement,
into the new distance p, and the new moment of
inertia is
O=Zmp?=Zm[(x— a)?+y2] = Zm(x®+ y2) —
2a Zmx+ a?Zm, or, since Zm (x2+y2) =2mr2 =4,
calling the total mass 4/ — 2, and remembering the
property of the centre of gravity 2max =0,

6 =4+ a2 M.
From the moment of inertia for one axis through the
centre of gravity, therefore, that for any other axis
parallel to the first is easily derivable.

24. An additional observation presents itself here.
The distance of the centre of oscillation is given by
have their previous significance. The quantities 4 and
M are invariable for any one given body. So long
therefore as a retains the same value, /7 will also remain
invariable. For all parallel axes situated at the same
distance from the centre of gravity, the same body as
pendulum has the same period of oscillation. If we
put 4/M = », then

M
Z:-a—+ﬂl.

Now since / denotes the distance of the centre of
oscillation, and e the distance of the centre of gravity
from the axis, therefore the centre of oscillation is
always farther away from the axis than the centre of
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gravity by the distance %/a. Therefore x/a is the dis-
tance of the centre of oscillation from the centre of
gravity. If through the centre of oscillation we place
a second axis parallel to the original axis, a passes

thereby into /e, and we obtain the new pendulum
length :

The time of oscillation remains the same therefore
for the second parallel axis through the centre of oscil-
lation, and consequently the same also for every par-
allel axis that is at the same distance u#/a from the
centre of gravity as the centre of oscillation,

The totality of all parallel axes corresponding to
the same period of oscillation and having the distances a
and 1/a from the centre of gravity, is consequently re-
:alised in two coaxial cylinders. Each generating line
is interchangeable as axis with every other generating
line without affecting the period of oscillation.

o 25 To obtain a clear view of the relations subsist- The axial
ing between the two axial cylinders, as we shall briefly SELae

call them, let us institute the following considerations.
We put 4 = %2/, and then

22
VE— i
—+a

If we seek the a that corresponds to a given / and
therefore to a given time of oscillation, we obtain

/ 2
cz::—z—:l:\{_f‘/d-’.

Generally therefore to one value of / there correspond
two values of ¢. Only where VI2 /4 — k% — 0, that is

I cases in which /= 24, do both values coincide in
&=k
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If we designate the two values of # that correspond
to every /, by « and f, then '

52 2 p2 2
= + ir~ = +__ﬁ7’ or
P i
B2+ a2y = a (B 4 f),
-k2(ﬁ —a)y=apfB(f — a),
RR=u.f.
The czpter‘f 1f, therefore, in any pendulous body we know two par-
mination o a = -
the preced-allel axes that have the same time of oscillation and
ing factors - i -
bya_get}* different distances & and f from the centre of gravity,
metrica 5 3 z
method.  as 18 the case for instance where we are able to give the
centre of oscillation for any point of suspension, we

can construct 2. We lay off (Fig. 122) @ and f con-

—_—T N
pe g oLk

Fig. 122. Rig. 123.

/

secutively on a straight line, describe a semicircle on
a 4 3 as diameter, and erect a perpendicular at the
point of junction of the two divisions @ and . On this
perpendicular the semicircle cuts off 4 If on the other
hand we know 4, then for every value of a, say A, a
value u is obtainable that will give the same period
of oscillation as A. We construct (Fig. 123) with A
and £ as sides a right angle, join their extremities by a
straight line on which we erect at the extremity of £ a
perpendicular which cuts off on A produced the por-
tion u.

Now let us imagine any body whatsoever (Fig. 124)
with the centre of gravity O. We place it in the plane
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of the drawing, and make it swing about all DPossible An illust
1 ra-

parallel axes at right angles to the plane of the Papet i
All the. axes that pass through the circle o arep S
find, with respect to period of oscillation i
able with each other and also with t}:
through the circle 4. If instead of o we t

circle A, then in the place of /2 we shall

interchange-
ose that pass
ake a smaller
get a larger

)

Fig, 124,

o UGS :
t'1r(:1e M. Con_tmumg‘ In this manner, both circles ul-
zmatgzly meet in one with the radius 2
26. W . |
Lo foe have dwelt at such length on the foregoing Recapitula-
r good reasons. In the first place, they have Bl
2

Served our purpose of dis ing i
' playing in i
splendid resylts of the investi e e

all that we have given is vir

: tually contained
0 somewhat different form, in . bl

the writings of H uygens,
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or is at least so approximately presented in them that
it can be supplied without the slightest difficulty. Only
a very small portion of it has found its way into our
modern elementary text-books. One of the proposi-
tions that has thus been incorporated in our elemen-
tary treatises is that referring to the convertibility of
the point of suspension and the centre of oscillation.
The usnal presentation, however, is not exhaustive.
Captain KaTeRr, as we know, employed this principle
for determining the exact length of the seconds pen-
dulun.

The points raised in the preceding paragraphs have

ofinertia, also rendered us the service of supplying enlighten-

The lesser
investiga-
tions of
Huygens.

ment as to the nature of the conception ¢ moment of
inertia.” This notion affords us no insight, in point
of principle, that we could not have obtained without
it. But since we sawe by its aid the individual con-
sideration of the particles that make up a system, or
dispose of them once for all, we arrive by a shorter
and easier way at our goal. This idea, therefore, has
a high import in the economy of mechanics. Poinsot,
after Euler and Segner had attempted a similar object
with less success, further developed the ideas that be-
long to this subject, and by his ellipsoid of inertia and
central ellipsoid introduced further simplifications.

247. The investigations of Huygens concerning the
geometrical and mechanical properties of cycloids are
of less importance. The cycloidal pendulum, a contriv-
ance in which Huygens realised, not an approximate,
but an exact independence of the time and amplitude
of oscillation, has been dropt from the practice of mod-
ern horology as unnecessary. We shall not, therefore,
enter into these investigations here, however much of
the geometrically beautiful they may present.
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Great as the merits of Huygens are with respect to
tF= most different physical theories, the art of horology,
phictical dioptrics, and mechanics in particular, his
chief performance, the one that demanded the greatest
J'H.-cllectual courage, and that was also accompanied
Wil the greatest results, remains his enunciation of the
Priciple by which he solved the problem of the centre
r:i‘;r"pscillation. This very principle, however, was the
o v one he enunciated that was not adequately appre-
L’niﬂ‘d by his contemporaries; nor was it for a long
period thereafter. We hope to have placed this prin-

c?'ple here in its right light as identical with the prin:
Clple of vig .

III.

THE ACKIEVEMENTS OF NEWTON.

Huygens’s
crowning
achieve-
ment.

P The merits of Newion with respect to our sub- Newton's
Jject were twofold. First, he greatly extended the rangemems'

of mechanical physics by his discovery of wniversal

gravitation. Second, he completed the JSormal enunciation

0'/.[ the mechanical principles now generally accepted. Since
his time no essentially new principle has been stated.
All that has been accomplished in mechanics since his
day, has been a deductive, formal, and mathematical

development of mechanics on the basis of Newton’s
laws.

2, 'Let us first 'cast a glance at Newton’s achieve- mis great
ment 1n the domain of physics. Kepler had deduced 5isecel

from the observations of Tycho Brahe and his own
three empirical laws for the motion of the planet;
:ﬁlbOut the sun, which Newton by his new view rendered
intelligible. The laws of KEpLER are as follows :
1) The planets move about the sun in ellipses, in
one focus of which the sun is situated. ’

discovery
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i 2) The radius vector joining each planet with ti8
aws, eir > - T

part in the sun describes equal areas in equal times.
discovery.

3) The cubes of the mean distances of the planesS
from the sun are proportional to the squares of
their times of revolution.

He who clearly understands the doctrine of Gali®0
and Huygens, must see that a curvilinear motion M-
plies deflective acceleration. Hence, to explain the -
nomena of planetary motion, an acceleration must?e
supposed constantly directed towards the concave Siue
of the planetary orbits.

il }\Tow Kepler's second law, the law of areas, 1S €x-
ergfépz plained at once by the assumption of a consta-t p.lane—
second law. tary acceleration towards the sun ; or rather, this ac-
celeration is another form of expression for the same
fact. If a radius vector describes
in an clement of time the area
ABS (Fig. 125), then in the next
equal element of time, assuming
no acceleration, the area BCS
will be described, where Bli—
4B and lies in the prolongation
Fig. 125. of AB. But if the central accel-
eration during the first element of time produces a
velocity by virtue of which the distance BD will be
traversed in the same interval, the next-succeeding
area swept out is not ZCS, but BES, where CE is par-
allel and equal to BD. But it is evident that BES =
BCS— ARBS. Consequently, the law of the areas con-
stitutes, in another aspect, a central acceleration.

Having thus ascertained the fact of a central accel-
eration, the #hird law leads us to the discovery of its
character. Since the planets move in ellipses slightly
different from circles, we may assuime, for the sake of
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simplicity, that their orbits actually are circles. If &, The formal

.. ; L
].\’2, R, are the .radn and 7', 7,, 7, the respective i
times of revolution of the planets, Kepler’s third law St

may be written as follows : ' aan
: law.
R i x A RQ i ad RE ¥
_.~T12 B P T3 — . .= a constant.

But'we know that the expression for the central accel-
eration of motion in a circle is =4 R72/72, or
72 = 4m?* R/@. Substituting this value we get
o R — P, L2 — @ iR 2 —constant ;o
@ = constant /X2 ;

tbat is to say, on the assumption of a central accelera-
tion inversely proportional to the square of the distance
we get, from the known laws of central motion Kep,—
ler’s third law ; and wzice versa. ,

Moreover, though the demonstration is not easily
put in an elementary form, when the idea of a central
an?celeration inversely proportional to the square of the
distance has been reached, the demonstration that this

" acceleration is another expression for the motion in

f;onic sections, of which the planetary motion in ellipses

1s a particular case, is a mere affair of mathematical
analysis.

£ .3 'But in addition to the #nfellectual performance The ques-
just discussed, the way to which was fully prepared by Sﬁ,?s?faﬁhe
Kepler, Galileo, and Huygens, still another achieve- e
ment of Newton remains to be estimated which in no **"*"
respect should be underrated. This is an achievement

fJf the smagination. We have, indeed, no hesitation

11 saying that this last is the most important of all.

Of Wthat nature is the acceleration that conditions the
curvilinear motion of the planets about the sun, and

of the satellites about the planets ? ,
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e Newton Vperc,:eived, with great audacity of t_hought,

illr]s:b\l,{rnlne%o and first in the instance of thc‘: moon, that this accel-

tlhrfi‘i'g?saa]nf eration differed in no substantial respect from the ac-

gravitation. celeration of gravity so familiar to us. It was prob-
ably the principle of continuity, which accomplished
so much in Galileo’s case, that led him to his dis-
covery. He was wont—and this habit appears to be
common to all truly great investigators—to adhere as
closely as possible, even in cases presenting altered
conditions, to a conception once formed, to preserve
the same uniformity in his conceptions that nature
teaches us to see in her processes. That which is a
property of nature at any one time and in any one
place, constantly and everywhere recurs, though it
may not be with the same prominence. If the attrac-
tion of gravity is observed to prevail, not only on the
surface of the earth, but also on high mountains and in
deep mines, the physical inquirer, accustomed to con-
tinuity in his beliefs, conceives this attraction as also
operative at greater heights and depths than those ac-
cessible to us. He asks himself, Where lies the limit
of this action of terrestrial gravity ? Should its action
not extend to the moon? With this question the great
flight of fancy was taken, of which, with Newton’s in-
tellectual genius, the great scientific achievement was
but a necessary consequence.

The appli- Newton discovered first in the case of the moon that

cation of >
this idea to the same acceleration that controls the descent of a

the motion <tone also prevented this heavenly body from moving
away in a rectilinear path from the earth, and that, on
the other hand, its tangential velocity prevented it from
falling towards the earth. The motion of the moon
thus suddenly appeared to him in an entirely new light,

but withal under quite familiar points of view. The
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new conception was attractive in that it embraced ob-
jects that previously were very remote, and it was con-
vincing in that it involved the most familiar elements.
This explains its prompt application in other fields and
the sweeping character of its results.
Newton not only solve i i i
thousand years’ pu);zle o;i i)lfeh;sl;rfgai;n;eptwn - é;ﬁ appilca
; ystem, but tion to all
also furnished by it the key to the explanation of Al
number of other important phenomena. In the same
way that the acceleration due to terrestrial gravity ex-
tenc}s to the moon and to all other parts of space, so do
the 'accelerations that are due to the other hez’wenly
bf)ches, to which we must, by the principle of contin-
uity, ascribe the same properties, extend to all parts
of space, including also the earth. But if gravitation is
not peculiar to the earth, its seat is not exclusively in the
centre of the earth. Every portion of the earth, how-
ever small, shares it. Every part of the earth at’tracts
or determines an acceleration of, every other parti
Thus an amplitude and freedom of physical view were
reached of which men had no conception previously t
Newton’s time. a5
A long series of propositi i i
of Spherei on other Igodl?e)s lt;?tiitfgpgzns gdthe ok E,léecﬁff:f'
within the spheres; inquiries as t demigs
: 5 o the shape of the
earth, especially concerning its flattening by rotation
sprang, as it were, spontaneously from this view. Thé
riddle of the tides, the connection of which with the
moon had long before been guessed, was sudderﬂy ex-
plained as due to the acceleration of the mobile masses
of terrestrial water by the moon.
4. The reaction of the new ideas on mechanics was
a result which speedily followed. The greatly varying
accelerations which by the new view the same body be-
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4) The statement of the law of action and reaction.
6. With respect to the first point little is to be Hisattitude

added to what has already been said, Newton con- to he sjard

The effect came affected with according to its position in space,
of the new : ¥ .
ideason  suggested at once the idea of wariadle weight, yet also

h = i % - . 1 7
Pl e pointed to eonze characteristic property of bodies which

was constant. The notions of mass and weighs were
thus first clearly distinguished. The recognised vari-
ability of acceleration led Newton to determine by spe-
cial experiments the fact that the acceleration of gravity
is independent of the chemical constitution of bedies;
whereby new positions of vantage were gained for the
elucidation of the relation of mass and weight, as will
presently be shown more in detail. Finally, the zns-
versal applicability of Galileo’s isdea of force was more
palpably impressed on the mind by Newton’s perform-
ances than it ever had been before. FPeople could no
longer believe that this idea was alone applicable to the
phenomenon of falling bodies and the processes most

ceives all circumstances determinative of motion oRfores:
p ]

whether terrestrial gravity or attractions of planets, or
the act?on of magnets, and so forth, as circumstan’ces
determinative of acceleration. He expressly remarks
on this point that by the words attraction and the like
he does not mean to put forward any theory concern-
ing the cause or character of the mutual action referred
to, but simply wishes to express (as modern writers
say, in a differential form) what is otherwise expressed
(thaF is, in an integrated form) in the description of the
rflotlon. Newton’s reiterated and emphatic protesta-
tions that he is not concerned with hypotheses as to the
causes of phenomena, but has simply to do with the

immediately connected therewith. The generalisation
was effected as of itself, and without attracting partic-
ular attention.
Newton's 5. Let us now discuss, more in detail, the achieve-
achieve- S
mentsin  ments of Newton as they bear upon the principles of
the domain : 3
of mechan- meckanics. In so doing, we shall first devote ourselves
1cs. = . .
exclusively to Newton’s ideas, seek to bring them for-
cibly home to the reader’s mind, and restrict our criti-
cisms wholly to preparatory remarks, reserving the
criticism of details for a subsequent section. On pe-
rusing Newton’s work (Philosophie Naturalis Principia
Mathematica. London, 1687), the following things
strike us at once as the chief advances beyond Galileo
and Huygens:
1) The generalisation of the idea of force.
2) The introduction of the concept of mass.
3) The distinct and general formulation of the prin-

ciple of the parallelogram of forces.

mvest_igation and transformed statement of actual facts
—a direction of thought that is distinctly and tersel;x
uttered in his words ““hypotheses non fingo,” «I do
not frame hypotheses, "—stamps him as a philosophér

of the /Zighest rank. He is not desirous to astound and The Regu-

startle, or to impress the imagination by the originality ;Jalsailc]i]i{csc-

of his ideas : his aim is to know Nature *

*Thls. Is conspicuously shown in the rules that Newton formed for th
conduct of natural inquiry (the Regule Fhilosophand?) ; X
£ Ruie_I. No more causes of natural things are to be admitted than h

as tr‘}lly exist and are sufficient to explain the phenomena of these things N
o R}lli;a 11, t_[‘herefm‘e, to natural effects of the same kind we must, as far
Ppossible, assign the same causes; e. g., to respiration in man and animals;
d in America; to the light of our kitcher.;
rd of light on the earth and on the planets,
e andTl:]l?siquaImes of bodies that can be neither increased nor
™ experin;ents which are found to belong to‘ all bodies within the reach of
o , are to be rfagarded as the universal qualities of all bodies.

re follows the enumeration of the properties of bodies which has b i

corp:crated in all text-books.] e
. a;f ll:oljix;;ve'rsaii;y appear, by experiments and astronomical observations,

e s in 1e vicinity of th(-f earth are heavy with respect to the earth
S 1n proportion to the quantity of matter which they severally contain :

i

fire and of the sun; to the reflection
**Rule III,
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e =
7. With regard to the concept of ¢ mass,” it 1s to

toniancon- 1 ved that the formulation of Newton, which de-

cept of
mass.

fines mass to be the quantity of matter of a bo.dy as
measured by the product of its volume ;}nd densflty, is
unfortunate. As we can only define .dens]t_v as the mfatsli
of unit of volume, the circle 1s mamfcs't. Newton fe
distinctly that in every body -there was mherf(:lnt a p?osd
erty whereby the amount of its motion was eterm.mht
and perceived that this must be different fr_cim weilg -
He called it, as we still do, mass; b}lt he d]rd not suc
ceed in correctly stating this perception. We shall re-
vert later on to this point, and shall stop here only to
make the following preliminary remarks.

i 1 s 1 num-
The expe- 8. Numerous experiences, of which a sufficient

riences
which poi

at ber stood at Newton’s disposal, point clearly to the ex-

to the exist-

ence of su
a physica
property.

“bistence of a property distinct from weight, Wh_er(-:by the
Vi quantity of motion of th_e
body to which it belongs 15
determined. If (Fig. 126)
we tie afly-wheel to a rope

; 2 7
é ﬁ = the weight of the fly-wheel.

and attempt to lift it by
means of a pulley, we feel

Fig. 126. If the wheel be placefi

on a perfectly cylindrical axle and'well 'ba.lanced(,i:t
will no longer assume by virtue of its weight any e;
terminate position. Nevertheless, we are sensible o

€ i tion of its mass,
i i ect to the earth in the propor
t the moon is heavy with resp o g
tal:lad our seas with respect to the moon; and all the planets with 1_espe;tfutrmity
2 ; i &
another, and the comets also with respect to the su_n, we must, in ¢ e
with thi's rule, declare, that &/ bodies are heavy_“rllh reslliec: t;: El;,einducﬁm;
i hysies propositions collecte
«Rule IV. In experimental p ¢ : =
1 phenomena are to be regarded either as accurately true or very ne? b);
i i occu
true, notwithstanding any contrary hypotheses, till c:;hexij?hixion;zz:pticns,
o rate, or are rendered subject to ¢
which they are made more accu q ) ) S
«This rule must be adhered to, that the results of induction may

annulled by hypotheses,”

THE PRINCIPLES OF DYNAMICS. 195

a powerful resistance the moment we endeavor to set Mass dis-

the wheel in motion or attempt to stop it when in mo-
tion. This is the phenomenon that led to the enuncia-
tion of a distinct property of matter termed inertia, or
‘“force” of inertia—a step which, as we have already
seen, and shall further explain below is unnecessary.
Two equal loads simultaneously raised, offer resistance
by their weight. Tied to the extremities of a cord that
passes over a pulley, they offer resistance to any mo-
tion, or rather to any change of velocity of the pulley,
by their mass. A large weight hung as a pendulum
on a very long string can be held at an angle of slight
‘deviation from the line of equilibrium with very little
effort. The weight-component that forces the pendu-
lum into the position of equilibrium, is very small.
Yet notwithstanding this we shall experience a con-
siderable resistance if we suddenly attempt to move or
stop the weight. A weight that is just supported by a
balloon, although we have no longer to overcome its
gravity, opposes a perceptible resistance to motion.
Add to this the fact that the same body experiences in
different geographical latitudes and in different parts
of space very unequal gravitational accelerations and

. we shall clearly recognise that mass exists as a property

wholly distinct from weight determining the amount of

acceleration which a given force communicates to the
body to which it belongs.

9. Important is Newton’s demonstration that the Mass meas.

: urable by
mass of a body may, nevertheless, under certain con- weight.

ditions, be measured by its weight. Let us suppose a
body to rest on a support,on which it exerts by its weight
a pressure. The obvious inference is that 2 or 3 such
bodies, or one-half or one-third of such a body, will pro-
duce a corresponding pressure 2, 3, 4, or 1 times as
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e = WE e e acc eletc tion o le cent 1n-
gl’cat If c llnagln t C 111 f aes
The prere fi

quisites of
the meas-
urement of
mass by
weight,

Newton's
establish-
ment of
these pre-
requisites.

creased, diminished, or wholly lrleinox.fed;e\:je;hzlilm?i
he pressure also will be increased,
i‘;fetdfllit‘:h01£’ removed. VV.e thus see, that the P;S(i
: ttributable to weight increases, -dccreases,
e vanishes along with the ¢ quan-
1 l l tity of matter” and the magni-
- % - tude of the acceleration of de-
2 7  gecent. In the simplest manner
i imaginable we conceive the pres-
sure p as quantitatively representable by t‘he p;o&iuz‘;sﬁ
the quantity of matter » into the accelcratlonbod. es ik
g—by p=—mg. Suppose nOW We have two ’o 1es e
exert respectively the weight-pressures 2, {b ; t(:l wh.Ch
we ascribe the ¢ quantities of matter’” », #', an :vt}i
are subjected to the accelerations of descent g, g; :en
p=mgand p' =w'g". If, now, we were al.Jlelto pro 0,-
that, independently of the material (chennca} ) comlt)he
sition of bodies, g=g" at every San?e poln:c on th
earth’s surface, we should obtain mim' = plp , that 11cs.1
to say, on the same spot of t};)e earth’jst surface, it wou
ible to measure mass Dy weigsit. e
< %\?Ziib;ewton established this f_a?t, that g is 1nd§-
pendent of the chemical composition of bod;est,d_f)i
experiments with pendulums of equal h.angthsf u -Hla,
ferent material, which exhibited equal tm?es. o os<:1f :
tion. Ie carefully allowed, in .these experlmeflt‘s,tho_s
the disturbances due to the resistance (?f the au‘é'ff 1_
last factor being eliminated by constructing from 11 tf;:e
ent materials spherical pendulum-bobs of faxacly :
same size, the weights of which were equahs:ie'd ly afu
propriately hollowing the spheres.. According y,and
bodies may be regarded as affected with the same g,
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their quantity of matter or mass can
out, be measured by their weight.

If we imagine a rigid partition placed between an Supple-
£ . . ment:
assemblage of bodies and a magnet, the bodies, if the consii,

considera-
t E:
magnet be powerful enough, ions,

» as Newton pointed

or at least the majority
of the bodies, will exert a pressure on the partition.

But it would occur to no one to employ this magnetic

pressure, in the manner we cmployed pressure due to

weight, as a measure of mass, The strikingly notice-

able inequality of the accelerations produced in the
different bodies by the magnet excludes any such idea.
The reader will furthermore remark that this whole
argument possesses an additional dubious feature
that the concept of mass which up to this point has

simply been zamed and Jelt as a necessity, hut not de-
Jined, is assumed by it.

, In

10. To Newton we owe the distinct formulation of The doc-

the principle of the composition of forces.* If g body o

; composi-
15 simultaneously acted on by two forces (Fig. 128), orges.

forces.
of which one would produce the

motion 47 and the other the 4 &
motion 4C in the same interval D
of time, the body, since the two

forces and the motions produced o
by them are independent of eackh other, will move in that
interval of time to 4. This conception is in every
respect natural, and distinctly characterises the essern-
tial point involved. Tt contains none of the artificial
and forced characters that were afterwards imported
into the doctrine of the composition of forces.
We may express the proposition in a somewhat
* Roberval's (1668) achievements wi

Position of forces are also to be mentio
ready been referred to.

th respect to the doctrine of the com-

ned here. Varignon and Lami have al-
(See the text, page 36.)
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Discussion different manner, and thus bring it nearer its modern

of the doc- : : :
trine of the form. The accelerations that different forces impart

Eﬁggﬁsz to the same body are at the same time t}le measure of
" these forces. But the paths described in equal times

are proportional to the accelerations. Therefore the

latter also may serve as the measure of the forces. We

may say accordingly : If two forces, which are propor-

tional to the lines 45 and AC, act on a body A4 in the
directions A8 and 4 C, a motion will result that could

also be produced by a third force acting alone in the
direction of the diagonal of the parallelogram con-

structed on A48 and AC and proportional to that di-

agonal. The latter force, therefore, may be substituted .

for the other two. Thus, if @ and i are the two ac-
celerations set up in the directions 48 and 4C, then
for any definite interval of time ¢, AB = @72 /2, AC=
i 22 /2. If, now, we imagine 4.0 produced in the same
interval of time by a single force determining the accel-
eration y, we get
AD =yxt2/2, and AB : AC: AD =@ : ¢ : X-

As soon as we have perceived the fact that the forces are
independent of. each other, the principle of the paral-
lelogram of forces is easily reached from Galileo’s no-
tion of force. Without the assumption of this inde-
pendence any effort to arrive abstractly and philosoph-
ically at the principle, is in vain.

Tha 1awic 11. Perhaps the most important achievement of

?géicnt?oir.ld Newton with respect to the principles is the distinct
and general formulation of the law of the equality of
action and reaction, of pressure and counter-pressure.
Questions respecting the motions of bodies that exert
a reciprocal influence on each other, cannot be solved
by Galileo’s principles alone. A new principle is ne-
cessary that will define this mutual action. Such a
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). 9
p‘rmc.lple was that resorted to by Huygens in his inves-
t1lgat;.on of the centre of oscillation. Such a principle
also 1s Newton'’s law of action and reaction.

j& body that presses or pulls another body is,
cor nzlg to Newton, pressed or pulled in ex
same

egree by that other body. Pressure and counter- and paa.
pressure, force and counter-force, are always equal to e
;ach‘E other. As the measure of force is defined by
(Htlaw on to be. the quantity of motion or momentum

ass X velocity) generated in a unit of time, it conse-
quen_tly follows that bodies that act on each other com-
ml(ljmcate_ 1io each other in equal intervals of time equal
and opposite quantities of motion (momenta), or re-
cerve contrary velocities reci i

' procally propor
their masses. aliisin:i

Now, although Newton’s law, in the form here ex- The rela-

pressed, appears much more simple, R

mo i i '
and aF first glance more admissible tha;ilizin;‘fadfl;:ei %;‘%%;ﬁ,s
gens, it will be found that it by no means contains 1eZs %?n:s‘s{lgim
unanalys.ed experience or fewer instinctive elements g
Unquestlc'rna'bly the original incitation that prompte(i

t'he enunciation of the principle was of a purely instinc-

t1v¢la nature. We know that we do not .
resistance from a body until we seek to set it in motion
The more swiftly we endeavor to hurl a heavy stone;
from us, the more our body is forced back by it. Pre
sure a{ld counter-pressure go hand in hand. ’i‘he asw
sump.tlon c?f the equality of pressure and counter-pres-
Stce. is qu1t'e immediate if, using Newton’s own illus-
tration, we imagine a rope stretched between two bod-

ies, or a distended or i i
o compressed spiral spring between

acC- Newton’s
deduction

actly the of the law
of action

experience any

b Tl_lere exist i¥1 the domain of statics. very many in-
Stinctive perceptions that involve the equality of pres:



Statical ex-
periences
which point
to the exist-
ence of the
law.

The con-

ceptofmass

in its con-
nection
with this
law.
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sure and counter-pressure. The trivial experience that
one cannot lift one’s self by pulling on one’s chair is
of this character. In a scholium in which he cites the
physicists Wren, Huygens, and Wallis as his prede-
cessors in the employment of the principle, Newton
puts forward similar reflections. He imagines the
earth, the single parts of which gravitate towards one
another, divided by a plane. If the pressure of the
one portion on the other were not equal to the counter-
pressure, the earth would be compelled to move in the
direction of the greater pressure. But the motion of
a body can, so far as our experience goes, only be de-
termined by other bodies external to it. Moreover,
we might place the plane of division referred to at any
point we chose, and the direction of the resulting mo-
tion, therefore, could not be exactly determined.

12. The indistinctness of the concept of mass takes
a very palpable form when we attempt to employ the
principle of the equality of action and reaction dynam-
ically. Pressure and counter-pressure may be equal.
But whence do we know that equal pressures generate
velocities in the inverse ratio of the masses ? Newton,
indeed, actually felt the necessity of an experimental
corroboration of this principle. He cites in a scholium,
in support of his proposition, Wren’s experiments on
impact, and made independent experiments himself.
He enclosed in one sealed vessel a magnet and in an-
other a piece of iron, placed both in a tub of water,
and left them to their mutual action. The vessels ap-
proached each other, collided, clung together, and af-
terwards remained at rest. This result is proof of the
equality of pressure and counter-pressure and of equal
and opposite momenta (as we shall learn later on,
when we come to discuss the laws of impact).

THE PRINCIPLES OF DYNAMICS. 201
' The reader has already felt that the various enunci- The merit

aFlons of Newton with respect to mass and the prin- 3?deefec§s
ciple of reaction, hang consistently together, and that dociines.
the)f support one another. The experiences that lie at

their foqndation are: the instinctive perception of the
connection of pressure and counter-pressure ; the dis-
cet:.nment that bodies offer resistance to change of ve-

locity independently of their weight, but proportion-

ate_ly thereto; and the observation that bodies of greater

weight receive under equal pressure smaller velocities.
Newton’s sense of wihat fundamental concepts and prin-

ciples were required in mechanics was admirable. The
fr)-rm of his enunciations, however, as we shall later in-

dlca-te in detail, leaves much to be desired. But we have

no rlghF to underrate on this account the magnitude of

his achievements ; for the difficulties he had to conquer

were of a formidable kind, and he shunned them less

than any other investigator.

v,

DISCUSSION AND ILLUSTRATION OF THE PRINCIPLE OF
REACTION.

: I We shall now devote ourselves a moment ex- The princi-
& 1.151ve1y to the Newtonian ideas, and seek to bring the e B
principle of reaction more clearly home to our mind

{{—— M —)2} .—1_}_

Fig. 120,

z -

Ly

’ : Fig. 130.

and feeling. If two masses (Fig. 129) M and m act on
one another, they impart to each other, according

to Ne z iti i
wton, contrary velocities ¥ and z, which are in-

ersely proportional to their masses, so that
MV + me = 0.
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The appearance of greater evidence may be im-

of the prin- parted to this principle by the following consideration.

We imagine first (Fig. 130) two absolutely egual bodies
a, also absolutely alike in chemical constitution. We
set these bodies opposite each other and put them in
mutual action; then, on the supposition that the in-
fluences of any third body and of the spectator are ex-
cluded, thé communication of egual and contrary velo-
cities in the direction of the line joining the bodies is
the sole uniguely determined interaction.

Now let us group together in 4 (Fig. 131)m such
bodies @, and put at B over against them =’ such
bodies . We have then before us bodies whose quan-

mo e

ala a]
ala El M
A B

Fig. 131. Fig. 132.

tities of matter or masses bear to each other the pro-
portion m:m'. The distance between the groups we
assume to be so great that we may neglect the exten-
sion of the bodies. Let us regard now the accelera-
tions a, that every two bodies @ impart to each other,
as independent of each other. Every part of 4, then,
will receive in consequence of the action of B the ac-
celeration 7'a, and every part of B in consequence of
the action of A4 the acceleration a—accelerations
which will therefore be inversely proportional to the
masses.

2. Let us picture to ourselves now a mass M (Fig.
132) joined by some elastic connection with a mass 7,
both masses made up of bodies @ equal in all respects.
Let the mass m receive from some external source an
acceleration @. At once a distortion of the connection
is produced, by which on the one hand # is retarded
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and on the other 47 accelerated. When both masses The deduc

ha e b gl 1 to move w the same acceleration, a no £
Vv egur lth
(o] 1 N 1 tion o

Sfurther distortion of the connection ceases. If we call fora e
« the ac'celeranon of A and f the diminution of the
acceleration of m, then @ = @ — f, where agreeably

to what precedes a M = f#m. From this follows

a+ ff=a- ai[: @, or e
i M+

. If we were to enter more exhaustively into the de-
tails of this last occurrence, we should discover that
t%]e two masses, in addition to their motion of progres-
sion, also generally perform with respect to each obther
mot.lons of oscillation. If the connection on slight dis-
t?rtxon develop a powerful tension, it will be impos-
sible for any great amplitude of vibration to be reaclfl)ed
and we may entirely neglect the oscillatory motions,
as we actually have done. ,

: If the expression &= m @/M + m, which deter-
mines the acceleration of the entire system, be ex-
all'll.l’lf-)d, it will be seen that the product m (p’plays a
_dec;swe part in its determination. Newton therefore
%nvested this product of the mass into the acceleration
imparted to it, with the name of ‘“moving force.”
M+ m, on the other hand, represents the entire ma;;s
of l“}'le rigid system. We obtain, accordingly, the accel-
eration of any mass #»' on which the :
moving force p acts, from the expres-
sion g/, |Tt| |77,, Iw

3. To reach this result, it is not at o
all necessary that the two connected
masses should act directly on each other in all their
Iparts:. We have, connected together, let us say, the
three masses m,, m,, m4, where s, is supposed t(; act

Fig. 133.

ey e g L i e et S i g e bt S B
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the load just so muck, and so much only, as it in return Some phys-

5 5 ical ¢
presses the load, that is prevents the same from falling. pies of the

5 5 : rinciple
If # is the weight, m the mass, and & the acceleration-of reantion,

of gravity, then by Newton’s conception p = mg. If

ass m, re-
A condition only on ,, and m, only on m,. Let the rr; i o
e ohees ceive from some external source the acceleration @.

Wel’ In the distortion that follows, the

sult.

L aa g M, 7 the table be let fall vertically downwards with the ac-
receive the accelerations -6 -+ /8 -+ @ celeration of free descent & all pressure on it ceases.
= ;y —

We discover thus, that the pressure on the table is de-
termined by the relative acceleration of the load with
respect to the table. If the table fall or rise with the
acceleration y, the pressure on it is respectively m (g —
y) and m(g+ 9). Be it noted, however, that no
change of the relation is produced by a constant velocity
of ascent or descent. The relative acceleration is de-
terminative.

Galileo knew this relation of things very well. The The pres-
doctrine of the Aristotelians, that bodies of greater ;g;fs%ffffgﬁ-
weight fall faster than bodies of less weight, he not only " ot o
refuted by experiments, but cornered hjs adversaries
by logical arguments. Heavy bodies fall faster than
light bodies, the Aristotelians said, because the upper
parts weigh down on the under parts and accelerate
their descent. In that case, returned Galileo, a small
body tied to a larger body must, if it possesses 77 s¢ the
property of less rapid descent, retard the larger. There-
fore, a larger body falls more slowly than a smaller
body. The entire fundamental assumption is wrong,
Galileo says, because one portion of a falling body can-

Here all accelerations to the right are r'ec_koned. as
positive, those to the left as negative, and it 1s obvious
that the distortion ceases to increase
when d=p—y, 6 =@ —aq,
where Smy, = ym,, am, = fSm,.

The resolution of these equations yie-lds the com-
mon acceleration that all the masses receive ; namely,
6 AT i 7]!1 q) SVl

my g, - my

—a result of exactly the same form as bf?fore. \.Nhe.n
therefore a magnet acts on a piece of iron which is
joined to a piece of wood, we need not trouble our-
selves about ascertaining what particles of the wood
are distorted directly or indirectly (throug-h other‘par-
ticles of the wood) by the motion of the_ piece of iron.

The considerations advanced will, in SOIT.IB meas-
ure, perhaps, have contributed towards clearly- 1mpfres;s-
ing on us the great importance for mechanics of the

Newtonian enunciations. They will also serve, in a
subsequent place, to ren-

; ; not by its weight under any circumstances es -
le der more readily obvious A gortion g ¥ R Dien
of these enun- ; : : 1 (ko ——
L ﬂ_le _defECtS A pendulum with the time of oscillation 7'— 7 V'l/g, A taliing
f - c1at10ni. M would acquire, if its axis received the downward acce]. PERduIum:
4. Le : 3 : Ea e
F::;- o tev Alustrative ol eration y, the time of oscillation 7' — TV ife — s

and if let fall freely would acquite an infinite time of

S ion. We consider i ; .
examples of the principle of reactio . oscillation, that is, would cease to oscillate.

say, a load Z on a table 7. The table is pressed by
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mass 7, re-
A condition only on #,, and m, only on m,. Let the 4

motaitec” ceive from some external source the acceleration .
Wewte. In the distortion that follows, the
i masses Wy WL, y
receive the accelerations + 6 -+ 6 | @
—y —a

Here all accelerations to the right are I:ec?koneq as
positive, those to the left as negative, and it is obvious
that the distortion ceases to increase
when § =6 —y, 6 =@ — a,
where Smy, = ym,, am, = fBm,.
The resolution of these equations yie‘lds the com-
mon acceleration that all the masses receive ; namely,

?fi-LCp sl

S my m, + mg
—a result of exactly the same form as before. Whe-n
therefore a magnet acts on a piece of iron which is
joined to a piece of wood, we need‘not trouble our-
selves ahout ascertaining what particles of the wood
are distorted directly or indirectly (througb other'par-
ticles of the wood) by the motion of theT piece of iron.
The considerations advanced will, in son‘}e meas-
ure, perhaps, have contributed towards clearly 1mpfrets},15-
ing on us the great importance for mechanics of the

Bl ’ S5
Newtonian enunciations. They will also serve, 11
subsequent place, to ren-

s der more readily obvious
L the defects of these enun-
i clations.
4 — 4 'Let us now turr_1 to1
Fig. 134. a few illustrative physica

examples of the principle of reaction. We consider,
say, a load Z on a table 7. The table is pressed by
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the load just so much, and so much only, as it in return some phys-
: . ical exam.
presses the load, that is prevents the same from falling. ples of ine
: g g rincipl
If p is the weight, m the mass, and ¢ the acceleration S reibis

of reaction,

of gravity, then by Newton’s conception p=mg. If
the table be let fall vertically downwards with the ac-
celeration of free descent & all pressure on it ceases,
We discover thus, that the pressure on the table is de-
termined by the relative acceleration of the load with
respect to the table. If the table fall or rise with the
acceleration y, the pressure on it is respectively m (g —
y) and = (g + 9). Be it noted, however, that no
change of the relation is produced by a conszant velocity
of ascent or descent. The relative acceleration is de-
terminative.

Galileo knew this relation of things very well. The The pres-
doctrine of the Aristotelians, that bodies of greater;:ﬁs%ff}];ﬁ-
weight fall faster than bodies of less weight, he not only L
refuted by experiments; but cornered hjs adversaries
by logical arguments. Heavy bodies fall faster than
light bodies, the Aristotelians said, because the upper
parts weigh down on the under parts and accelerate
their descent. In that case, returned Galileo, a small
body tied to a larger body must, if it possesses 7 se the
property of less rapid descent, retard the larger. There-
fore, a larger body falls more slowly than a smaller
body. The entire fundamental assumption is wrong,

Galileo says, because one portion of a falling bedy can-
not by its weight under any circumstances press azn-
other portion. :

A pendulum with the time of oscillation 77— 7 V'//g, A taling
would acquire, if its axis received the downward decel= EASEE
eration y, the time of oscillation 7'— ﬂl/l/;-_f;
and if let fall freely would acquire an infinite time of
oscillation, that is, would cease to oscillate.
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i W 1 1 ' fall f 1 i
The sensa- Ne ourselves, when we jump or 1a rom an eleva- 5 »

tion of fall- . i : P ; H descending weight, only partially i Aot

ing. tion, experience a peculiar sensation, which must be y impeded in its motion

of d\(f:;.cent, exerts only a partial pressure on the pulley
e ma i ye
¥ vary the experiment. We Pass a thread a variation

loaded at one extrem; i
_ emity with the i il
i ¥ weight 2 over the cxpele'iurlles;l

due to the discontinuance of the gravitational pressure
of the parts of our body on one another—the blood, and
so forth. A similar sensation, as if the ground were
sinking beneath us, we should have on a smaller planet,
to which we were suddenly transported. The sensation
of constant ascent, like that felt in an earthquake,
would be produced on a larger planet.

ngé?;‘;p_ 5. The conditions referred to are very beautifully

paratus. illustrated by an apparatus (Fig. 135¢) constructed
by Poggendorfl. A string loaded at both extremities

@, of the apparatus as indicated in Fig

/2 W

L

Fig. 135a. Fig. 135b.
by a weight 2 (Fig. 1354) is passed over a pulley ¢,
attached to the end of a scale-beam. A weight p is
laid on one of the weights first mentioned and tied by
a fine thread to the axis of the pulley. The pulley
now supports the weight 2 7+ #. Burning away the
thread that holds the over-weight, a uniformly accel-
erated motion begins with the acceleration y, with
which 7 + p descends and / rises. The load on the

Fig. 135¢.

pulley is thus lessened, as the turning of the scales in-
dicates. The descending weight 7 is counterbalanced
by the rising weight £, while the added over-weight,
instead of weighing #, now weighs (2/¢)(g— ¥)- And
since y = (p/;f’:—p) g, we have now to regard the
load on the pulley, not as p, but as(2 P/2 £-|-p). The

1356., tie the unloaded extremj

1 B ty at m, and equilibrate

: If we pull on the strin

no‘t directly affect the balance since tfe Ztl o
‘strmg passes exactly through its axig i
immediately falls, ‘
@ to rise.

this can-
ion of the
But the sid
The slackenin i =
g of the string causes
An unaccelerated motion of the weights would
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not disturb the equilibrium. But we cannot pass from
rest to motion without acceleration.
Thesufspgn- 6. A phenomenon that strikes us at first glance is,
sion of mi- 7 : 5 :
nute bodies that minute bodies of greater or less specific gravity
in liquids of . S o & - -
different  than the liquid in which they are immersed, if suffi-

specific o b . c
gravity.  ciently small, remain suspended a very long time in the

liquid. We perceive at once that
:. particles of this kind have to over-
'} come the friction of the liquid. If the
il cube of Fig. 136 be divided into 8
1] parts by the 3 sections indicated,
and the parts be placed in a row,
their mass and over-weight will re-
AL main the same, but their cross-sec-
tion and superficial area, with which the friction goes
hand in hand, will be doubled.
g}zpsgﬁged Now, the opinion has at times been advanced fvith
particles af- respect to this phenomenon that suspended particles
specific _ of the kind described have no influence on the specific
?ﬁ:ﬁﬁ&i gravity indicated by an areometer immersed in the
ing liquids? . 4 =
liquid, because these particles are themselves areo-
meters. But it will readily be seen that if the sus-
pended particles rise or fall with constant velocity, as
in the case of very small particles immediately occurs,
the effect on the balance and the areometer must be
the same. If we imagine the areometer to oscillate
about its position of equilibrium, it will be evident
that the liquid with all its contents will be moved with
it. Applying the principle of virtual displacements,
therefore, we can be no longer in doubt that the areo-
meter must indicate the mean specific gravity. We
may convince ourselves of the untenability of the rule
by which the areometer is supposed to indicate only
the specific gravity of the liquid and not that of the sus-

1
'
1
]
1
i
1
1
1
|
1
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EZE?;(LP:L:;:;TZ:W the'following co'nsid.era_tion. In a
ller quantity of a heavier liquid # is in-
troduced and distributed in fine drops. The areometer
let us assume, indicates only the specific gravity o;E
f4' Now, take more and more of the liquid 2 finally
just as much of it as we have of 4: we can t,hen no
1on‘ger say which liquid is suspended in the c’)ther ’and
Whlch specific gravity, therefore, the areometer ;nust
indicate.
Zur A Phenomenon of an imposing kind, in which The phe-
the relative acceleration of the bodies concerned is?r?én%:n %
seen to be determinative of their mutual pressure, is A
that of the tides. We will enter into this subject h:ere
only in 50 far as it may serve to illustrate the point we
are considering. The connection of the phenomenon
f’f the tides with the motion of the moon asserts itself
in the coincidence of the tidal and lunar periods, in
the augmentation of the tides at the full and r;ew
moons, in the daily retardation of the tides (by about
50 n}mutes), corresponding to the retardation of the
culmination of the moon, and so forth. As a matte
of fact, the connection of the two occurrences was verr
early thought of. In Newton’'s time people imaﬂ'ineg
to themselves a kind of wave of atmospheric presbsure
by means of which the moon in its motion was i
posed to create the tidal wave. =
The ph ides m
that sees1 iteFocln:}elI;Of;lrsc::ftilneetilrclleii;?zﬁes, & ev'ery s 3:)2’;:“[11?11?:0
Ooverpowering impressi Propor“on?’ o
T thb Hp 31011: We must not be surprised,
£ 3 at 1t 1s a subject that has actively en 1
the investigators of all times. The s
ander the Great had, from the" M d'warr]ors o
- faintes; it ir Mediterranean l}omes,
e i a of the phe'nomenon of the

s y were, therefore, not a little taken aback
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by the sight of the powerful ebb and flow at the mouth
of the Indus; as we learn from the account of Curtius
Rufus (De Rebus Gestis Alexandri Magni), whose
words we here literally quote:

¢34, Proceeding, now, somewhat more slowly in
¢ their course, owing to the current of the river being
s« slackened by its meeting the waters of the sea, they
¢ at last reached a second island in the middle of the
¢criver. Here they brought the vessels to the shore,
¢ and, landing, dispersed to seek provisions, wholly
¢ynconscious of the great misfortune that awaited
¢them.

¢e 35, It was about the third hour, when the ocean,
¢¢in its constant tidal flux and reflux, began to turn
«cand press back upon the river. The latter, at first
¢merely checked, but then more vehemently repelled,
¢ at Jast set back in the opposite direction with a force
<« greater than that of a rushing mountain torrent.
¢« The nature of the ocean was unknown to the multi-
<t tude, and grave portents and evidences of the wrath
«cof the Gods were seen in what happened. With
<< gver-increasing vehemence the sea poured in, com-
< pletely covering the fields which shortly before were
«dry. The vessels were lifted and the entire fleet dis-
<« persed before those who had been set on shore, ter-
¢ rified and dismayed at this unexpected calamity,
¢t could return. Buf the more haste, in times of great
¢c disturbance, the less speed. Some pushed the ships
¢ to the shore with poles ; others, not waiting to adjust
<< their oars, ran aground. Many, in their great haste
«to get away, had not waited for their companions,
< and were barely able to set in motion the huge, un-
¢« manageable barks ; while some of the ships were too
< crowded to receive the multitudes that struggled to
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¢« And what was the nature of this element, which now
««opposed and now obeyed the dominion of the hours?’
¢« As the king concluded from what had happened that
«the fixed time for the return of the tide was after
¢t gunrise, ke set out, in order to anticipate it, at mid-
¢night, and proceeding down the river with a few
¢¢ships he passed the mouth and, finding himself at
““last at the goal of his wishes, sailed out 400 stadia
“into the ocean. He then offered a sacrifice to the
¢« divinities of the sea, and returned to his fleet.”

8. TI.]E essential point to be noted in the explication The expli-
of the tides is, that the earth as a rigid body can re- fﬁé"ﬁﬂe"f

ceive but one determinate acceleration towards the :llfemfgfs‘)f

moon, while the mobile particles of water on the sides

nearest to and remotest from the moon can acquire
various accelerations.

£
M

©

Fig. 137,

‘Let us consider (Fig. 137) on the earth Z, opposite
which stands the moon 47, three points 4, B, C. The
accelerations of the three points in the direction of the
moon, if we regard them as free points, are respect-
Lvely P+ do, @, P 4. The earth as a whole,

owever, has, as a rigid body, the acceleration @. The
acceleration towards the centre of the earth we will
call ¢.  Designating now all accelerations to the left

as negative, and all to the right as positi
fOHowing table : P 1ve, we get the
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‘‘get aboard. The unequal division impeded all. The The
- & . ert
““cries of some clamoring to be taken aboard, of others ande

““crying to put off, and the conflicting commands of
““men, all desirous of different ends, deprived every one
‘“of the possibility of seeing or hearing. Even the
‘“steersmen were powerless; for neither could their
‘“cries be heard by the struggling masses nor were their
‘“orders noticed by the terrified and distracted crews.
¢“ The vessels collided, they broke off each other’s oars,
¢« they plunged against one another. One would think
‘it was not the fleet of one and the same army that
‘“was here in motion, but two hostile fleets in combat.

¢ Prow struck stern; those that had thrown the fore- -

““most in confusion were themselves thrown into con-
‘“fusion by those that followed; and the desperation
“of the struggling mass sometimes culminated in
¢ hand-to-hand combats.

¢36. Already the tide had overflown the fields sur-
“‘rounding the banks of the river, till only the hillocks
““jutted forth from above the water, like islands.
““ These were the point towards which all that had given
“up hope of being taken on the ships, swam. The
‘‘scattered vessels rested in part in deep water, where
““there were depressions in the land, and in part lay
““aground in shallows, according as the waves had
““covered the unequal surface of the country. Then,
¢“suddenly, a new and greater terror toak possession
‘““of them. The sea began to retreat, and its waters
‘“flowed back in great long swells, leaving the land
‘“which shortly before had been immersed by the salt
““waves, uncovered and clear. The ships, thus for-
““saken by the water, fell, some on their Prows, some
‘“on their sides. The fields were strewn with luggage,
‘“arms, and pieces of broken planks and i

fleet.
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may ‘“ soldiers dared neither to venture on the land nor to

.rmy.

'Tts
ng

he

“remain in the ships, for every moment they expected
““something new and worse than had yet befallen
‘“them. They could scarcely believe that that which
¢“ they saw had really happenéd—a shipwreck on dry
¢“land, an ocean in a river. And of their misfortune
‘there seemed no end. For wholly ignorant that the
¢ tide would shortly bring back the sea and again set
¢ their vessels afloat, they prophesied hunger and dir-
¢“est distress. On the fields horrible animals crept
¢“about, which the subsiding floods had left behind.
¢¢37. The night fell, and even the king was sore

- <‘distressed at the slight hope of rescue. But his so-

¢‘licitude could not move his unconquerable spirit. He -
“«‘remained during the whole night on the watch, and
«“despatched horsemen to the mouth of the river, that,
¢“as soon as they saw the sea turn and flow back, they
¢““might return and announce its coming. He also
“«“commanded that the damaged vessels should be re-
¢ paired and that those that had been overturned by
“‘the tide should be set upright, and ordered all to be
“‘near at hand when the sea should again inundate the
¢land. After he had thus passed the entire night in
‘“watching and in exhortation, the horsemen came
“back at full speed and the tide as quickly followed.
¢« At first, the approaching waters, creeping in light
¢swells beneath the ships, gently raised them, and,
‘“inundating the fields, soon set the entire fleet in mo-
¢tion. The shores resounded with the cheers and
¢« clappings of the soldiers and sailors, who celebrated
¢ with immoderate joy their unexpected rescue. ‘But
¢whence,” they asked, in wonderment, ‘had the sea
¢¢so suddenly given back these great masses of water?
e TRTH had they, on the day previous, retreated?
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A Vi @
—(p+4dp), —¢ —(p—d@)
ST =<
— @, — @, — @
g—dg, 0, | iz~ o

where the symbols of the first and second lines repre-
sent the accelerations which the free points that head
the columns receive, those of the third line the accel-
eration of corresponding rigid points of the earth, and
those of the fourth line, the difference, or the resultant
accelerations of the free points towards the earth. It
will be seen from this result that the weight of the water
at A and C is diminished by exactly the same amount.
The water will rise at 4 and C (Fig. 137). A tidal
wave will be produced at these points twice every
day.

It is a fact not always sufficiently emphasised, that
the phenomenon would be an essentially different one
if the moon and the earth were not affected with ac-
celerated motion towards each other but were relatively
fixed and at rest. If we modify the considerations
presented to comprehend this case, we must put for the
rigid earth in the foregoing computation, ¢ =— 0 simply.
We then obtain for

the free points. . .. A C

the accelerations..— (@ + Adg), — (p— A,
e =

QIR L (g¢— dp) — ([;, —{s — dg) T Q/)

OF g s s ol — 0, — (& + @),

where ¢’ =g¢— Ad@. In such case, therefore, the

weight of the water at 4 would be diminished, and the
weight at Cincreased; the height of the water at 4
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"~ would be increased, and the height at € diminished.

The water would be elevated only on the side facing
the moon. (Fig. 138.)

L

M

©

Fig, 138.

9. It would hardly be worth while to illustrate an ilustra-
propositions best reached deductively, by experiments a0
that can.only be performed with difficulty. But such
experiments are not beyond the limits of possibility.

If we imagine a small iron sphere & to swing as a
conical pendulum about the pole of a
magnet &V (Fig. 139}, and cover the
sphere with a solution of magnetic sul-
phate of iron, the fluid drop should, if
the magnet is sufficiently powerful, rep- K
resent the phenomenon of the tides. But
if we imagine the sphere to be fixed and
at rest with respect to the pole of the
magnet, the fluid drop will certainly not
be found tapering to a point doti on
the side facing and the side opposite to Mg o

the pole of the magnet, but will remain suspended only

on the side of the sphere towards the pole of the
magnet.

ro. We must not, of course, imagine, that the some fur-
entire tidal wave is produced at once by the action e
of the moon. We have rather to conceive the tide
as an oscillatory movement maintained by the moon.

If, for example, we should sweep a fan uniformly and
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. continuously along over the surface of the water of a
circular canal, a wave of considerable magnitude fol-
lowing in the wake of the fan would by this gentle and
constantly continued impulsion soon be produced. In
like manner the tide is produced. But in the latter
case the occurrence is greatly complicated by the irreg-
ular formation of the continents, by the periodical
variation of the disturbance, and so forth.

V.

CRITICISM OF THE PRINCIPLE OF REACTION AND OF THE

CONCEPT OF MASS.
The con- 1. Now that the preceding discussions have made
cept of e 5 o .
mass, us familiar with Newton'’s ideas, we are sufficiently

prepared to enter on a critical examination of them.
We shall restrict ourselves primarily in this, to the
consideration of the concept of mass and the principle
of reaction. The two cannot, in such an examination,
be separated ; in them is contained the gist of New-
ton’s achievement. 3
Theexpres- 2. In the first place we do not find the expression
?:tl;znafc}-x:? ‘“quantity of matter ” adapted to explain and elucidate
= the concept of mass, since that expression itself is not
possessed of the requisite clearness. And this is so,
though we go back, as many authors have done, to an
enumeration of the hypothetical atoms. We only com-
plicate, in so doing, indefensible conceptions. If we
place together a number of equal, chemically homo-
geneous bodies, we can, it may be granted, connect
some clear idea with ¢“ quantity of matter,” and we per-
ceive, also, that the resistance the bodies offer to mo-
tion increases with this quantity. But the moment we
suppose chemical heterogeneity, the assumption that
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there is still something that is measurable by the same Newton's
standard, which something we call quantity of ma_tter, of I';ltl.e con-
may be suggested by mechanical experiences, but is an
assumption nevertheless that needs to be justified.
When therefore, with Newton, we make the assump-
tions, respecting pressure due to weight, that p =mg
#' =w'g, and put in conformity with such assunjptl?ns
2/#' = m/w', we have made actual use in the oper'atlon
thus performed of the supposition, yet to be justified,
that different bodies are measurable by the same stand-
ard.
We might, indeed, arditrarily posit, that m/m' =p/[7;
that is, might define the ratio of mass to be the ratio
of pressure due to weight when ¢ was the same. But
we should then have to substantiate the use that is made
of this notion of mass in the principle of reaction and
in other relations.

O—0— <4 2
£4 IE5 V3 @
Fig. 140a. : Fig. 140 b,
3. When two bodies (Fig. 140 @), perfectly equal Apemlat
in all respects, are placed opposite each other, we ex- E:}(].(;_)fun

pect, agreeably to the principle of symmetry, that they
will produce in each other in the direction of their line
of junction equal and opposite accelerations. But if
these bodies exhibit any difference, however slight, of
form, of chemical constitution, or are in any other re-
spects different, the principle of symmetry forsakes us,
unless e assume or know beforehand that sameness of
form or sameness of chemical constitution, or whatever
else the thing in question may be, is not determina-
tive. If, however, mechanical experiences clearly and
indubitably point to the existence in bodies of a special
and distinct property determinative of accelerations,
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. nothing stands in the way of our arbitrarily establish-

Definition
of equal
masses.

Character
of the dehi-
nition,

ing the following definition :

All those bodies are bodies of equal mass, which, mu-
tually acting on cack other, produce in each other cqual
and opposite accelerations.

‘We have, in this, simply designated, or #amed, an
actual relation of things. In the general case we pro-
ceed similarly. The bodies 4 and 5 receive respec-
tively as the result of their mutual action (Fig. 140 4)
the accelerations — @ and |- ¢/, where the senses of
the accelerations are indicated by the signs. We say
then, B has @ /¢’ times the mass of 4. [/ we lake 4
as our unit, we assign to that body the mass m whick in-
parts to A m times the acceleration that A in the reaction
imparts to it. ‘The ratio of the masses is the negative
inverse ratio of the counter-accelerations. That these
accelerations always have opposite signs, that there
are therefore, by our definition, only positive masses,
is a point that experience teaches, and experience alone
can teach. In our concept of mass no theory is in-

“volved ; ““quantity of matter” is wholly unnecessary in

it; all it contains is the exact establishment, designa-
tion, znd denomination of a fact. (Compare Appendix,
IT.)

4. One difficulty should not remain unmentioned in
this connection, inasmuch as its removal is absolutely
necessary to the formation of a perfectly clear concept
of mass. We consider a set of bodies, 4, B, C, D. ..,
and compare them all with 4 as unit.

AJ B? C} D> E? E

e reee

1, gl N R vt

We find thus the respective mass-values, 1, m, »,

e

m'". ..., and so forth. The question now arises, If we

- ».»_/n-‘n.-
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select A as our standard of comparison (as our unit),
shall we obtain for C the mass-value '/m, and for D
the value #’ /m, or will perhaps wholly different values
result? More simply, the question may be put thus:
Will two bodies 2, €, which in mutual action with A
have acted as equal masses, also act as equal masses
in mutual action with each other? No /ogical necessity
exists whatsoever, that two masses that are equal to a
third mass should also be equal to each other. For
we are concerned here, not with a mathematical, but
with a physical question. This will be rendered quite
clear by recourse to an analogous relation. We place
by the side of each other the bodies 4, B, C in the
proportions of weight @, 4, ¢ in which they enter into
the chemical combinations 4.2 and 4C. There exists,
now, no ZJogical necessity at all for assuming that the
same proportions of weight 4, ¢ of the bodies B, C will
also enter into the chemical combination #C. Expe-
rience, however, informs us that they do, If we place
by the side of each other any set of bodies in the pro-
portions of weight in which they combine with the

Discussion
of a diffi-
culty in-
volved in
the preced-
ing formu-.
lation,

body 4, they will also unite with each other in- the

same proportions of weight. But no one can know
this who has not tried it. And this is precisely the case
with the mass-values of bodies.

If we were to assume that the order of combination
of the bodies, by which their mass-values are deter-
mined, exerted any influence on the mass-values, the
consequences of such an assumption would, we should
find, lead to conflict with experience. Let us suppose,
for instance (IFig. 141), that we have three elastic
bodies, 4, B, C, movable on an absolutely smooth and
rigid ring. We presuppose that 4 and A in their
mutual relations comport themselves like equal masses

The order
of combi-

nation not
influential.
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and that 5 and C do the same. We are then also ) the pressure of a number of like and commensurable It also in-
obliged to assume, if we wish to’avoid conflicts with weights. Every préssure can be counterbalanced by fact that
experience, that C and 4 in their mutual relations act g

The new
concept of
mass in-
volves im-

like equal masses. If we impart to 4 a velocity, 4
will transmit this velocity by impact to 5, and B to C,
But if C were to act towards 4, say, as a greater mass,
A on impact would acquire a greater
velocity than it originally had while
C would still retain a residue of
what it had. With every revolution
in the direction of the hands of a
watch the ois viva of the system
would be increased. If C were the
smaller mass as compared with A,
reversing the motion would produce the same result.
But a constant increase of is iza of this kind s at
decided variance with our experdence.

5. The concept of mass when reached in the man-
ner just developed renders unnecessary the special

A

Fig. 141.

plicitly the €nunciation of +he principle of reaction. In the con-

principle of

reaction.

cept of mass and the principle of reaction, as we have
stated in a preceding page, the same fact is zzwzce form-
ulated; which is redundant. If two masses 1 and 2
act on each other, our very definition of mass asserts
that they impart to each other contrary accelerations
which are to each other respectively as 2: 1.

6. The fact that mass can be measured by weight,
where the acceleration of gravity is invariable, can also
be deduced from our definition of mass. We are
sensible at once of any increase or diminution of a pres-
sure, but this feeling affords us only a very inexact and
indefinite measure of magnitudes of pressure. An
exact, serviceable measure of pressure springs from
the observation that every pressure is replaceable by

eas 5 V> ; ; =
therefore; @ = @', as is the case

1 1 i 1 measured
the pressure of weights of this kind. Let two bodies Ly o

m and m' be respectively affected in opposite directions
with the accelerations @ and ¢’, determined by exter-
nal circumstances. And let the bodies be joined by-a
string. If equilibrium prevails, the acceleration @ in
m and the acceleration ¢’ in ' are exactly balanced

“Llw nteraction. For this case, ac-

lm’ I_;>
iy r

cordingly, m @ =m'q’. When, <—1£I

= Fig. 142.
. G e
when the bodies are abandoned

to the acceleration of gravity, we have, in fh'é“czg_;
of equilibrium, also m =—m'. It is obviously fﬂq}ﬁ&ﬁ
terial whether we make the bodies act on each{yg@hel
directly by means of a string, or by means of a string
passed over a pulley, or by placing them on the two
pans of a balance. The fact that mass can be meas-
ured by weight is evident from our definition without
recourse or reference to ‘‘quantity of matter.”

7. As soon therefore as we, our attention being The general

drawn to the fact by experience, have perceived in bod- this view.

les the existence of a special property determinative of
accelerations, our task with regard to it ends with the
recogﬁition and unequivocal designation of this fact.
Beyond the recognition of this fact we shall not get,
and every venture beyond it will only be productive of
obscurity. All uneasiness will vanish when once we
have made clear to ourselves that in the concept of
mass no theory of any kind whatever is contained, but
simply a fact of experience. The concept has hitherto
held good. It is very improbable, but not impossible,
that it will be shaken in the future, just as the concep-
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tion i

: of 4 constant quantity of heat, which also rested
Tt experience, was modified by new experiences

VI,

NEWTON’ LWS i
ON'S VIEWS OF TIME, SPACE, AND MOTION

# 1. In a scholium which he appends immediately to
lis definitions, Newton presents his v i
time .and space—views which we shall

examine more in detail. We shall liter

end, only the Dassages that are

e the charactétisatio
SEERE  <Sofar, myoby

Age, £ 3

28 “1n which certain w
fthe sequel.

lews regarding
now proceed to

n of Newton’s views = =
ect has been to explain the senses
D ords little known are to be used in
’ T'ime, space, place,
tvvo.rds well known to everybody
““1t 1s to be remarked, that the ‘\:1
::gualntities only in their relation
“h;\:e cI::;;z ch:oer-tam pre;uc.lice.s with respect to them
: distingu.iSh ,th 161?]OVE which it will be convenient to
i ma;m 1nt9 absolute and relative, true and
3 Ab,sglut 1einat1cal and common, respectively.
o S e, true, and mathematical time, of it-
» and by its own nature, flows uniformly on, with-

‘out regard to any = L da
th.lﬂ extern
s = g al .[ 15 J.SO Cﬂ.IIed

and motion, being
I do not define. Yet
ilgar conceive these
to sensible objects.

Absolute
and relative
time.

103 -
- Relatwe, apparent, and common time
3
: ts_ensxble zfnd external measure of absolute tim
10 i
. n), estimated by the motions of bodics, whether
accu i 1 e
G plralte o; mequable, and is commonly employed
ace of true time: a
s an
e ; hour, a day, a month,

¢ The natural days, which, commonly

‘¢ pose of th i 4
. ¢ measurement of time,

‘‘are in reality unequal.

is some
e (dura-

for the pur-
are held as equal.
Astronomers correct this in-

ally cite, to thig
absolutely necessary. .-

THE PRINCIPLES Of DY NAMICS. 223

«equality, in order that they may measure by a truer
s¢time the celestial motions. It may be that there is
¢« no equable motion, by which time can accurately be
¢¢measured. All motions can be accelerated and re-
¢ttarded. But the flow of abseiute time cannot be
<cchanged. Duration, or the persistent existence of
<« things, is always the same, whether motions be swift
¢ or slow or null.” :

2. It would appear as though Newton in the re- Discussion
of Newton's

marks here cited still stood under the influence of thewtriiri\; of
medizval philosophy, as though he had grown unfaith- :
ful to his resolve to investigate only actual facts. When
we say a thing 4 changes with the time, we mean sim-
ply that the conditions that determine a thing 4 depend
on the conditions that determine another thing 5. The
vibrations of a pendulum take place #n Zime when its
excursion depends on the position of the earth. Since,
however, in the observation of the pendulum, we are
not under the necessity of taking into account its de-
pendence on the position of the earth, but may com-
pare it with any other thing (the conditions of which
of course also depend on the position of the earth), the
illusory notion ecasily arises that «// the things with
which we compare it are unessential. Nay, we may,
in attending to the motion of a pendulum, neglect en-
tirely other external things, and find that for every po-
sition of it our thoughts and sensations are different.
Time, accordingly, appears to be some particular and
independent thing, on the progress of which the posi-
tion of the pendulum depends, while the things that
we resort to for comparison and choose at random ap-
pear to play a wholly collateral part. But we must
not forget that all things in the world are connected
with one another and depend on one another, and that
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we ourselve_s and all our thoughts are also a part of
It is _utterly beyond our power to measure the
f:hanges of things by Zme. Quite the contrary, ti1

1s an abstraction, at which we arrive by meansy:)f t?e

changes of things ; made because we are not restrictelcei

to any one definite measure, all being interconnected

A motion is termed uniform in which equal increment-
of space described correspond to equal increments Sf
space dfascribed by some motion with which we formoa
comparison, as the rotation of the earth. A moti
may, w1th.respect to another motion, be uniform ];02
the question whether a motion is 7 ifself unifo;m i
senseless. With just as little justice, also, ma ,v:es
speak of an ‘‘absolute time”—of @ time z';zric})mdc’z(zz‘
c/m;tzgc’. This absolute time can be measured by c o
parison with no motion; it has therefore neijgheomﬁ
Practlc':al nor a scientific value ; and no one is 'ust'{]i: ;‘
in saying that he knows aught about it. e
metaphysical conception.

. It would not be difficult to show from the points of
view of psychology, history, and the science of la
g}lljage (by the names of the chronological divisionsl;-
tejg we reach our 1clleas of time in and through the in,-

ependence of things on one another. In these ideas
'the profoundest and most universal connection of thin
is expressed. When a motion takes place in time gf
depends on the motion of the earth. This is not ref ; 1Cl
by the fact that mechanical motions can be reverz il
A number of variable quantities may be so related t}?af':
one set can suffer a change without the others bei
:‘a.f'fef:t_ed by it. Nature behaves like a machine 'Il“lkjlg
1nd1v1d111a1 parts reciprocally determine one a;loth'e
But x.vhxle in a machine the position of one part c(Ii
termines the position of @/ the other parts, ilf naturt;

It 1s an idle
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& complicated relations obtain. These relations are
ted under the conception of a number,
n, of quantities that satisfy a lesser number, ', of equa-
tions. Were 7= i, nature would be invariable. Were
4 — n— 1, then with one quantity all the rest would
If this latter relation obtained in na-
ture, time could be reversed the moment this had been
accomplished with any one single motion. But the
true state of things is represented by a different rela-
tion between z and 7. The quantities in question are
partially determined by one another; but they retain
a greater indeterminateness, Or freedom, than in the
case last cited. We ourselves feel that we are such a
partially determined, partially undetermined element
of nature. Insofarasa portion only of the changes
of nature depends on us and can be reversed by us,
does time appear to us irreversible, and the time that

mor
best represen

be controlled.

is past as irrevocably gone.
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We arrive at the idea of time,—to0 express it briefly some psy.
i chological

and popularly,—by the connection of that which is considera-
1015,

contained in the province of our memory with that
which is contained in the province of our sense-percep-
tion. When we say that time flows on in a definite di-
rection or sense, we mean that physical events gene-
rally (and therefore also physiological events) take
place only in a definite sense.® Differences of tem-
perature, electrical differences, differences of level gen-
erally, if left to themselves, all grow less and not
greater. 1f we contemplate two bodies of different
temperatures, put in contact and left wholly to them-
selves, we shall find that it is possible only for greater
differences of temperature in the field of memory to

# Investigations concerning the physiological nature of the sensations of

time and space are here excluded from consideration.
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exist with lesser ones in the field of sensg-pe_rceptlon,
and not the reverse. In all this there is simply ex-
; N ot

pressed a peculiar and profound connectllon f)f thmT'
To demand at the present time a full elucidation of t.ns
matter, is to anticipate, in the manner of speculative

7 i . - -

estiga-

philosophy, the results of -all fut}ire special inves E
tion, that is a perfect physical science. (Compare Ap-

2 .

pendix, ITL.) _ ' :
3. Views similar to those concerning time, are.de

veloped by Newton with respect to space and m_0t1or?.

We extract here a few passages which characterise his

osition. ‘ :

P ««1I. Absolute space, in 1its own nature an‘d w1'th-

¢¢ out regard to anything external, always remains sim-

¢eilar and immovable. . :

«Relative space is some movable dimension or
¢ measure of absolute space, which our scnses deFer-
¢mine by its position with respect_ to other bodies,
¢¢ and which is commonly taken for immovable [abso-
«lute] space. ... _

«TV. Absolute motion is the translation of a body
<« from one absolute place* to another absolute plac-e :
<« and relat\ive motion, the translation from one relative
<t place to another relative place. ... i _

i Gt . And thus we use, in common affairs, 1nsteatdl
¢ of absolute places and motions, f‘clcmf:e_onef; ts\nl
¢<that without any inconvenience. But i physica
<« disquisitions, we should abstract from the Sen&-E,tS.
¢ For it may be that there is no body really at rest, to
«cwhich the places and motions of others can be re

«ferred. . . . ? :
¢« The effects by which absolute and relative motions

ng to Newton, is not its position,

. -di i
# The place, or fecis of a body, accor L e relative.—Trans,

but the part of space which it Ocﬁ\lpiesl Itise

[ ————
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‘“are distinguished from one another, are centrifugal
‘“forces, or those forces in circular motion which pro-
““duce a tendency of recession from the axis. For in
““a circular motion which is purely relative no such
‘“‘forces exist; but in a true and absolute circular mo-
““tion they do exist, and are greater or less according
““to the quantity of the [absolute] motion.

‘“For instance. If a bucket, suspended by a long
‘“cord, is so often turned about that finally the cord is
‘““strongly twisted, then is filled with water, and held
‘“at rest together with the water; and afterwards by
¢““the action of a second force, it is suddenly set whirl-
““ing about the contrary way, and continues, while the
““cord is untwisting itself, for some time in this mo-
““tion ; the surface of the water will at first be level,
““just as it was before the vessel began to move; but,
‘“subsequently, the vessel, by gradually communicat-
‘“ing its motion to the water, will make it begin sens-
‘“ibly to rotate, and the water will recede little by little
““from the middle and rise up at the sides of the ves-
‘“sel, its surface assuming a concave form. (This ex-

‘‘periment I have made myself.)

1
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A0

The rota-
ting bucket.

. ... At first, when the relative motion of the wa- Relative

10tion,

o . and real
‘“ter in the vessel was greatest, that motion produced

‘“no tendency whatever of recession from the axis ; the
““water made no endeavor to move towards the cir-
‘“ cumference, by rising at the sides of the vessel, but
‘““remained level, and for that reason its #we circular
“motion had not yet begun. But afterwards, when
““the relative motion of the water had decreased,. the
““rising of the water at the sides of the vessel indicated
‘“an endeavor to recede from the axis; and this en-
‘“deavor revealed the real circular motion of the water,
“ continually increasing, till it had reached its greatest

‘./
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“point, when selatively the water was at rest in the
Sivesselline ol -

¢TIt 1s indeed a matter of great difficulty to discover
‘and effectually to distinguish the #-we from the ap-
““ parent motions of particular bodies ; for the parts of
‘¢ that immovable space in which bodies actually move,
“ do not come under the observation of our senses.

“Yet the case 1s not altogether desperate ; for there
‘““exist to guide us certain marks, abstracted partly
““from the apparent motions, which are the differences
¢“of the true motions, and partly from the forces that
¢“are the causes and effects of the true motions. If,
¢for instance, two globes, kept at a fixed distance
¢“from one another by means of a cord that connects
““them, be revolved about their common centre of
¢ gravity, one might, from the simple tension of the
¢“cord, discover the tendency of the globes to recede
‘“from the axis of their motion, and on this basis the
¢ quantity of their circular motion might be computed.
¢“And if any equal forces should be simultaneously
¢‘impressed on alternate faces of the globes to augment
¢or diminish their circular motion, we might, from
““the increase or decrease of the tension of the cord,
¢deduce the increment or decrement of their motion ;
¢and 1t might also be found thence on what faces
¢« forces would have to be impressed, in order that the
““motion of the globes should be most augmented ;
‘¢ that is, their rear faces, or those which, in the cir-
¢ cular motion, follow, But as soon as we knew which
““faces followed, and consequently which preceded, we
¢should likewise know the direction of the motion.
¢In this way we might find both the quantity and the
¢« direction of the circular motion, considered even in
““‘an immense vacuum, where there was nothing ex-
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<cternal or sensible with which the globes could be
¢« compared . . .."”

" 4. It is scarcely necessary to remark that in the re- Thopes
flections here presented Newton has again acted con- Newion
trary to his expressed intention only to investigate actual expression
facts. No one is competent to predicate things about facs.
absolute space and absolute motion; they are pure
things of thought, pure mental constructs, that cannot
be produced in experience. All our principles of me-
chanics are, as we have shown in detail, experimental
knowledge concerning the relative positions and mo-
tions of bodies. Even in the provinces in which they
are now recognised as valid, they could not, and were
not, admitted without previously being subjected to
experimental tests. No one is warranted in extending
these principles beyond the boundaries of experience.

In fact, such an extension is meaningless, as no one
possesses the requisite knowledge to make use of it.

Letus look'at the matter in detail. When we say that Detailed
view of the

_abody & alters its direction and velocity solely through master.

the influence of another body A, we have asserted
a conception that it is impossible to come at unless
other bodies 4, 2, C.... are present with reference
to which the motion of the body & has been estimated.
In reality, therefore, we are simply cognisant of a re-
lation of the body A to 4, B, C.... I now we sud-
denly neglect 4, B, C'.... and attempt to speak of
the deportment of the body & in absolute space, we
implicate ourselves in a twofold error. In the first
place, we cannot know how K would act in the ab-
sence of 4, 7, C'....; and in the second place, every
means would be wanting of forming a judgment of the
behaviour of & and of putting to the test what we had
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predicated, —which latter therefore would be bereft of

all scientific significance.
The-part [ 1€ % & 1 1
iiln e Two bodies X and &', which gravitate toward each

bodics of oth 1 Lt ) SVl :
e b er, impart to each other in the direction of their

i ede 1111(% of junction accelerations inversely proportional to

of motion. their masses m, #/. In this proposition is contained
not only a relation of the bodies & and &’ to one an,-
other, but also a relation of them to other bodies. For
the proposition asserts, not only that & and A" suffer
with respect to one another the acceleration designated
by (ﬁ_z + w'/#2), but also that X experiences the ac-
f:eleranon — um' /r? and XK' the acceleration + i mefr?
in the direction of the line of junction ; facts which can
be ascertained only by the presence of other bodies.

The motion of a body & can only be estimated by

reference to other bodies A4, B, C.... Butsince we

- always have at our disposal a sufficient namber of
bodies, that are as respects each other relatively fixed
or only slowly change their positions, we are, in sucl’i
reference, restricted to no one definite body and can
alternately leave out of account now this one and now
that one. In this way the conviction arose that these
bodies are indifferent generally.

The hy- . :
Put?lt‘:;%s k. It might be, indeed, that the isolated bodies 4, 5,
e, ¢+ - - - play merely a collateral rdle in the determina-

:frlllrll;nlf;:lve j(lDl'l of the motion of the body X, and that this motion
is determined by a medium in which & exists. In such
a case we should have to substitute this medium for
Newton’s absolute space. Newton certainly did not
entertain this idea. Moreover, it is easily demonstrable
that _the atmosphere is not this motion-determinative
medium. We should, therefore, have to picture to
ogrselves some other medium, filling, say, all space
with respect to the constitution of which and its kinetit’:
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relations to the bodies placed in it we have at present
no adequate knowledge. Initself such a state of things
would not belong to the impossibilities. Tt is known,
from recent hydrodynamical investigations, that a rigid
body experiences resistance in a frictionless fluid only
when its velocity changes. True, this result is derived
theoretically from the notion of inertia; but it might,
conversely, also be regarded as the primitive fact from
which we have to start. Although, practically, and at
present, nothing is to be accomplished with this con-
ception, we might still hope to learn more in the future
concerning this hypothetical medium ; and from the
point of view of science it would be in every respect
a more valuable acquisition than the forlorn idea of
absolute space. When we reflect that we cannot abol-
ish the isolated bodies 4, B, C. ..., that is, cannot
determine by experiment whether the part they play is
fundamental or collateral, that hitherto they have been
the sole and only competent means of the orientation
of motions and of the description of mechanical facts,
it will be found expedient provisionally to regard all
motions as determined by these bodies.
5. Let us now examine the point on which New- Critical

examina-

ton, apparently with sound reasons, rests his distinc- tion of
Newton's

tion of absolute and relative motion. Lf the earth 1S distinelion
of absolute

affected with an adseiufe rotation about its axis, cen- trom rela-
trifugal forces are set up in the earth : it assumes an s
‘oblate form, the acceleration of gravity is diminished

at the equator, the plane of Foucault’s pendulum ro-

tates, and so on. All these phenomena disappear if

the earth is at rest and the other heavenly bodies are
affected with absolute motion round it, such that the

same relative rotation is produced. This is, indeed, the

case, if we start ab izitio from the idea of absolute space.
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But if we take our stand on the basis of facts, we shall
find we have knowledge only ®f relative spaces and mo-
tions. Relatively, not considering the unknown and
neglected medium of space, the motions of the uni-
verse are the same whether we adopt the Ptolemaic or
the Copernican mode of view. Both views are, indeed,
equally correct ; only the latter is more simple and more
practical.  The universe is not Zwice given, with an
earth at rest and an earth in motion; but only ence,
with its relatipe motions, alone determinable. It is,
accordingly, not permitted us to say how things would
be if the earth did not rotate. We may interpret the
one case that is given us, in different ways. If, how-
ever, we so interpret it that we come into conflict witl
experience, our interpretation is simply wrong. The
J principles of mechanics can, indeed, be so conceived,
that even for relative rotations centrifugal forces atise.
Interpreta- Newton’s experiment with the rotating vessel of
experiment Water simply informs us, that t%ie relative rotation of
rotating the water WJth respect to -the sides of the vessel pro-
water. duces ze noticeable centrifugal forces, but that such
forces are produced by its relative rotation with respect
to the mass of the earth and the other celestial bodies.
No one is competent to say how the experiment would
turn out if the sides of the vessel increased in thickness
and mass till they were ultimately several leagues thick.
The one experiment only lies before us, and our busi-
ness is, to bring it into accord with the other facts
known to us, and not with the arbitrary fictions of our
1magination.

6. We can have no doubts concerning the signifi-
cance of the law of inertia if we bear in mind the man-
ner in which it was reached. To begin with, Galileo
discovered the constancy of the velocity and direction

~ res
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1 i §- The law ot
of a body referred to terrestrial objects. Most terres- The law ¢

trial motions are of such brief dL.lration and extent, ttl;a:; :ll-‘fsl\lﬂ:‘\:'d
it is wholly unnecessary to take into acc-ount the-far =
rotation and the changes of its progre_sswe v.elom S i
pect to the celestial bodies. This cons-ldmtinon 3
found necessary only in the case of. pI'O-]GCt] e{s];(‘:;mll—
great distances, in the case_of t.he v;brat1o1\1;‘57;13 e
cault’s pendulum, and in similar 1nsts_mces. W flzn A
Newton sought to apply the mechanical princip est
covered since Galileo’s time to th-e planetary sys e;r;,‘
he found that, so far asitis p0553b1e to f(?rm1 an¥ S
timate at all thereof, the planets, 1rres.pec?we ye yd
namic effects, appear to preserve their 'dlrectl_(;ln tanre
velocity with respect to bodies of the umverseti .gxid
very remote and as regards each other apparen y_th re,_
the same as bodies moving on the earth do w1 i
spect to the fixed objects of _the earth. The comltjh ;
ment of terrestrial bodies with respect to th'e ear ;
reducible to the comportment of the earth with 1'(3:3.pe(:t
to the remote heavenly bodies. I_f we were to' as}s;el:"
that we knew more of moving ob]('acts than this t e1i
last - mentioned, experimentally-‘gwen comportmgn
with respect to the celestial bodies, we shou}d rlen er
ourselves culpable of a falsizy. ‘When, lacco.rdmfg Y, Wz
say, that a body preserves uFlchsimged 1‘ts dlrect;m; :1;\:88
velocity in space, our assertion 1s nothing more o_ﬂ
than an abbreviated reference to the é’?ffl}‘f. unzuem:i.
The use of such an abbreviated e)fprf:ssmn 1s permlllw_
ted the original author of the Prmm;.)le, becz(iiu-se thz
knows, that as things are no dxfﬁ(fultlejs stan Bmt i
way of carrying out its ianlled c_hrect]ons.k_ du ney
remedy lies in his power, if d1f§cu1t1es of the1 in hn i
tioned present themselves.; if, for example, the
quisite, relatively fixed bodies are wanting.
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i £ vh s vertex cones The expres-
seen at once 1f we constnra‘ct through st as Lte ofl;he
L that cut out different portions of space, and set up the {?’:v.ot't;l:i:‘;
! e . ain X
condition with respect to the masses of these separate of this re-

The rela- 7. Instead, now, of referring a moving body & to i’?
iion or the . - .

badies of  space, that is to say to a system of codrdinates, let us
the uni-

verse to  view directly its relation to the bodies of the nniverse,

each other. lation,

by which alone such a system of codrdinates can be
determined. Bodies very remote from each other, mov-
ing with constant direction and velocity with respect
to other distant fixed bodies, change their mutual dis-
tances proportionately to the time. We may also say,
All very remote bodies—all mutual or other forces ne-
glected—alter their mutual distances proportionately
to those distances. Two bodies, which, situated at a
short distance from one another, move with constant
direction and velocity with respect to other fixed bod-
ies, exhibit more complicated relations. If we should
regard the two bodies as dependent on one another,
and call » the distance, # the time, and &« a constant
dependent on the directions and velocities, the formula
would be obtained: &%r/d#? = (1/r) [a2 — (dr/d£)?].

portions. We may put, indeed, for the enfire space
encompassing u, &2 (Zmr/Zm) /d¢> =0. DBut the
equation in this case asserts nothing with respect to the
motion of y, since it holds good for all species of mo-
tion where u is uniformly surrounded by an infinite
number of masses. If two masses u,, ¢, exert on each
other a force which is dependent on their distance 7,
then 727 /dt% = (u, -+ j,) /(). But, at the same time,
the acceleration of the centre of gravity of the two

masses or the mean acceleration of the mass-system

with respect to the masses of the universe (by the prin-
ciple of reaction) remains = 0 ; that is to say,

a2z Smr, Emr‘z:l;
""" [ e sy, |

When we reflect that the time-factor that enters The neces-

. . . . . sity in scl-
into the acceleration is nothing more than a quantity ence of a

- . considera-

< that is the measure of the distances (or angles of rota- tion of the

It is manifestly much sémpler and ciearer to regard the
two bodies as independent of each other and to con-
sider the constancy of their direction and velocity with

respect to other bodies.

Instead of saying, the direction and velocity of a
mass i in space remain constant, we may also employ
the expression, the mean acceleration of the mass u
with respect to the masses m, »', #". ... at the dis-
tances », 7, 7. . .. is =0, or B2(Zmr/Zm)/di? = 0.
The latter expression is equivalent to the former, as
soon as we take into consideration a sufficient number
of sufficiently distant and sufficiently large masses.
The mutual influence of more proximate small masses,
which are apparently not concerned about each other,
is eliminated of itself. That the constancy of direction
and velocity is given by the condition adduced, will be

tion) of the bodies of the universe, we see that even in*
the simplest case, in which apparently we deal with
the mutual action of only fwe masses, the neglecting
of the rest of the world is zmpossible. Nature does not
begin with elements, as we are obliged to begin with
them. It is certainly fortunate for us, that we can,
from time to time, turn aside our eyes from the over-
powering unity of the All, and allow them to rest on
individual details. But we should not omit, ultimately
to complete and correct our views by a thorough con-
sideration of the things which for the time being we
left out of account.

8. The considerations just presented show, that it
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Thelawof is not necessary to refer the law of inertia to a special
inertia does

not invalve absolute space. On the contrary, it is perceived that
space. the masses that in the common phraseology exert forces
on each other as well as those that exert none, stand

with respect to acceleration in quite similar relations.

We may, indeed, regard a// masses as related to each

other. That accelerations play a prominent part in the
relations of the masses, must be accepted as a fact of
experience ; which does not, however, exclude attempts

to clucidate this fact by a comparison of it with other

facts, involving the discovery of new points of view.

In all the processes of nature the differences of certain
quantities # play a de-

terminative réle. Differ-

. é ences of temperature, of
potential function, and so

b» 1» | forth, induce the natural
—5 —0 processes, which consist
Fig. 143, in  the equalisation of

Natural  these differences. famili 51 2 2
et ces. The familiar expressions 72« /dx2,

consist in 2 2 2, -2 e . .
TS annalic d2ufdy?, d?u/ds?, which are determinative of the

aaion ol character of the equalisation, may be regarded as the
encesof | measure of the departure of the condition of any point
from the mean of the conditions of its environment—
to which mean the point tends. The accelerations of
masses may be analogously conceived. The great dis-
tances between masses that stand in no especial force-
relation to one another, change proportionately to cach
other. 1f we lay off, therefore, a certain distance p as
abscissa, and another 7 as ordinate, we obtain a straight
line. (Fig. 143.) Every r-ordinate corresponding to
a definite p-value represents, accordingly, the mean of
the adjacent ordinates. If a force-relation exists be-
tween the bodies, some value d2r/dt? is determined
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by it which conformably to the remarks above we may
replace by an expression of the form 427 /dp?. By the
force-relation, therefore, a deparifure of the r-ordinate
from the mean of the adjacent ordinates is produced,
which would not exist if the supposed force-relation
did not obtain. This intimation will suffice here.

9. We have attempted in the foregeing to give the Character
law of inertia a different expression from that in ordi- expression
nary use. This expression will, so long as a suffi- of inertia.
cient number of bodies are apparently fixed in space,
accomplish the same as the ordinary one. It is as
easily applied, and it encounters the same difficulties.

In the one case we are unable to come at an absolute

space, in the other a limited number of masses only is

within the reach of our knowledge, and the summation
indicated can consequently not be fully carried out. It

is impossible to say whether the new expression would

still represent the true condition of things if the stars

were to perform rapid movements among one another.

The general experience cannot be constructed from the
particular case given us. We must, on the contrary,

waif until such an experience presents itself. Perhaps

when our physico-astronomical knowledge has been
extended, it will be offered somewhere in celestial

space, where more violent and complicated motions

take place than in our environment. The most impor- The sim-
tant result of our reflexions is, however, Ziat precisely g};;és!‘élfn
the apparently simplest mechanical principles are of a very Eg;{f: %::1
complicated character, that these principles are founded on plicated na-
uncompleted experiences, nay on experiences that never can all f]eé‘}i‘;i?
be fully completed, that practically, indeed, they are suf-rience.
Jiciently secured, in view of the folerable stability of our
environment, to serve as the foundation of mathemalical
deduction, but that they can by no means themsefves be re-
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§aided as mathematically established truths but only as
Principles that not only admit of constant control by expe-
rience but actually require it. This perception is valu-
able in that it is propitious to the advancement of
science. (Compare Appendix, I'V.)

VII.
SYNOPTICAL CRITIQUE OF THE NEWTONIAN ENUNCIATIONS.

Newton's . Now that we have discussed the detajls with

Definitions, - . . =
sufficient particularity, we may pass again under re-
view the form and the disposition of the Newtonian
enunciations. Newton premises to his work several
definitions, following which he gives the laws of mo-
tion. We shall take up the former first.

Mass. ¢ Definition 7. The quantity of any matter is the
““measure of it by its density and volume conjointly.
‘... This quantity is what I shall understand by the
‘“term mass or body in the discussions to follow. It is
‘“ascertainable from the weight of the body in ques-
‘“tion. For I have found, by pendulum-experiments
‘“of high precision, that the mass of a body is propor-
‘“tional to its weight ; as will hereafter be shown.

Quantity of “ Definition 77, Quantity of motion is the measure

motion,

jertia, ~ ““of it by the velocity and quantity of matter con-
force, and

accelera-  ¢¢ jOiI’ltly.

i ““Definition 777. The resident force [vés insita, i. e.
‘““the inertia] of matter is a power of resisting, by
““which every body, so far as in it lies, perseveres in
‘“its state of rest or of uniform motion in a straight
‘cJine.

““ Definition IV. An impressed force s any action
‘“upon a body which changes, or tends to change, its
. ““state of rest, or of uniform motion in a straight line.
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(=t 1 as llas ath—ld'y bee[l set fo[tll A Criticism of
2 D fion IS, 3
11 - . P ade Definitions.
1 on The concept Of mass 1s not m (l. definit
e dO deﬁ
ps

learer by describing mass as the product ~f the volum~
cle !

THE PRINCIPLES OF DYNAMICS. 239

¢« Definttion V. A centripfatal force is any forl(;u H
¢t which bodies are drawn or 1n1Pelled towards, or te:nd
¢in any way to reach, some point as ce?tre.f bl

s Definition VI. The absol.utfe quantity of a (,1[..[1 b
‘;petal force is a measure of it increasing and (1:1- in
««ishing with the efficacy of the cause that propaga
¢cit from the centre through the space round a-boutf

s« Definition VII. The acceleratl_ve quantl_ty ’ol
¢« centripetal force is the measure_of it Propm.rt]ond
¢t the velocity which it generates.m a given time.

«Definition VIII. The moving quantity ofla C:.i}
¢ tripetal force is the measure (?f it proportlo.na t; i
¢«motion [See Def. n1.] which it generates in a give
6t L .

tlfr‘lf}he three quantities or measures oft;;t":e thu‘st(:mm L o
¢ tinguished, may, for brevity’s sake, ™ _:allec;i a d,cl “..
«‘lute, accelerative, and moving forces, being, for dis
‘tinction’s sake, respectively referred to the centr-c.: 0
force, to the places of the bodies, and to the bod.zes,-
¢“that tend to the centre : that is to say, I refer moving
‘force to the body, as being an endeavor of the.v whale
“towards the centre, arising from the.collectwe en-
¢“deavors of the several parts ; accelerative force‘tc.: the
‘¢ place of the body, as being a sort of efficacy originat-

‘“ing in the centre and diffused thr?ughout all t.he s}ev;
‘““eral places round about, in moving the bodies tha
‘‘are at these places ; and absolute force to _the cent‘re,
‘“as invested with some cause, without which moving

‘“forces would not be propagated through the space

=4 about ; whether this latter cause be some cen-
7, (such as is a loadstone in a centre of rnagg-c
. or the earth in the centre of the force -

AT ~




Newton's

Definitions.

Mass.

Quan
maotic
inert:
torce
accel
tion.

238 THE SCIENCE OF MECHANICS.
! C T etablished truths but only as
’ s :
240 | " SCIE
THE SCIENCE oF MECIHANICS
i1 1
phiysical causes
] and s i i
e eats I do not in thig place con-
The dis- i
The dis “Acceleratmg force, therefore
2

mathemat- ¢¢ g3
ical and not ar
physical,

'is to moving force,
ton. For quantity
ty and the quantity
ses from the accel-
ntity of matter ; the

velocity is to quantity of mot

“of i i
motion arises from the veloci

£<
of matter ; and moving force arj

[N 1
erating force and the same qua

o e force of
‘‘where the acoelercf-’ near the surface of the carth
e ative gravity or gravitatine f £
o t'jh s the same, the motiye fo s
i € weight is as the ek

. ! bod .
to higher regions, wheg; pasol: Dut

v A
gravity is Jass, the weight

f gravity or
f we ascend.
the accelerative force of

.will be BC_I“_HUY diminished,

173 1 1
con51der1ng thSE fOTCES

‘“use, that I take upon me
‘““mode of an action, or the
““son ?hereof, or that I att
“Physma] Sense, to centres
‘“1cal points), wh

nbu_te forcés in a trye or

e (which are only mathemat

at any time I hap &
pen t

pi A toisaydhat

)

i Mﬂmumn‘nnrmm{ T T WA

THE PRINCIPLES oF DYNAMICS. 241

2. Definition 1 is, as has already been set forth,

pseudo-deﬁnition. The concept of mass is 1 ;
clearer by describing mass as T:he product of tl_ue v;y un;lc
into the density, as density itself denotes s:mp y the
mass of unit of volume. The true defxmtmn ojf mas.sf
can be deduced only from the dynamical relations ©
bOd’lll?jDeﬁniticn 11, which simply enunciates a m;}d.e
of computation, 10 objection 1s to be made. De 1r1;1—
tion 111 (inertia), however, is ren'derec.l suPerﬂuous ?:;

Definitions V-V of force, inertia being vmcluded an

given in the fact that forces are accelerative. l
Definition 1v defines force as the cause of the accel-
eration, or tendency to acceleration, of a body- : The
d by the fact that in the

is is justifie
latter part of this 1s jus -
cases also in which accelerations cannot take place,

other attractions that answer thereto, as the compres-
sion and distension etc. of bodies_occur. T.he cause
of an acceleration rowards a definite c:_antr'e 18 defmei
in Definition vV as centripetal force, and 18 d-1st1ngu_1she

i 1, vii, and Vit as absolute, accelerative, and mo-
Bue It is, we may say, & matter of ta§te and of florm
whether we shall embody the explication of thc? idea
ne or in several definitions. In point of

of force in © = S
definitions are open to no 0b-

principle the Newtonian
jections.

3. The Axio

which Newton enunciates three :

¢« Law 1. Every body perseveres in its state of_ rest

<< or of uniform motion in 2 straight line, except 1n SO

ccfar as it is compelled to change that state by im-

ms or Laws of Motion then fo

«pressed forces.”
¢« Lae I1. Change of mo
g proportional to the moving force 1mpress

tion [i. e. of momentum] is

llow, of xe
La
Motion.

ed, and takes

a Criticism of
Newton's
ot made Definitions.

wion's
ws of
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< place in the direction of the straight line in which
«eguch force is impressed.”

<« Law II7. Reaction is always equal and opposite
¢ to action; that is to say, the actions of two bodies
<supon each other are always equal and directly op-
“¢ posite.” '

Newton appends to these three laws a number of
Corollaries. The first and second relate to the prin-
ciple of the parallelogram of forces; the third to the
quantity of motion generated in the mutual action of
bodies ; the fourth to the fact that the motion of the
centre of gravity is not changed by the mutual action
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tion of the law enunciated in corollary First. The re-
maining corollaries, likewise, are simple deductions,
t‘hat 1s, mathematical consequences, from the concep-
tions and laws that precede.

5- Even if we adhere absolutely to the Newtonian
points of view, and disregard the complications and in-
definite features mentioned, which are not removed
but: merely concealed by the abbreviated designations
“Time’r’ and ‘“Space,” it is possible to replace New-
ton’s enunciations by miich more simple, methodically
better arranged, and more satisfactory propositions.
Such, in our estimation, would be the following :

of bodies ; the fifth and sixth to relative motion.

Criticismof 4. We readily perceive that Laws 1 and 11 are con-

Newton’s . . T
M laweof = tained in the definitions of force that precede. Ac-
i motlon.

a. Experimental Proposition. Bodies set opposite Proposed

each other induce in each other, under certain circum- fﬁ:?;?lftgf

. 5 _ h =
stances to be specified by experimental physics, con- s e

cording to the latter, without force there is no accel- trary accelerations in the direction of their line of junc- ?i%?;g ek
eration, consequently only rest or uniform motion in a tion. (The principle of inertia is included in this ) :
straight line. Furthermore, it is wholly unnecessary b. Definition. The mass-ratio of any two bodi-es 4
tautology, after having established acceleration as the the negative inverse ratio of the mutually induced ac-
measure of force, to say again that change of motion is celerations of those bodies.
nroportional to the force. It would have been enough ¢. Lxperimental Proposition. The mass-ratios of
to say that the definitions premised were not arbitrary bodies are independent of the character of the physical

Qui mathematical ones, but correspond to properties of states (of the bodies) that condition the mutual accel-

inor bodxe; expenme%ltaﬂy given. The third law apparel:ltl_y erations produced, be those states electrical, magnetic,

Acoc contains something new. But we have seen that it is or what not; and they remain, moreover, the same

G unintelligible without the correct idea of mass, which whether they are mediately or immediateiy: arrived at,
idea, being itself obtained only from dynamical expe- d. Experimental Prop;:z'ﬁm, The aCCEIEration;;
rience, renders the law unnecessary. which any number of bodies 4, B, C. ... induce in a

The corol- The first corollary really does contain something body &, are independent of each other. (The principle

laries 0 s new. DBut it regards the accelerations determined in
a body & by different bodies A/, &, 17 as selj-evidently
independent of each other, whereas this is precisely
what should have been explicitly recognised as a fact
of experience. Corollary Second is a simple applica-

O}t;_the parallelogram of forces follows immediately from
this.)
¢. Defindtion. Moving force is the product of the

mass-value of a body into the acceleration induced in
that body.
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Then the remaining arbitrary definitions of the al-
gebraical expressions ‘‘momentum,” ¢vis viva,” and
the like, might follow. But these are by no means in-
dispensable. The propositions above set forth satisfy
the requirements of simplicity and parsimony which,
on economico-scientific grounds, must be exacted of
them. They are, moreover, obvious and clear ; for no
doubt can exist with respect to any one of them either
concerning its meaning or its source; and we always
know whether it asserts an experience or an arbitrary
convention.

6. Upon the whole, we may say, that Newton dis-
cerned in an admirable manner the concepts and princi-
ples that were sufliciently assured to allow of being fur-
ther built upon. It is possible that to some extent he
was forced by the difficulty and novelty of his subject,
in the minds of the contemporary world, to great am-
plitude, and, therefore, to a certain disconnectedness
of presentation, in consequence of which one and the
same property of mechanical processes appears several
times formulated. To some extent, however, he was,
as-it is possible to prove, not perfectly clear himself
concerning the import and especially concerning the
source of his principles. This cannot, however, ob-
scure in the slightest his intellectual greatness. He
that has to acquire a new point of view naturally can-
not possess it so securely from the beginning as they
that receive it unlaboriously from him. He has done
enough if he has discovered truths on which future
generations can further build. For every new infer-
ence therefrom affords at once a new insight, a new
control, an extension of our prospect, and a clarifica-
tion of our field of view. Like the commander of an
army, a great discoverer cannot stop to institute petty
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inquiries regarding the right by which he holds each
post of vantage he has won. The magnitude of the
problem to be solved leaves no time for this. But at
a later period, the case is different. Newton might
well have expected of the two centuries to follow that
they should further examine and confirm the founda-
tions of his work, and that, when times of greater scien-
tific tranquillity should come, the principles of the sub-
ject might acquire an even higher philosophical in-
terest than all that is deducible from them. Then prob-
lems arise like those just treated of, to the solution of
which, perhaps, a small contribution has here been
made. We join with the eminent physicists Thomson
and Tait, in our reverence and admiration of Newton.
But we can only comprehend with difficulty their opin-
ion that the Newtonian doctrines still remain the best

and most philosophical foundation of the science that
can be given.

VIII.

RETROSPECT OF THE DEVELOPMENT OF DYNAMICS.

The
achieve-
ments of
Newton in
the light of
subsequent
research.

1. If we pass in review the period in which the de- The chiet

. : . 3 result, the
velopment of dynamics fell,—a period inaugurated by Bt

of one great

Galileo, continued by Huygens, and brought to a close fact,

by Newton,—its main result will be found to be the
perception, that bodies mutually determine in each
other accelerations dependent on definite spatial and
material circumstances, and that there are masses. The
reason the perception of these facts was embodied in
so great a number of principles is wholly an historical
one ; the perception was not reached at once, but slowly
and by degrees. In reality only one great fact was es-
tablished. Different pairs of bodies determine, inde-
pendently of each other, and mutually, in themselves,
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pairs of accelerations, whose terms exhibit a constant
ratio, the criterion and characteristic of each pair.

This fact Not even men of the calibre of Galileo, Huygens,

even the - .

greatest in- and Newton were able to perceive this fact at once.

quirers . - - - .

could per- Even they could only discover it piece by piece, as it

ceive only . . . . . :

infrag- = is expressed in the law of falling bodies, in the special

ments. . - - - -
law of inertia, in the principle of the parallelogram of
forces, in the concept of mass, and so forth. To-day,
no difficulty any longer exists in apprehending the unity
of the whole fact. The practical demands of communi-
cation alone can justify its piecemeal presentation in
several distinct principles, the number of which is really
only determined by scientific taste. What is more, a
reference to the reflections above set forth respecting
the ideas of time, inertia, and the like, will surely con-
vince us that, accurately viewed, the entire fact has,
in all its aspects, not yet been perfectly apprehended.

The results The point of view reached has, as Newton expressly

reache . .

have noth- states, nothing to do with the <“unknown causes” of

ing to do - K :

with the so- natural phenomena. That which in the mechanics of

called . . 3

" causes” the present day is called force is not a something that

o lenom- _ . .

T lies latent in the natural processes, but a measurable,
actual circumstance of motion, the product of the mass
into the acceleration. Also when we speak of the at-
tractions or repulsions of bodies, it is not necessary to
think of any hidden causes of the motions produced.
We signalise by the term attraction merely an actually
existing resemdlance between events determined by con-
ditions of motion and the results of our volitional im-
pulses. In both cases either actual motion occurs or,
when the motion is counteracted by some other circum-
stance of motion, distortion, compression of bodies,

and so forth, are produced.

2. The work which devolved on genius here, was
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the noting of the connection of certain determinative The form of
elements of the mechanical processes. The precise es- i e
tablishment of the form of this connection was rather a b o e
task for plodding research, which created the different ?:..‘lilgtr(l);:!n
concepts and principles of mechanics. We can de-
termine the true value and significance of these prin-

ciples and concepts only by the investigation of their
historical origin.  In this it appears unmistakable at '

times, that accidental circumstances have given to the

course of their development a peculiar direction, which

under other conditions might have been very different.
"Of this an example shall be given.

Before Galileo assumed the familiar fact of the de- For exam-

pendence of the final velocity on the time, and put it to B

. of fallin
the test of experiment, he essayed, as we have already bodies :

seen, a different hypothesis, and made the final velocity Mina mi
proportional to the space described. He imagined, by a S
course of fallacious reasoning, likewise already referred
to, that this assumption involved a self-contradiction.
His reasoning was, that twice any given distance of de-
scent must, by virtue of the double final velocity ac-
quired, necessarily be traversed in the same time as the
simple distance of descent. But since the first half is
necessarily traversed first, the remaining half will have
to be traversed instantaneously, that is in an interval
of time not measurable. Whence, it readily follows,
that the descent of bodies generally is instantaneous.

The fallacies involved in this reasoning are manifest. Galileos
reasoning

and its
errors,

Galileo was, of course, not versed in mental integra-
tions, and having at his command no adequate methods
for the solution of problems whose facts were in any
degree complicated, he could not but fall into mistakes
W.henever such cases were presented. If we call s the
distance and 7 the time, the Galilean assumption reads
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in the language of to-day ds/d¢ = as, from which fol-
lows s = 4 ¢, where @ is a constant of experience and
A a constant of integration. This is an entirely different
conclusion from that drawn by Galileo. It does not
conform, it is true, to experience, and Galileo would
probably have taken exception to a result that, asa
condition of motion generally, made s different from 0

- when 7 equalled 0. But in itself the assumption is by

‘The suppo-
sition that
Kepler had
made Gali-
leo's re-
searches.

In such a
case the
concept
“work "
might have
been the
original
concept of
mechanics.

no means se//~contradictory.

Let us suppose that Kepler had put to himself the
same question. Whereas Galileo always sought after
the very simplest solutions of things, and at once re-
jected hypotheses that did not fit, Kepler’s mode of pro-
cedure was entirely different. He did not quail before
the most complicated assumptions, but worked his way,
by the constant gradual modification of his original
hypothesis, successfully to his goal, as the history of
his discovery of the laws of planetary motion fully
shows. Most likely, Kepler, on finding the assumption
dsjdt =as would not work, would have tried a num-
ber of others, and among them probably the correct one
ds/dt=aV/s. But from this would have resulted an
essentially different course of development for the sci-
ence of dynamics.

It is only gradually and with great difficulty that
the concept of ““work ” has attained its present position
of importance ; and in our judgment it is to the above-
mentioned trifling historical circumstance that the diffi-
culties and obstacles it had to encounter are to be as-
cribed. As the interdependence of the velocity and the
time was, as it chanced, first ascertained, it could not
be otherwise than that the relation 2 = g#should appear
as the original one, the equation s = g72 /2 as the next
immediate, and g5 = » 2 /2 as a remoter inference. In-
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troducing the concepts mass () and force (#), where
p=mg We obtain, by multiplying the three equations
by m, the expressions mo =pt, ms=p1I2/2, ps=
mwv? /2—the fundamental equations of mechanics. Of
necessity, therefore, the concepts force and momentum
(m©) appear more primitive than the concepts work ()
and zzs viva (mw?). Itis not to be wondered at, accord-
ingly, that, wherever the idea of work made its appear-
ance, it was always sought to replace it by the histor-
ically older concepts. The entire dispute of the Leib-
nitzians and Cartesians, which was first composed in
a manner by D’Alembert, finds its complete explana-
tion in this fact.

From an unbiassed point of view, we have exactly
the same right to inquire after the interdependence of
the final velocity and the time as after the interde-
pendence of the final velocity and the distance, and to
answer the question by experiment. The first inquiry
leads us to the experiential truth, that given bodies in
contraposition impart to each other in given #/mes defi-
nite increments of velocity. The second informs us,
that given bodies in contraposition impart to each other
for given mutual displacements definite increments of
velocities. Both propositions are equally justified, and
both may be regarded as equally original.

The correctness of this view has been substantiated Exemplifi-
5 cation of it
m our own day by the example of J. R. Mayer. Mayer, in modern

a modern mind of the Galilean stamp, a mind wholly
free from the influences of the schools, of his own in-
dependent accord actually pursued the last-named
method, and produced by it an extension of science
which the schools did not accomplish until later in a
much less complete and less simple form. For Mayer,
work was the original concept. That which is called

Justifica-
tion of this

view.

times.
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work in the mechanics of the schools, he calls force.
Mayer’s error was, that he regarded his method as the
only correct one.
The results 3. We may, therefore, as it suits us, regard the #ime
which flow o b
Homie " of descent or the distance of descent as the factor de-
terminative of velocity. If we fix our attention on

the other. 'Thus the Galileo-Newtonian ideas are culti-
vatetd with preference by the school of Poinsot, the
Galileo-Huygenian by the school of Poncelet.

4. Newton operates almost exclusively with the no- The impor-

tions of force, mass, and momentum. His sense of the fﬁgfoi;glfi

value of the concept of mass places him above his prede- bl

cept of

the first circumstance, the concept of force appears as
the original notion, the concept of work as the derived
one. If we investigate the influence of the second fact
first, the concept of work is the original notion. In
the transference of the ideas reached in the observation
of the motion of descent to more complicated relations,
force is recognised as dependent on the distance be-
tween the bodies—that is, as a function of the distance,

cessors and contemporaries. It did not occur to Galileo
that mass and weight were different things. Huygens
too, in all his considerations, puts weights for masses"
as for example in his investigations concerning thé
centre of oscillation. Even in the treatise De Percus-
‘.S‘I‘ﬁ??,&’ (On Impact), Huygens always says ¢ corpus ma-
jus,” the larger body, and ¢ corpus minus,” the smaller
body, when he means the larger or the smaller mass.

mass,

/(7). Thework done through the element of distance &7
is then 7 () 4r. By the second method of investiga-
tion work is also obtained as a function of the distance,
7 (7); but in this case we know force only in the form
d. I (r)/dr—that 1s to say, as the limiting value of the
ratio: (increment of work) /(increment of distance.)
The preter-  Gaalileo cultivated by preference the first of these

ences of the . . .
encesof the , wo methods. Newton likewise preferred it. Huygens

Physicists were not led to form the concept mass till
the.y made the discovery that the same body can by the
action of gravity receive different accelerations. The
first ot.:casion of this discovery was the pendulum-ob-
servations of Richer (1671-1673),—from which Huy-
gens at once drew the proper inferences,—and the
second was the extension of the dynamical laws to the
hea'venly bodies. The importance of the first point ma;

be inferred from the fact that Newton, to prove the pro}j

aurers - sursued the second method, without at all restricting

himself to it. Descartes elaborated Galileo’s ideas after
a fashion of his own. But his performances are in-
significant compared with those of Newton and Huy-
gens, and their influence was soon totally effaced. After
Huygens and Newton, the mingling of the two spheres
of thought, the independence and equivalence of which
are not always noticed, led to various blunders and
confusions, especially in the dispute between the Car-
tesians and Leibnitzians, already referred to, concern-
ing the measure of force. In recent times, however, 1n-
quirers turn by preference now to the one and now to

portionality of mass and weight on the same spot of the
earth, personally instituted accurate observations on
gendulums of different materials (Principia. Lib. 11
[;ZZE)VI, I])et;;Wotu et Resistentio Corporum Fszpemfa,-
dis‘tilm.tionnb te case of John Be1'"noulli, also, the first
b e vi/faen mass at?d weight (in the Meditatio
3 atura Centri Oscillationis, Opera Omnia, Lausanne
i;& thGe?eva, Vol. II, p. 168) was made on the ground
1€ fact that the same body can receive different
gravitational accelerations. Newton, accordingly, dis-
poses of all dynamical questions involving the rzzla:tions
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of several bodies to each other, by the help of the ideas tions. That the Velocity_of a body is determined by
of force, mass, and momentum. ’ the time of descent or determined by the distance of
uTclll:&zfﬁl:l-y- 5. Huygens pursued a different method f-or the so- d-escent, are assumptions equally nat;ural and equally
gens. lution of these problems. Galileo had previously dis- simple. The form of the law must in both cases be
covered that a body rises by virtue of the velocity ac- supplied by experience. As a starting-point, therefore,
quired in its descent to exactly the same height as that pt=mwv and ps =mop? /2 are equally well fitted.
from which it fell. Huygens, generalising the principle 6. When we pass to the investigation of the motion The neces-
(in his Horologium Oscillatorium) to the effect that the of several bodies, we are again compelled, in both cases, ;ltnfzgrt;a;
centre of gravity of any system of bodies will rise by to take a second step of an equal degree of certainty. ;‘(‘j‘i meth-
virtue of the velocities acquired in its descent to ex- The Newtonian idea of mass is justified by the fact,
actly the same height as that from which it fell, reached that, if relinquished, all rules of action for events would
the principle of the equivalence of work and vis viva. have an end ; that we should forthwith have to expect
The names of the formule which he obtained, were, contradictions of our commonest and crudest experi-
of course, not supplied until long afterwards. ences ; and that the physiognomy of our mechanical
The Huygenian principle of work was received by environment would become unintelligible. The same
the contemporary world with almost universal distrust. thing must be said of the Huygenian principle of work.
People contented themselves with making use of its If we surrender the theorem 3 ps = Smo? /2, heavy
brilliant consequences. It was always their endeavor bodies will, by virtue of their own weights, be able to
to replace its deductions by others. Even after John ascend higher ; all known rules of mechanical occur-
and Daniel Bernoulli had extended the principle, it A rences will have an end. The snstinctive factors which
was its fruitfulness rather than its evidency that was entered alike into the discovery of the one view and of
ealiec the other have been already discussed.
The meth- ‘We observe, that the Galileo-Newtonian principles The two spheres of ideas could, of course, have The points
ods of New- of contact

grown up much more independently of each other. But of the two
in view of the fact that the two were constantly in con- el
fact, it is no wonder that they have become partially
merged in each other, and that the Huygenian appears

the less complete. Newton is all-sufficient with his
forces, masses, and momenta. Huygens would like-

wise suffice with work, mass, and vés v7va. But since .

he did not in his time completely possess the idea of

mass, that idea had in subsequent applications to be
borrowed from the other sphere. Yet this also could

have been avoided. If with Newton the mass-ratio of

tonand  were, on account of their greater simplicity and ap-
3%52?5& parently greater evidency, invariably preferred to the
Galileo-Huygenian. The employment of the latter is
exacted only by necessity in cases in which the em-
ployment of the former, owing to the laborious atten-
tion to details demanded, is impossible ; as in the case
of John and Daniel Bernoulli’s investigations of the

motion of fluids.
If we look at the matter closely, however, the same
simplicity and evidency will be found to belong to the

Huygenian principles as to the Newtonian proposi-
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two bodies can be defined as the inverse ratio of the
velocities generated by the same force, with Huygens
it would be logically and consistently definable as the
inverse ratio of the squares of the velocities generated
by the same work.
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nay even apparently erroneous notions, may be very
important and very instructive. The historical investi-
gation of the development of a science is most needfui
lest the principles treasured up in it become a system
of half-understood prescripts, or worse, a system of

gl‘zg respec- The two spheres of ideas consider the mutual de- prejudices. Historical investigation not only promotes
ofeach.  pendence on each other of entirely different factors of the understanding of that which now is, but also brings
the same phenomenon. The Newtonian view is in so new possibilities before us, by showing that which ex-
far more complete as it gives us information regarding ists to be in great measure conventional and accidental.
the motion of each mass. But to do this it is obliged From the higher point of view at which different paths
to descend greatly into details. The Huygenian view of thought converge we may look about us with freer
furnishes a rule for the whole system. Itis only a con- powers of vision and discover routes before unknown.
venience, but it is then a mighty convenience, when f In all the dynamical propositions that we have dis- The substi-
the relative velocities of the masses are previously and i cussed, veloctty plays a prominent réle. The reason ‘t}lxg?gg?ir
independently known. of this, in our view, is, that, accurately considered, for e
Hines 7. Thus we are led to see, that in the develop- every single body of the universe stands in some defi- i%;’"’ﬁ:i
opmentof ment of dynamics, just as in the development of statics, nite relation with every other body in the universe ;i«f?{;ﬁ;}?if

dynamics g 3 & , or-
in the light the connection of widely different features of mechanical that any one body, and consequently also any several L
of the pre- . . . . 5

cedil?g re- phenomena engrossed at different times the attention bodies, cannot be regarded as wholly isolated. Our

marks.

of inquirers. We may regard the momentum of a sys-
tem as determined by the forces; or, on the other
hand, we may regard its z#s o7wa as determined by the
work. In the selection of the criteria in question the
individuality of the inquirers has great scope. It will
be conceived possible, from the arguments above pre-
sented, that our system of mechanical ideas might,
perhaps, have been different, had Kepler instituted
the first investigations concerning the motions of fall-
ing bodies, or had Galileo not committed an error in
his first speculations. We shall recognise also that not
only a knowledge of the ideas that have been accepted
and cultivated by subsequent teachers is necessary for
the historical understanding of a science, but also that
the rejected and transient thoughts of the inquirers,

inability to take in all things at a glance alone compels
us to consider a few bodies and for the time being to
neglect in certain aspects the others; a step accom-

_plished by the introduction of velocity, and therefore

of time. We cannot regard it as impossible that zuze-
&ral laws, to use an expression of C. Neumann, will
some day take the place of the laws of mathematical
elements, or differential laws, that now make up the
science of mechanics, and that we shall have direct
knowledge of the dependence on one another of the
Positions of bodies. In such an event, the concept of
force will have become superfluous.
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CHAPTER IIL

THE EXTENDED APPLICATION OF THE PRINCIPLES
OF MECHANICS AND THE DEDUCTIVE DE-
VELOPMENT OF THE SCIENCE.

1
SCOPE OF THE NEWTONIAN PRINCIPLES.

1. The principles of Newton suffice by themselves,
without the introduction of any new laws, to exPlore
thoroughly every mechanical phengmenon practmz_\lly
occurring, whether it belongs to statics or to dynamics.
If difficulties arise in any such consideration, they are

invariably of a mathematical, or

formal, character, and in no re-

MNJ spect concerned with ques'tions
7] of principle. We have given,

let us suppose, a number of mas-
SES Ly, Myy My - - . in space, with
definite initial velocities z, z,,
4. ... Weimagine, further, lines
of junction drawn between every

Fig. 144. two masses. In the directions of
these lines of junction are set up the accelerations and
counter-accelerations, the dependence of which on the
distance it is the business of physics to determine. [n
a small element of time 7 the mass i, for example,
will traverse in the direction of its initial veloc.ity Fhe
distance v, 7, and in the directions of the lines joining
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it with the masses m;, ., #g. ..., being affected in
such directions with the accelerations @3, [ 5 o o
the distances (@3/2)72, (@3/2)72, (@i/2)7%. ... If

we imagine all these motions to be performed ndepen-
dently of each other, we shall obtain the new position
of the mass m after lapse of time 7. The composition
of the velocities v; and @iz, @iz, @37. ... gives the
new initial velocity at the end of time 7. We then
allow a second small interval of time 7 to elapse, and,
making allowance for the new spatial relations of the
masses, continue in the same way the investigation of
the motion. In like manner we may proceed with
every other mass. .It will be seen, therefore, that, in
point of principle, no embarrassment can arise ; the
difficulties which occur are solely of a mathematical
character, where an exact solution in concise symbols,
and not a clear insight into the momentary workings
of the phenomenon, is demanded. If the accelerations
of the mass m;, or of several masses, collectively neu-
tralise each other, the mass my or the other masses
mentioned are in equilibrium and will move uniformly
onwards with their initial velocities. If, in addition,
the initial velocities in question are = 0, both egui/ib-
rium and rest subsist for these masses.

Schematic
itlustration
of the pre-
ceding
statement.

Nor, where a number of the masses My, My .. .. The same

id

ea ap-

have considerable extension, so that it is impossible to plied to ag
. = SR = .. gregates o
speak of a single line joining every two masses, is the dif- material

ficulty, in point of principle, any greater. We divide
the masses into portions sufficiently small for our pur-
pose, and draw the lines of junction mentioned between
every two such portions. We, furthermore, take into
account the reciprocal relation of the parts of the
same large mass; which relation, in the case of rigid
masses for instance, consists in the parts resisting

particles.
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every alteration of their distances from one another.
On the alteration of the distance between any two parts
of such a mass an acceleration is observed proportional
" to that alteration. Increased distances diminish, and
diminished distances increase in consequence of this
acceleration. By the displacement of the parts with
respect to one another, the familiar forces of elasticity
are aroused. When masses meet in impact, their
forces of elasticity do not come into play until contact
and an incipient alteration of form take place.
A practical 2. If we imagine a heavy perpendicular column

illustratior ¢ o G “ o

usraton resting on the earth, any particle  in the interior of
f Newton's e 5 5

}’Kfm}},li‘;, the column which we may choose to isolate in thought,

is in equilibrium and at rest. A vertical downward ac-

celeration ¢ is produced by the carth in the particle, -

which acceleration the particle obeys. But in so doing
it approaches nearer to the particles lying beneath it,
and the elastic forces thus awakened generate in m a
vertical acceleration upwards, which ultimately, when
the particle has approached near enough, becomes
equal to g The particles lying above likewise
approach z with the acceleration g Here, again,
acceleration and counter-acceleration are produced,
whereby the particles situated above are brought to
rest, but whereby = continues to be forced nearer and
nearer to the particles beneath it until the acceleration
downwards, which it receives from the particles above
it, increased by g, 1s equal to the acceleration it re-
ceives in the upward direction from the particles be-
neath it. We may apply the same reasoning to every
portion of the column and the earth beneath it, readily
perceiving that the lower:portions lie nearer each other
and are more violently pressed together than the parts
above. Every portion lies betweena less closely pressed
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upper portion and a more. closely pressed lower por- Rest in the

tion ; its downward acceleration g is neutralised by a{lhgé:;tecpfrm

&S
surplus of acceleration upwards, which it experiences ;Lrﬁfssaafél
from the parts beneath. We comprehend the equilib- hichon
rinum and rest of the parts of the column by imagining

all the accelerated motions which the reciprocal rela-

tion of the earth and the parts of the column determine,

as in fact simultaneously performed. The apparent
mathematical sterility of this conception vanishes, and

it assumes at once an animate form, when we reflect

that in reality no body is completely at rest, but that

in all, slight tremors and disturbances are constantly

taking place which now give to the accelerations of de-

scent and_now to the accelerations of elasticity a slight
preponderance. Rest, therefore, is a case of motion,

very infrequent, and, indeed, never completely realised.

The tremors mentioned are by no means an unfamiliar
phenomenon. When, however, we occupy ourselves

with cases of equilibrium, we are concerned simply with

a schematic reproduction in thought of the mechanical

fa:cts. We then purposely neglect these disturbances,
displacements, bendings, and tremors, as here they

have no interest for us. All cases of this class, which

have a scientific or practical importance, fall within the
province of the so-called theory of elasticity. The whole The unity

s 2 . and h -
outcome of Newton’s achievements is that we every- wencity

5 : vhi :
where reach our goal with one and the same 1dea, and ;;r;;ccll};}]:ssc

by means of it are able to reproduce and construct he- o the
forehand all cases of equilibrium and motion. N
phenomena of a mechanical kind now appear to us
as uniform throughout and as made up of the same
elements.

3. Let us consider another example. Two mas-
ses s, m are situated at a distance « from each



A general
exemplifi-
cation of
the power
of the prin-~
ciples.

The devel-
opment of
the equa-
tions ob-
tained in
this exam-
ple.
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other. (Fig. 145.) When displaced with respect to

each other, elastic forces proportional to the change

Z2 of distance are supposed to be

O0———F—F}—~ awakened. Let the masses be

EL movable in the X-direction par-

Fig. 145, allel to @, and their coérdinates

be x,, &,. If a force fis applied at the point x,, the
following equations cbtain:

771 d-:;tfl :p[(xz——xl)——a] ......... (])
q2
m_}”f'ﬂ:_p[(xz—xl)—a] e (2)

where 2 stands for the force that one mass exerts on
the other when their mutual distance is altered by the
value 1. All the quantitative properties of the me-
chanical process are determined by these equations.
But we obtain these properties in a more comprehensi-
ble form by the integration of the equations. The ordi-
nary procedure is, to find by the repeated differentia-
tion of the equations before us new equations in suffi-
cient number to obtain by elimination equations in &,
alone or x, alone, which are afterwards integrated. We
shall here pursue a different method. By subtracting
the first equation from the second, we get

dz(‘xz —_xl}_"

w2 ) 9pl(a, — @) —a] 4 f, o
putting x, — &, = #,

d2u £ 2 3

m‘_zfé—_-_. p[u—a] —Ff ......... ( )

and by the addition of the first and the second equa-
tions

d2 (x, + %) -
,;;}_2,~1_ =/, or, putting x, 4+ x, =7,

m
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a2y
e o e SR S R (4)
The integrals of (3) and (4) are respectively The integ-
w=A siﬂ\/g}{ i+ B co%\j;‘)j; / i dovclor
ke L. s\~ NG §]; and ments,

b

7

ey

72
e + C¢ 4+ D; whence

L B B 25
- sm\/lﬁ.t—_—-cos\/“ﬁ. 7t % £
2 i 2 7 2w 9
i
A \[zp ] ey 2
s — — SIn b 44 — cos,\/d‘p. _f £
4 2 n i3 2 m Fa 2" 2

a I D

Cé — il
.To take a particular case, we will assume that the A particu-
action of the force f begins at 7 — 0, and that at this o

) the exam-
time : ple.
dx
X, = 0, 7 = 0
day
L1, e 0,

that i-s,. the initial positions are given and the initial
VGEIOIIJIUBS are = 0. The constants A, B, C, D being
eliminated by these conditions, we get

. (5) _xlzécos\j?,f+ff Ez otk

2m "2 ‘@’
. 2 ‘2
6 =, 0 cos\/ it zj;. T+at 4/;, ]

i e A S 2
L xl_—-zpcos 7}§.t+a+;;_
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: I o
We see from (5) and (6) that the two masgels, }m;dthxe
ol i lerated motion with ha
tion to a uniformly acce ; iy
1 force f would impar
acceleration that the ' ki
te an oscillatory motion sy
these masses alone, execu ' e =
metrical with respect to their centre of gram/ty.?_'{‘ 1'5
i = i S
duration of this oscillatory motion, g‘y 27 :}:Znei, &
i i the force that is aw
smaller in proportion as ; : =
1 t is greater (if our a
the same mass-displacemen S
is di ticles of the same body,
is directed to two par i D
i is harder). The amplitu
ortion as the body is : . j i
Eillation of the oscillatory motion f/22 11ke$1selace-
creases with the magnitude p of the force (Lf 1sp_odic
i ibi eri
tion () exhibits the p
ment generated. Equa ; : :
changg of distance of the two masses du?mg their Prﬁt
gressive motion The motion of an elastic b%dﬁr }in;lg ¥
. 1 ' i th har
1 ~terised as vermicular. ith ]
n such case be charac ar. \
Lodies however, the number of the osmlla}t:ons 15 sg
’ i email
i 'sions so small that they r
reat and their excursion %
1g1nn0ticed, and may be left out of accoun;. ’I‘hedos.;:}:1Y
1 i radu
i hermore, vanishes, either g
latory motion, furt . s B
f some resistance, or W
through the effect o il
the force f begins to act, A
sses, at the moment 10 :
lEdn'atanc}e a + f/2 p apart and have equal initial veloci
t'ls The distance @ -I- /2 # that the masses are apart
es. 2 th : Sy
1fter the vanishing of their vibratory motion, 1sf/.2ﬁ
a rator :
reater than the distance of equilibrium a. A -teESIt?e
; namely, is set up by the action of £ by which th
: 1 -
J:jl,c:celeration of the foremost mass 18 r-ed:uced to(;:mbe?
half whilst that of the mass following 1s increased bj
the same amount. In this, then, agreeably to our-taés
1
sumption, py/m == f[2m oty ::f/zlp. As we sie, ;f :
in our power to determine the minutest details :
in ; }
henomenon of this character by the Newtoman- prllln
Eiples The investigation becomes (mathematically,
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yet not in point of principle) more complicated when
we conceive a body divided up into a great number of
small parts that cohere by elasticity. Iere also in the
casc of sufficient hardness the vibrations may be neg-
lected. Bodies in which we purposely regard the mu-
tual displacement of the parts as evanescent, are called
rigid bodies.

4. We will now consider a case that exhibits the The deduc-
schema of a lever. We imagine the masses M, o, m, Eﬁfrls_n;fl:fo
arranged in a triangle and joined by elastic connec- {\?g\e\f]t;)gs
tions. Every alteration of the sides, and consequently s
also every alteration of the angles, gives rise to accel-
erations, as the result of which the triangle endeavors to
assume its previous form and size. By the aid of the
Newtonian principles we can deduce from such a
schema the laws of the lever, and at the same time feel

that the form of the deduction, although it may be
more complicated, still
remains admissible when
we pass from a schematic
lever composed of three 5y Z
masses to the case of a :
real lever. The mass A

we assume either to be in itself very large or conceive
it joined by powerful elastic forces to other ve
masses (the earth for instance).
an immovable fulcrum.

Let m

ry large
M then represents

1» DOW, receive from the action of some ex- The meth-

ternal force an acceleration f perpendicular to the line ggdoufcttlilgu.
of junction Mmy, =+ 4 Immediately a stretching
of the lines "y

17y =bandm, M —gis produced, and
n the directions in question there are respectively set
up the accelerations, as yet undetermined, s and o, of

which the components 5(¢/6) and o (¢/a) are directed
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oppositely to the acceleration f. Here e is the altitude
of the triangle m 7, M. The mass ., receives the
acceleration s, which resolves itself into the two com-
ponents s'(d/6) 1n the direction of 7 and s'(¢/b) par-
allel to 7 The former of these determines a slight ap-
proach of m, to M. The accelerations produced in 47
by the reactions of m, and m,, owing to its great mass,
are imperceptible. We purposely neglect, therefore,
the motion of M.

The deduc- The mass 7, accordingly, receives the accelera-

B tion f—s(e/0)— o (¢/a), whilst the mass m, suffers

tained by
the consid- 4
the parallel acceleration §'(e/b). DBetween s and ¢ a

eration of

aceelerd  gimple relation obtains. If, by supposition, we have a
pery rigid connection, the triangle is only impercept-
ibly distorted. The components of s and g perpendicular
to / destroy each other. For if this were at any one
moment not the case, the greater component would
produce a further distortion, which would immediately
counteract its excess. The resultant of s and o is
therefore directly contrary to f, and consequently, as 1s
readily obvious, o (¢/@) =S¢ (d/6). Between $ and ¢,
further, subsists the familiar relation m,s==m,s OF
s =5 (my/my) Altogether ., and m, receive re-
spectively the accelerations s'(¢/4) and f—s'(¢/&)
(g fmy) (€ + /¢y, or, introducing in the place of the
variable value §'(¢/%) the designation ¢, the accelera-
tions @ and / — @ (g fo,) (eF d/e)-

On the pre- At the commencement of the distortion, the accel-

ceding sup- A . . .

?}?:igarésm eration of 2, ow1.ng to the increase of @, dlmlr.nshes,

‘he rotation whilst that of m, increases. 1f we make the altitude ¢

of the lever ; o : 0 .

are easily of th.e triangle very small, our reasoning still remains
applicable. In this case, however, a becomes == £ =7,
anda+t b=cFd=7, We see, moreover, that the

distortion must continue, @ increase, and the accelera-
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v EXTIE . 5
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simply asserts, that on the slightest (ifaviati?ns of ?;1/1{2
from » /r, powerful forces are seF in action Wthh’ n
point of fact prevent all further deviation. The bodies
obey of course, not the eguations, but ?he Sorces. :
A simple 5. We obtain a very obvious case if we put 1n t'he
e example just treated m, = m, =—m and a=14 (Fig.
L 147). The dynamical state of the_ system ceases to
change when ¢ = 2 (f— 2 @), that is, when the accel-
erations of the masses
at the base and the ver-

s =3 ;
b /e 5 4 a tex are given by 2//5
{zaj: and f/5. At the com-
e b mencement of the dis-

tortion ¢ increases, and simultaneously the accelera-
tion of the mass at the vertex is decreased by double
that amount, until the proportion subsists between the

twoof 2: 1.

The equi- We have yet to consider the case of equilibrium of

thelever 2 schematic lever, consisting (Fig. 148) of three masses

. i is again supposed
from the 1y, 7,, and M, of which the last g PP

same con-
siderations,

1’

Fig. 148.

to be very large or to be elastically connected with
very large masses. We imagine two ec'lual an(-i‘ oppo-
site forces 5, — s applied to ., and s, in the ('11rect'|0n
m, m,, or, what is the same thing, accelerations im-
pressed inversely proportional to the masses ., 7,.

The stretching of the connection 2, ., also generates
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accelerations inversely proportional to the masses my,
4, Which neutralise the first ones and produce equi-
librium. Similarly, along », M imagine the equal and
contrary forces #, — # operative ; and along m, M the
forces #, — ». In this case also equilibrium obtains.
If A7 be clastically connected with masses sufficiently
large, — % and — / need not be applied, inasmuch
as the last-named forces are spontaneously evoked the
moment the distortion begins, and always balance the
forces opposed to them. Equilibrium subsists, accord-
ingly, for the two equal and opposite forces §, — 5 as
well as for the wholly arbitrary forces 7, #. As a matter
of fact s, — s destroy each other and Z, # pass through
the fixed mass A7, that is, are destroyed on distortion
setting in.
The ‘condition of equilibrium readily reduces itself The reduc-

tion of the
to the common form when we reflect that the MO- preceding

ments of / and #, forces passing through A7, are with EEE&S@Q‘W
respect to 47 zero, while the moments of s and — 5 are
equal and opposite. If we compound # and s to #, and
#and — sto g, then, by Varignon’s geometrical principle
of the parallelogram, the moment of #is equal to the
sum of the moments of s and 4, and the moment of q
is equal to the sum of the moments of » and — 5. The
moments of  and ¢ are therefore equal and opposite.
Consequently, azy two forces » and g will be in egui-
lbriwm if they produce in the direction m, M, equal
and opposite components, by which condition the equal-
ity of the moments with respect to M is posited. That
then the resultant of # and g4 also passes through 47, is
likewise obvious, for s and — destroy each other and
Z and # pass through 7.

6. The Newtonian point of view, as the example
just developed shows us, includes that of Varignon.
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;rcel\:ﬁo;qu We‘were right, therefore, when we characterised the

view in- statics of Varignon as a dynamical statics, which, start-

Varignon's. ing from the fundamental ideas of modern dynamics,
voluntarily restricts itself to the investigation of cases
of equilibrium. Only in the statics of Varignon, owing
to its abstract form, the significance of many opera-
tions, as for example that of the translation of the
forces in their own directions, is not so distinctly ex-
hibited as in the instance just treated.

The ccon- The considerations here developed will convince

omy and x . : 5

weslihof us that we can dispose by the Newtonian principles

theNewton- - . :

fanideas. of every phenomenon of a mechanical kind which may
arise, provided we only take the pains to enter far
enough into details. We literally see through the cases
of equilibrium and motion which here occur, and be-
hold the masses actually impressed with the accelera-
tions they determine in one another. It isthe same
grand fact, which we recognise in the most various
phenomena, or at least can recognise there if we make
a point of so doing. Thus a unity, homogeneity, and
economy of thought were produced, and a new and
wide domain of physical conception opened which
before Newton’s time was unattainable.

‘;ic; New- Mechanics, however, is not altogether an end in it-

:ﬁréll;l;;g&. self ; it has also prodlems to solve that touch the needs

methods.  of practical life and affect the furtherance of other sci-
ences. Those problems are now for the most part ad-
vantageously solved by other methods than the New-
tonian,—methods whose equivalence to that has already
been demonstrated. It would, therefore, be mere im-
practical pedantry to contemn all other advantages and
insist upon always going back to the elementary New-
tonian ideas. It is sufficient to have once convinced

ourselves that this is always possible. Yet the New-
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tonian conceptions are certainly the most satisfactory
and the most lucid ; and Poinsot shows a noble sense
of scientific clearness and simplicity in making these
conceptions the sole foundation of the science.

1I.

THE FORMULZMAE AND UNITS OF MECHANICS.

1. All the important formule of modern mechanics History of

: Y i - the formu-
were discovered and employed in the period of Galileo @ and

and Newton. The particular designations, which, Becharios,
owing to the frequency of their use, it was found con-
venient to give them, were for the most part not fixed
upon until long afterwards. The systematical mechan-
ical units were not introduced until later still. Indeed,
the last named improvement, cannot be regarded as
having yet reached its completion.
2. Let s denote the distance, ¢ the time, # the in- The orig
stantaneous velocity, and ¢ the acceleration of a uni- S

tions of

formly accelerated motion. From the researches of ﬁi?‘gee%i“d

Galileo and Huygens, we derive the following equa-
tions :

7= @ 1
J:i—?l’z l

@

Multiplying throughout by the mass s, these equa- The intro-

tions give the following : Sl
and ‘““mov-
me = mpt ing force.”
71
A= th 2
oy
meps = 5

&
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i we
Final torm and, denoting the moving force 7 @ by the letter 2,

f the fun- 5
dumentzl obtain

equations. s =— [,/,t

ps= o j
Equations (1) all contain the quantity P and eac;l‘;
contains in addition two of the quantitiess, 4, 7,
exhibited in the following table:
v, &
@ 5.7
50
Equations (2) contain the qu.antities n, Py S, tf, t;;;
each containing #, p and in a-CldltIOH to m, # fwoto i
three quantities s, 4, @, according to the following table :
) a0
wy p L D 17

G

e Questions concerning motior}s due to con_stant fIt;rcées
E:‘; sl are answered by equations (2) 1n grea.t variety. 1i, tor
it ﬁéﬁl:qfua’ mole, we want to know the velocity o that a mass
e Zficcfui;es in the time ¢ through the action of a fo;ce
#, the first equation gives ¢ :.j)f/m.‘ If, on the ot i;:;
"‘:] hand, the #me be sought during ?v_hxch a rr;.ass m wthe
the velocity o can move in opposition to a or-ie j); =
same equation gives us z:m?r/f. Agaglrf, 1 waith
quire after the distance through which m vﬁl rl?.odee 5
velocity v in opposition to the force , the tt'll’ . i?lus_
tion gives s =mo?/2p. The two last qu.is {?gan g’
trate, also, the futility of the Descartes-Ler bmd 1.n e
pute concerning the measure o? force of a body 1.b ;
The use of these equations greatly contributes

tion.

(T N
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to confidence in dealing with mechanical ideas. Sup-
pose, for instance, we put to ourselves, the question,
what force p will impart to a given mass m the velocity
@; we readily see that between m, 4, and » alone, no
equation exists, so that either 5 or # must be supplied,
and consequently the question is an sudeterminate one.
We soon learn to recognise and avoid indeterminate
cases of this kind. The distance that a mass m acted
on by the force p describes in the time ?, if moving
with the initial velocity 0, is found by the second equa-
tion s = 472 /am.
3. Several of the formule in the above-discussed The names
o c 5 which the
equations have received particular names. The force

formulae of
of a moving body was spoken of by Galileo, who al- 551

tions have
ternately calls it “momentum,” « impulse,” and ¢ en- """
ergy.” He regards this momentum as proportional to
the product of the mass (or rather the weight, for Gali-
leo had no clear idea of mass, and for that matter no
more had Descartes, nor even Leibnitz) into the velo-
city of the body. Descartes accepted this view. He put
the force of a moving body = m 2, called it quantity of
motion, and maintained that the sum-total of the quan-
tity of motion in the universe remained constant, so that
when one body lost momentum the loss was compen-
sated for by an increase of momentum in other bodies.
Newton also employed the designation ¢ quantity of
motion’” for s #, and this name has been retained to the Momen-
present day. [But momentum is the more usual term. ] 5}33523.
For the second member of the first equation, viz. p¢,
Belanger, proposed, as late as 1847, the name smpulse. *
The expressions of the second equation have received

* See, also, Maxwell, Matier and Motion, Americ
this word is commonly nsed in a different sense, namely, as *“the limit of a
force which is infinitely great but acts only during an infinitely short time.”
See Routh, &igid Dynasics, Part 1, pages 65-66.— Trans,

an edition, page 72. But
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no particular designations. Leibnitz (1695) called the
expression m2? of the third equation wvis viva or lving
forece, and he regarded it, in opposition to pescar‘tes,
as the true measure of the force of a body in motion,
calling the pressure of a body at rest vis ﬁmm'zm,.or
dead force. Coriolis found it more appropriate to give
the term imo? the name vis viva. To avoid confusion,
Belanger proposed to call mo? living force and mo?
living power [now commonly called in English kinetic
energy]. For ps Coriolis employed the name work.
Poncelet confirmed this usage, and adopted the k:/o-
gramme-metre (that is, a force equal to the weight of a
kilogramme acting through the distance of a metre) as
the wnit of work. :

4. Concerning the historical details of the origin of

x; . 3 LR %1 i 2 £
quantity of these notions ‘¢ quantity of motion” and ¢¢vis viva,

motion an
vis viva.

a glance may now be cast at the ideas which led Des-
cartes and Leibnitz to their opinions. In his Principia
Philosophie, published in 1644, II, 36, DESCARTES ex-
pressed himself as follows : .
«Now that the nature of motion has been examined,

¢t we must consider its cause, which may be conceived |

«in two senses : first, as a universal, original cause—
<« the general cause of all the motion in the world ; and
<t second, as a special cause, from which the individual
< parts of matter receive motion which before they diFl
¢not have. As to the universal cause, it can mani-
¢ festly be none other than God, who in the beginning
< created matter with its motion and rest, and who now
« preserves, by his simple ordinary concurrence, on the
¢« whole, the same amount of motion and rest as he
¢ originally created. For though motion is only a con-
¢ dition of moving matter, there yet exists in matter
<ca definite quantity of it, which in the world at large
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¢“never increases or diminishes, although in single por-
¢“tions it changes; namely, in this way, that we must
¢“assume, in the case of the motion of a piece of matter
¢which is moving twice as fast as another piece, but in
¢ quantity is only one half of it, that there is the same
¢“amount of motion in both, and that in the proportion
‘“as the motion of one part grows less, in the same pro-
‘““portion must the motion of another, equally large
‘“part grow greater. We recognise it, moreover, as
¢¢a perfection of God, that He is not only in Himself
‘unchangeable, but that also his modes of operation
“¢are most rigorous and constant ; so that, with the ex-
‘“ception of the changes which indubitable experience
““or divine revelation offer, and which happen, as our
““faith 'or judgment show, without any change in the
¢ Creator, we are not permitted to assume any others
“in his works—lest inconstancy be in any way pre-
““dicated of Him. Therefore, it is wholly rational to
¢“assume that God, since in the creation of matter he
““imparted different motions to its parts, and preserves
“all matter in the same way and conditions in which
““he created it, so he similarly preserves in it the same
“Cquantity of motion.”

Passage
from Des-
cartes’s
Principia.

The merit of having first seught affer a more uni- et

& % 2 3 : and defects

versal and more fruitful point of view in mechanics, of Descar-
3 SN s tes's phys-

cannot be denied Descartes. This is the peculiar task icaliﬁql{ir-
1es,

of the philosopher, and it is an activity which con-
stantly exerts a fruitful and stimulating influence on
physical science.

Descartes, however, was infected with all the usual
errors of the philosopher. He places absolute confi-
dence in his own ideas. He never troubles himself to
put them to experiential test. On the contrary, a min-
imum of experience always suffices him for a maximum
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iR el ot ithe Tndistinetness o Huygens pursued. Every body rises by virt f th
ue o € Leibnitz on

his conceptions. Descartes did not possess a clear
idea of mass. It is hardly allowable to say that Des-
cartes defined 7 as momentum, although Descartes’s
scientific successors, feeling the need of more definite
notions, adopted this conception. Descartes’s greatest
error, however,—and the one that vitiates all his phys-
ical inquiries,—is this, that many propositions appear
to him self-evident & priori concerning the truth of
which experience alone can decide. Thus, in the two
paragraphs following that cited above (§§37-30) it is
asserted as a self-evident proposition that a body pre-
serves unchanged its velocity and direction. The ex-
periences cited in §38 should have been employed, not
as a confirmation of an & priori law of inertia, but as a
foundation on which this law in an empirical sense
should be based.

Descartes’s view was attacked by LEBNITZ (1686)

velocity acquired in its descent to a height exactly el
e Ol force,

equal to that from which it fell. 1f, therefore, we a
sume, that the same ‘‘force” is requisite to,raise -
body # a height 44 as to raise a body 4 a height /za
we_must, since we know that in the first case the ve:
locity acquired in descent is but twice as great as i
the second, regard the product of a ¢ body ” into thn
square of its velocity as the measure of force. :
: In a gubsequent treatise (1695), Leibnitz reverts to
t‘h:s subject. He here makes a distinction between
simple pressure (245 mortua) and the force of a movin
body (zis viva), which latter is made up of the sum ogf
the pressur:e-impulses. These impulses produce, in-
Fleed, an ‘““impetus’ (mz), but the impetus prod;ced
is not the true measure of force; this, since the cause
must be equivalent to the effect, is (in conformity with

Leibni .
uglqﬁgﬁmy' o vi ' - ' : the preceding considerations) determined b
on QuanY < the Acta Fruditorum, in a little treatise bearing the Leibnitz remarks further that th ki
r that the possibility of
per-

title : < A short Demonstration of a Remarkable Error
of Descartes and Others, Concerning the Natural Law
by which they think that the Creator always preserves
the same Quantity of Motion ; by which, however, the
Science of Mechanics is totally perverted.”

In machines in equilibrium, Leibnitz remarks, the
loads are inversely proportional to the velocities of dis-
placement; and in this way the idea arose that the
product of a body (¢ corpus,” ““moles”) into its velocity
is the measure of force. This product Descartes re-
garded as a constant quantity. Leibnitz’s opinion,
however, is, that this measure of force is only acci-
dentally the correct measure, in the case of the ma-
chines. The true measure of force is different, and
must be determined by the method which Galileo and

petual motion is excluded onl
v by the acc .
measure of force. 4 eptance of his

Leibni
bnitz, no more than Descartes, possessed a gen- The idea of

uine concept i -
pt of mass. Where the necessity of such Leibnite's

an idea occurs, he speaks of a body (corpus), of a load T
(Mwlﬁj&'), of different-sized bodies of the san’le specific
tgll;zir/;ti,nimd so forth.  Only in the second treatise, and
‘ y once, does the expression ‘““massa ” occur
n all probability borrowed from Newton. Still, to d :
rive any definite results from Leibnitz’s theory V\:ﬁ mu;
associate with his expressions the notion of’mass as
his successors actually did. As to the rest, Leibni!tz’s
Egcsncsfd;lcr'e 1s much more in accordance with the meth-
oy flence than Descart'es’s. Two things, however,

confounded : the question of the measure of force
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Inasense, and the question of the constancy of the sums Zmwo and

Descartes - ; . - - .

and Leib- =mp?. The two have m reality nothing to do with

nitz were o .

tachright. each other. With regard- to the first question, we now
know that both the Cartesian and the Leibnitzian meas-
ure of force, or, rather, the measure of the effective-
ness of a body in motion, have, each in a different
sense, their justification. Neither measure, however,
as Leibnitz himself correctly remarked, is to be con-

founded with the common, Newtonian, measure of

force.
The dis- With regard to the second question, the later n-
pute, thexe- o ivations of Newton really proved that for free ma-
‘;&%ﬁr{ﬂgs, terial systems not acted on by external forces the Car-
tesian sum =m v is a constant; and the investigations
of Huygens showed that also the sum 2 o? is a con-
stant, provided wor# performed by forces does not alter
it. The dispute raised by Leibnitz rested, therefore,
on various misunderstandings. It lasted ffty-seven
years, till the appearance of D’Alembert’s 7raité de
dynamigue, in 1743. To the theological ideas of Des-
cartes and Leibnitz, we shall revert in another place.
The appli- 5. The three equations above discussed, though
cation o.

e finaa. they are only applicable to rectilincar motions produced

mental -
equations by constant forces, may yet be considered the funda-

tovatiable . tal equations of mechanics. If the motion be recti-

linear but the force variable, these equations pass by a

slight, almost self-evident, modification into others,

which we shall here only briefly indicate, since mathe-

matical developments in the present treatise arc wholly
subsidiary.

From the first equation we get for variable forces

mo :fp d¢ + C, where p is the variable force, 4¢ the

time-element of the action, fjﬁ 4t the sum of all the

¥ -
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products g . ¢ from the beginning to the end of the
action, and C a constant quantity denoting the value
of m o before the force begins to act.

The second equation passes in like manner into the

form s :lrdtffzn’z‘ + C¢ + D, with two so-called

constants of integration.
The third equation must be replaced by
m o2
o :f[) as -+ C.

Curvilinear motion may always be conceived as the
product of the simultaneous combination of three rec-
tilinear motions, best taken in three mutually perpen-
dicular directions. Also for the components of the mo-
t%on of this very general case, the above-given equa-
tions retain their significance.

6.. The mathematical processes of addition, sub- Theunitsot
traction, and equating possess intelligible meaning only g
when applied to quantities of the same kind. We can-
not add or equate masses and times, or masses and
velocities, but only masses and masses, and so on.
When, therefore, we have a mechanical equation, the
question immediately presents itself whether the mem-
bers of the equation are quantities of ke same kind,
that is, whether they can be measured by #he same unit
or whether, as we usually say, the equation is f.!amo’-

geneous.  The units of the quantities of mechanics will
form, therefore, the next subject of our investigations.
" The choice of units, which are, as we know, quan-
.tlt?es of the same kind as those they serve to measure
1s1n many cases arbitrary. Thus, an arbitrary mass i;
en‘{ployed as the unit of length, an arbitrary time as the
un?t of time. The mass and the length employed as
units can be preserved ; the time can be reproduced
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Arbitrary by pendulum-experiments and astronomical observa- i
units, an o 5 5 3 . 1 |
dgri\{e_d or tions. But units like a unit of velocity, or a unit of
absolute

by FOURIER, in 1822, in his Z%eory of Heat. Thus, if ZThe theory

S ; ¢ dimen-
denote a length, 7 a time, and m a mass, the d]men-soioils?e“

acceleration, cannot be preserved, and are much more
difficult to reproduce. These quantities are conse-
quently so connected with the arbitrary fundamental
units, mass, length, and time, that they can be easily
and at once derived from them. Units of this class
are called derived or abselute units. This latter desig-
nation is due to Gauss, who first derived the magnetic
units from the mechanical, and thus created the possi-
bility of a universal comparison of magnetic measure-
ments. The name, therefore, is of historical origin.
As unit of velocity we might choose the velocity
with which, say, ¢ units of length are travelled over in
unit of time. But if we did this, we could not express
the relation between the time #, the distance s, and the
velocity # by the usual simple formula s =27 but
should have to substitute for it s = ¢.# ¢ If, however,
we define the unit of velocity as the velocity with
which the unit of length is travelled over in unit of
time, we may retain the form s =#¢ Among the de-

sions of a velocity, for instance, are /7/7 or /z—1. After

this explanation, the following table will be readily un-
derstood :

NAMES

Velocity . fips ol
Acceleration . i) Lt 2
[Gare s AT e o SR mld—*
Momentum o .o o i iy mlt—1
ImpulseSsee s St SN mlt—1
MO IS L R G e ml2f—2
. . 2

VASEv VARt i O e R e .?—]327)--- A
Moment of inertia . . . ... © ml?
Statical moment. . . . ... D ml2i—2

This table shows at once that the above-discussed equa-
tions are /omogeneous, that is, contain only members of
the same kind. Every new expression in mechanics
might be investigated in the same manner.

7- The knowledge of the dimensions of a quantity The useful-

1s also important for another reason. Namely, if the fosof the

rived units the simplest possible relations are made @ .
1eory of

to obtain. Thus, as the unit of area and the unit of vol-
ume, the square and cube of the unit of length are al-
ways employed.

According to this, we assume then, that by unit ve-
locity unit length is described in unit time, that by unit
acceleration unit velocity is gained in unit time, that
by unit force unit acceleration is imparted to unit mass,
and so on.

The derived units depend on the arbitrary funda-
mental units ; they are functions of them. The func-
tion which corresponds to a given derived unit is called
its dimensions. The theory of dimensions was laid down

value of a quantity is known for one set of fundamenta] ™

units and we wish to pass to another set, the value of
the quantity in the new units can be easily found from
the dimensions. The dimensions of an acceleration
which has, say, the numerical value @, are /772, I’f
we pass to a unit of length A times greater and to a
unit of time 7 times greater, then a number A times
smaller must take the place of 7 in the expression /72
and a number 7 times smaller the place of # Th(;
numerical value of the same acceleration referred to
the new units will consequently be 72/ @.  If we



Ellwrfoll?j;zr [8. Thefollowing statement of the mechanical 1‘1ni'ts been dented. : 'I"he metre des archives was intended to
{i}g}eﬁﬂff at present in use in the United States and Great Britain be fm_e ten~m1ll1o'nth of a quadrant of a terrestrial
gl is substituted for the statement by Professor Mach of merl'dlan.. In point of fact such a quadrant is, ac-
the units formerly in use on the continent of Europe. cording to Clarke, 32814820 feet, which is 10002015
All the civilised governments have united in establish- metres.
ing an International Burean of Weights and Measures The international unit of mass is the kilogramme, The inter-
in the Pavillon de Breteuil, in the Parc of St. Cloud, which is the mass of a certain cylinder of platiniridium Sl he
at Sévres, near Paris. In some countries, the stan- called the International Prototype Kilogramme. Each P
dards emanating from this office are exclusively legal ; government has copies of it called National Prototype
in others, as the United States and Great Britain, they Kilogrammes. This mass was intended to be identical
are optional in contracts, and are usual with physi- with the former French kilogramme, which was defined
cists. These standards are a standard of length and a as the mass of a certain platinum cylinder called the
standard of mass (not weight.) kilogramme des archives. The platinum being somewhat
The inter- The unit of length is the International Metre, which spongy contained a variable amount of occluded gases,
lﬁjl*l‘f{t“ is defined as the distance at the melting point of ice and had perhaps suffered some abrasion. The kilo-
ength.
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take the metre as our unit of length, and the second as
our unit of time, the acceleration of a falling body for
example is g'81, or as it is customary to write it, in-
dicating at once the dimensions and the fundamental
measures : 9-81 (metre/second?). If we pass now to
the kilometre as our unit of length (1 = 1o00), and to
the minute as our unit of time {7 == 60), the value cf the
same acceleration of descent is (6o X 60/1000)981,
or 35:316 (kilometre/minute?).

between the centres of two lines engraved upon the
polished surface of a platiniridium bar, of a nearly
X-shaped section, called the International Prototype
Metre. Copies of this, called National Prototype Me-
tres, are distributed to the different governments. The

S

e g —
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cause of doubt as to the length of the old metre,
owing partly to the imperfections of the standard, and
partly to obstacles now intentionally put in the way of
such ascertainment. The French metre was defined
as the distance, at the melting-point of ice, between
the ends of a platinum bar, called the métre des archives.
It was against the law to touch the ends, which made
it difficult to ascertain the distance between them.
Nevertheless, there was a strong suspicion they had

gramme is 1000 grammes ; and a gramme was intended
to be the mass of a cubic centimetre of water at its
temperature of maximum density, about 3-93° C. It
is not known with a high degree of precision how nearly
this is so, owing to the difficulty of the determination.

international metre is authoritatively declared to be The regular British unit of length is the Imperial The British

Yard which is the distance at 62° F. between the cen- }Tr:;;ﬂf
tres of two lines engraved on gold plugs inserted in a
bronze bar usually kept walled up in the Houses of

Parliament in Westminster. These lines are cut rela-

identical with the former French metre, used until the
adoption of the international standard; and it is im-
possible to ascertain any error in this statement, be-
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Conditions tively deep, and the burr is rubbed off and the surface

of compari- - g
sonof the rendered mat, by rubbing with charcoal. The centre
Imperial

vardwith  of such a line can easily be displaced by rubbing ; which
other meas-

tures for many hours. The point which upon such a Relative

# : v lengths of
thermometer will appear as 62° will really be consider- themetre
3

ures. is probably not true of the lines on the Prototype me-

tres. The temperature is, by law, ascertained by a
mercurial thermometer ; but it was not known, at the
time of the construction of the standard, that such
thermometers may give quite different readings, ac-
cording to the mode of their manufacture. The quality
of glass makes considerable difference, and the mode
of determining the fixed points makes still more. The
best way of marking these points is first to expose the
thermometer for several hours to wet aqueous vapor at
a known pressure, and mark on its stem the height of
the column of mercury. The thermometer is then
brought down to the temperature of melting ice, as
rapidly as possible, and is immersed in pounded ice
which is melting and from which the water is not
allowed to drain off. The mercury being watched
with a magnifying glass is seen to fall, to come to
rest, and to commence to rise, owing to the lagging
contraction of the glass. Its lowest point is marked
on the stem. The interval between the two marks is
then divided into equal degrees. When such a ther-
mometer is used, it is kept at the temperature to be
determined for as long a time as possible, and imme-
diately after is cooled as rapidly as it is safe to cool it,
and its zero is redetermined. Thermometers, so made
and treated, will give very constant indications. But
the thermometers made at the Kew observatory, which
are used for determining the temperature of the yard,
are otherwise constructed. Namely the melting-point
is determined first and the boiling-point afterwards ;
and the thermometers are exposed to both tempera-

=

ably hotter (perhaps a third of a centigrade degree) e
than if its melting-point were marked in the other way.
If this circumstance is not attended to in making com-
parisons, there is danger of getting the yard too short
by perhaps one two-hundred-thousandth part. General
Comstock finds the metre equal to 39-36985 inches.
Several less trustworthy determinations give nearly the

_same value. This makes the inch 2 540014 centimetres.

At the time the United States separated from Engﬂg?‘ﬁ:eﬁ
land, no precise standard of length was legal *; and length.
none has ever been established. We are, therefore,
without any precise legal yard ; but the United States
office of weights and measures, in the absence of any
legal authorisation, refers standards to the British Im-
perial Yard.

The regular British unit of mass is the Pound, de- The British
fined as the mass of a certain platinum weight, called i
the Imperial Pound. This was intended to be so con-
structed as to be equal to 7000 grains, each the 5260th
part of a former Imperial Troy pound. This would be
within 3 grains, perhaps closer, of the old avoirdupois
pound. The British pound has been determined by
Miller to be 0- 4535926525 kilogramme ; that is the kilo-
gramme is 2204621249 pounds.

At the time the United States separated from Great
Britain, there were two incommensurable units of
weight, the avoirdupois pound and the Troy pound. Con-
gress has since established a standard Troy pound,
which is kept in the Mint in Philadelphia. It was a
copy of the old Imperial Troy pound which had been
adopted in England after American independence. It

* The so-called standard of 1758 had not been legalised.
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can unit of
mass.

The unit of
time.
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is a hollow brass weight of unknown volume ; and no
accurate comparisons of it with modern standards have
ever been published. Its mass is, therefore, unknown.
The mint ought by law to use this as the standard of
gold and silver. In fact, they use weights furnished
by the office of weights and measures, and no doubt
derived from the British unit; though the mint officers
profess to compare these with the Troy pound of the
United States, as well as they are able to do. The old
avoirdupois pound, which is legal for most purposes,
differed without much doubt quite appreciably from
the British Imperial pound ; but as the Office of Weights
and Measures has long been, without warrant of law,
standardising pounds according to this latter, the legal
avoirdupois pound has nearly disappeared from use of
late years. The makers of weights could easily detect
the change of practice of the Washington Office.

Measures of capacity are not spoken of here, be-
cause they are not used in mechanics. It may, how-
ever, be well to mention that they are defined by the
weight of water at a given temperature which they
measure. :

The universal unit of time is the mean solar day or
its one 86400th part, which is called a second. Side-
real time is only employed by astronomers for special
purposes.

Whether the International or the British units are
employed, there are two methods of measurement of
mechanical quantities, the absolute and the grawvitational.
The absolnte is so called because it is not relative to
the acceleration of gravity at any station. This method
was introduced by Gauss.

The special absolute system, widely used by physi-
cists in the United States and Great Britain, i1s called
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the Centimetre-Gramme-Second system. In this sys-
tem, writing C for centimetre, G for gramme mass
2

and S for second,

the unit of length is . . . . . S
tEeSunT oilnass is ff 2u 0 Sunt 1o 7l et G /
the unit of timeis. . . . . . ol WAL Sj
Ehemmior velocity 15 . o ic e st C/S !
the unit of acceleration (which might i

be called a ¢ galileo,” because Galj-

leo Galilei first measured an accele-

ration) is e L €/S2:
the unit of densityde .0 00000 G;C‘*f
the unit of momentumis . . . . . . . . GC/S
the unit of force (called a dyneyis .. . GC/S2 :

the unit of pressure (called one mil-
Lionth of an absolute atmosphere)is. . G/CSz2;
the unit of energy (ois viva, or work, :
called an erg) is '
etc.

1GC2 /s

The abso-
lute system
of the
United
States and
Great Brit-
ain,

T'he gravitational system of measurement of MEe-~ The Gravi-
chanical quantities, takes the kilogramme or pound, or gona!
]

rather the attraction of these towards the earth, com-
pounded with the centrifugal force,—which is the ac-
celeration called gravity, and denoted by g, and is dif-
ferent at different places,—as the unit of force, and
the foot-pound or kilogramme-metre, being the amount
of gravitational energy transformed in the descent of a
pound through a foot or of a kilogramme through a
metre, as the unit of energy. Two ways of reconciling
these convenient units with the adherence to the usual
standard of length naturally suggest themselves, namely

ﬁ_rs:r, to use the pound weight or the kilogramme Weigh;:
divided by ¢ as the unit of mass, and, second, to adopt

System.
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such a unit of time as will make the acceleration of g,
at an initial station, unity. Thus, at ‘Washington, the
acceleration of gravity is g8o-o05 galileos. If, then,
we take the centimetre as the unit of length, and the
0031943 second as the umit of time, the acceleration
of gravity will be 1 centimetre for such unit of time
squared. The latter system would be for most pur-
poses the more convenient ; but the former is the more
familiar.

In either system, the formula p=mmg is retained;
but in the former g retains its absolute value, while in
the latter it becomes unity for the initial station.” In
Paris, g is g80-96 galileos; in Washington it 1s 98005
galileos. Adopting the more familiar system, and
taking Paris for the initial station, if the unit of force
is a kilogramme’s weight, the unit of length a centi-
metre, and the unit of time a second, then the unit of
mass will be 1/981-0 kilogramme, and the unit of
energy will be a kilogramme-centimetre, or (1/2)-
(1000/g81-0) G C2 /S 2. Then, at Washington the
gravity of a kilogramme will be, not 1, as at Paris,
but g80°1/9810=0"99907 units or Paris kilogramme-
weights. Consequently, to produce a force of one Paris
kilogramme-weight we must allow Washington gravity
to act upon g81-0/980°1 = 100092 kilogrammes. |

In mechanics, as in some other branches of physics
closely allied to it, our calculations involve but three
fundamental quantities, quantities of space, quantities
of time, and quantities of mass. This circumstance is
a source of simplification and power in the science
which should not be underestimated.
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II1.

THE LAWS OF THE CONSERVATION OF MOMENTUM, OF THE
CONSERVATION OF THE CENTRE OF GRAVITY, AND
OF THE CONSERVATION OF AREAS.

1. Although Newton’s principles are fully adequate
to deal with any mechanical problem that may arise,
it is yeif convenient to contrive for cases more frequently
occurring, particular rules, which will enable us to treat
problems of this kind by routine forms and to dis-
pense with the minute discussion of them. Newton
and his successors developed several such principles.
Our first subject will be NewroN’s doctrines concern-
ing freely movable material systems.

2. If two free masses m and »' are subjected in
the direction of their line of junction to the action of
forces that proceed from of4er masses, then, in the in-
terval of time ¢ the velocities #, 2" will be generated,
and the equation (p 4+ p)¢=mwo -+ »'¢’ will subsist.
This follows from the equations p7=mwv and p'/' =
w'v'. - The sum mo 4 m'tv’ is called the momentum of
the system, and in its computation oppositely directed
f(i)I‘CES and velocities are regarded as having opposite
signs. If, now, the masses m, ' in addition to being
subjected to the action of the external forces g, ' are
also acted upon by infernal forces, that is by such as
are mutually exerted by the masses on ezne another, these
forces will, by Newton’s third law, be equal and op-
Posite, ¢, — ¢. The sum of the impressed impulses
is, then, (p+ 4 + g9 —q)t=(p + )¢ the same as
before ; and, consequently, also, the total momentum
of the system will be the same. The momentum of a

Specialisa-
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system 1is thus determined exclusively by exiernal forces,
that is, by forces which masses owside of the system
exert on its parts.

Imagine a number of free masses m, ', m”. . . .
distributed in any manner in space and acted on by
external forces p, #, #'. . .. whose lines have any di-
rections. These forces produce in the masses in the
interval of time # the velocities 2, 2, 2”. . .. TResolve
all the forces in three directions x, y, z at right angles
to each other, and do the same with the velocities.
The sum of the impulses in the x-direction will be equal
to the momentum generated in the x-direction; and
so with the rest. If we imagine additionally in action
between the masses #, #', #'". . . ., pairs of equal and
opposite internal forces ¢, —¢, 7, —7, 5, — 9, etc.,
these forces, resolved, will also give in every direction
pairs of equal and opposite components, and will con-
sequently have on the sum-total of the impulses no in-
fluence. Once more the momentum is exclusively de-
termined by external forces. The law which states
this fact is called the law of the conscrvation of momen-
tien.

‘3. Another form of the same principle, which New-
ton likewise discovered, is called the law of the conser-
vation of the centre of grao-
#2y. Imagine in 4 and &
(Fig. 149) two masses, 2

i e and s, in mutual action,
say that of electrical repulsion ; their centre of gravity
is situated at .S, where BS =245, The accelerations
they impart to each other are oppositely directed and
in the inverse proportion of the masses. If, then, in
consequence of the mutual action, 2 describes a dis-
tance A 72, m will necessarily describe a distance BC =

2 m #
D A4 5 B
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240. The point 5 will still remain the position of the
centre of gravity, as C.S == 2/2S. Therefore, two masses
cannot, by mutual action, displace their common centre
of gravity.

If our considerations involve severa/ masses, dis-
tributed in any way in space, the same result will also
be found to hold good for this case. Ifor as we fwe of
the masses can displace their centre of gravity by mu-
tual action, the centre of gravity of the system as a
whole cannot be displaced by the mutual action of its
parts.

Imagine freely placed in space a system of masses
my wt'y . ... acted on by external forces of any kind.
We refer the forces to a system of rectangular cotrdi-
nates and call the coérdinates respectively x, 1, 3, &,
¥, &, and so forth. The codrdinates of the centre of
gravity are then :

2mx Zmy 2z

i e Ry e Zm’

in which expressions x, y, z may change either by uni-
form motion or by uniform acceleration or by any other
law, according as the mass in question is acted on by
no cxternal force, by a constant external force, or by a
variable external force. The centre of gravity will have
in all these cases a different motion, and in the first
may even be at rest. If now snfernal forces, acting be-
tween every two masses, #' and »", come into play in
the system, opposite displacements =/, 7" will thereby
be produced in the direction of the lines of junction
of the masses, such that, allowing for signs, »'w’ -
m"w" =10. Also with respect to the components x,
and x, of these displacements the equation m'x, |
m'xy = 0 will hold. The internal forces consequently

This law
applied to
systems of
masses.
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produce in the expressions &, 7, & only such additions
as mutually destroy each other. Consequently, the
motion of the centre of grawity of a system is determined
by external forces only.
Accelera- If we wish to know the acceleration of the centre of
tion of the i : ;
centreof  gravity of the system, the accelerations of the system’s
5;‘;:01[".50f ﬂ]beu'z‘f must be similarly treated. If @, ¢/, @".... de-
note the accelerations of m, #/, w”. ... in any direc-
tion, and ¢ the acceleration of the centre of gravity in
the same direction, @ = Zm@/Zm, or putting the
total mass Sm =M, ¢ = Zm ¢/M. Accordingly, we
obtain the acceleration of the centre of gravity of a
system in any direction by taking the sum of all the
forces in that direction and dividing the result by the
total mass. The centre of gravity of a system moves
exactly as if all the masses and all the forces of the
system were concentrated at that centre. Just as a
single mass can acquire no acceleration without the
action of some external force, so the centre of gravity
of a system can acquire no acceleration without the
action of external forces.

4. A few examples may now be given in illustra-
tion of the principle of the conservation of the centre
of gravity.

Movement Imagine an animal free in space. If the animal

ofanani: hove in one direction a portion # of its mass, the re-

ke mainder of it 47 will be moved in the opposite direction,
always so that its centre of gravity retains its original
position. If the animal draw back the mass m, the
motion of A also will be reversed. The animal is un-
able, without external supports or forces, to move itself
from the spot which it occupies, or to alter motions im-
pressed upon it from without.

A lightly running vehicle 4 is placed on rails and
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loaded with stones. A man stationed in the vehicle
casts out the stones one after another, in the same di-
rection. The vehicle, supposing the friction to be suf-
ficiently slight, will at once be set in motion in the op-
posite direction. The centre of gravity of the system
as a whole (of the vehicle - the stones) will, so far as
its motion is not destroyed by external cbstacles, con-
tinue to remain in its original spot. If the same man
were to pick up the stones from without and place
them in the vehicle, the vehicle in this case would also
be set in motion ; but not to the same extent as before,
as the following example will render evident.

A projectile of mass m is thrown with a velocity =
from a cannon of mass M. In the reaction, A/ also re-
ceives a velocity, ¥, such that, making allowance for
the signs, # V7 -+ ma» = 0. This explains the so-called
recoil. The relation here is V= —(m/M) v ; or, for
equal velocities of flight, the recoil is less according as
the mass of the cannon is greater than the mass of the
projectile. If the work done by the powder be expressed
by A, the zires vive will be determined by the equation
MV? /2 + mo?/2— A ; and, the sum of the momenta
being by the first-cited equation — 0, we readily obtain
V=" '24Am/M (M + m). Consequently, neglecting
the mass of the exploded powder, the recoil vanishes
when the mass of the projectile vanishes. If the mass
m were not expelled from the cannon but sucked into
it, the recoil would take place in the opposite direc-
tion. But it would have no time to make itself visible
since before any perceptible distance had been trav-
ersed, # would have reached the bottom of the bore.
As soon, however, as M and s are in rigid connection
with each other, as soon, that is, as they are relatively
at rest to each other, they must be adsolutely at rest,
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for the centre of gravity of the system as a whole has Of the motion of the fragments of a bursting bomb a bursting
- . - - omb. |
we know nothing. But it is plain, by the law of the

conservation of the centre of gravity, that, making al-

no motion. For the same reason no considerable mo-
tion can take place when the stones in the preceding
example are taken into the vehicle, because on the | lowance for the resistance of the air and the obstacles
establishment of rigid connections between the vehicle i the individual parts may meet, the centre of gravity of

and the stones the opposite momenta generated are the system will continue after the bursting to describe
destroyed. A cannon sucking in a projectile would the parabolic path of its original projection.

experience a perceptible recoil only if the sucked in 5. A law closely allied to the law of the centre of Iéawof the

projectile could fly through it. gravity, and similarly applicable to free systems, is the tonof

Areas,

Oscilla- Tmagine a locomotive freely suspended in the air, ]

tions of the 3 .
bodyofa or, what will subserve the same purpose, at rest with

e i cient friction o the rails, By the law of the
conservation of the centre of gravity, as soon as the
heavy masses of iron in connection with the piston-
rods begin to oscillate, the body of the locomotive will
be set in oscillation in a contrary direction—a motion
which may greatly disturb its uniform progress. To
eliminate this oscillation, the motion of the masses of
iron worked by the piston-rods must be so compensated
for by the contrary motion of other masses that the
centre of gravity of the system as a whole will remain
in one position. In this way no motion of the body of
the locomotive will take place. This is done by affix-
ing masses of iron to the driving-wheels.

Tllustration The facts of this case may be very prettily shown
of the last : -
case. by Page’s electromotor (Fig. 150). When the iron

core in the bobbin 4 B is projected by the internal forces
acting between bobbin and core to the right, the body
of the motor, supposing it to-rest on lightly movable
wheels 77, will move to the left. But if to a spoke of
the fly-wheel Z we affix an appropriate balance-weight
@, which always moves in the contrary direction to the
iron core, the sideward movement of the body of the
motor may be made totally to vanish.

principle of the conservation of areas. Although Newton

had, so to say, this principle within his very grasp, it
was nevertheless not enunciated until a long time after-
wards by Eurer, D’Arcy, and DaniElL. BERNOULLL
Euler and Daniel Bernoulli discovered the law almost

simultaneously (1746), on the occasion of treating a
problem proposed by Euler concerning the motion of
balls in rotatable tubes, being led to it by the consider-
ation of the action and reaction of the balls and the
tubes. D’Arcy (1747) started from Newton’s investiga-
tions, and generalised the law of sectors which the
latter had employed to explain Kepler’s laws.
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Deduction Two masses m, »' (Fig. 151) are in mutual action. any point to the several masses, and project on any

gitteta By virtue of this action the masses describe the dis-
tances A28, CD in the direction of their line of junction.
Allowing for the signs, then, m. A5 4 w'.CD = (.
Drawing radii vectores to the moving masses from any
point O, and regarding
the areas described in
opposite senses by the
. radii as having opposite
signs, we further obtain
m.OAB 4 w'.0CD = (.
Which is to say, if two
masses mutually act on
each other, and radii vec-
fores be drawn to these
masses from any point,
the sum of the areas
described by the radii
multiplied by the respec-
tive masses is =— 0. If the masses are also acted on
by external forces and as the effect of these the areas
OAE and OCF are described, the joint action of the
internal and external forces, during any very small
period of time, will produce the areas 04 G and OCH.
But it follows from Varignon’s theorem that

Fig. 151.

mOAG ++ m'OCH =m OAE + ' OCF +
mOAB + m' OCD = mOAE ++ ' OCF;

in other words, #/ie sum of the products of the areas so de-
scribed into the respective masses which compose a system
is unaltered by the action of internal forces.

If we have several masses, the same thing may be
asserted, for every two masses, of the projection on any
given plane of the motion. If we draw radii from

plane the areas the radii describe, the sum of the
products of these areas into the respective masses will
be independent of the action of internal forces. This
1s the Zaw of the conscrvation of areas.

If a single mass not acted on by forces is moving Interpreta-
uniformly forward in a straight line and we draw alaw.

radius vector to the mass from any point O, the area
described by the radius increases proportionally to the
time. The same law holds for 2w/, in cases in which
several masses not acted on by forces are moving,
where we signify by the summation the algebraic sum
of all the products of the areas (/) into the moving
masses—a sum which we shall hereafter briefly refer
to as the sum of the mass-areas. If infernal forces
come into play between the masses of the system, this
relation will remain unaltered. It will still subsist,
also, if external forces be applied whose lines of action
pass through the fixed point O, as we know from the
researches of Newton.

If the mass be acted on by an external force, the
area f described by its radius vector will increase in
time by the law f=a¢2/2 4 47 4 ¢, where « depends
on the accelerative force, ¢ on the initial velocity, and
¢ on the initial position. The sum =/ increases by
the same law, where several masses are acted upon by
external accelerative forces, provided these may be re-
garded as constant, which for sufficiently small inter-
vals of time is always the case. The law of areas in
this case states that the znfernal/ forces of the system
have #o influence on the increase of the sum of the mass-
areas. '

A free rigid body may be regarded as a system
whose parts are maintained in their relative positions
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Uniform ro- by internal forces. The law of areas is applicable there-
tation of a = - - -
freerigid fore to this case also. A simple instance i$ afforded

body. by the uniform rotation of a rigid body about an axis & the motor belng 5et in rotation e law.
passing through its centre of gravity. If we call m a | ternal electro-magnetic forces, a sum of mass-areas is
portion of its mass, 7 the distance of the portion from |
the axis, and « its angular velocity, the sum of the
mass-areas produced in unit of time will be =
(r/2)r & = (a/2) Zmr?, or, the product of the moment
of mertia of the system into half its angular velocity.
This product can be altered only by external forces.

Ilustrative 6. A few examples may now be cited in illustration

Senben of the law: *

If two rigid bodies A and A are connected, and A
is brought by the action of internal forces into rotation
relatively to X', immediately A also will be set in ro-
tation, in the opposite direction. The rotation of X
generates a sum of mass-areas which, by the law, must
be compensated for by the production of an equal, but
opposite, sum by A.

Opposite This is very prettily exhibited by the electromotor
Bettesr of Fig. 152. The fly-wheel of the motor is placed in
Aot 2 horizontal plane, and the motor thus attached to a
OOl yertical axis, on which it can freely turn. The wires
conducting the current dip, in order to prevent their
interference with the rotation, into two conaxial gutters
of mercury fixed on the axis. The body of the motor
(K" is tied by a thread to the stand supporting the
axis and the current is turned on. As soon as the fly-
wheel (X)), viewed from above, begins to rotate in the
direction of the hands of a watch, the string is drawn
taut and the body of the motor exhibits the tendency
to rotate in the opposite direction—a rotation which im-
mediately takes place when the thread is burnt away.
The motor is, with respect to rotation about its

axis, a free system. The sum of the mass.areas gen- Its explana-
erated, for the case of rest, is = 0. But the w/ee/ of law. e

Fig. 152,

produced which, as the total sum must remain — 0, is
c'ompensated for by the rotation in the opposite direc-
tion of the body of the motor. If an index be attached
to the body of the motor and kept in a fixed position
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Fig. 153a.
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sucked into the spokes must participate in the motion Explana-
of the latter and therefore can produce no reactional i)
rotation, but it also partly results from the difference
of the motion which the air outside the tube assumes
in the two cases. In blowing, the air flows out in jets,
and performs rotations. In sucking, the air comes in
from all sides, and has no distinct rotation.

The correctness of this view is easily demonstrated.
1f we perforate the bottom of a hollow cylinder, a closed
band-box for instance, and

place the cylinder on the steel

pivot of the tube &, after the
side has been slit and bent in T&
the manner indicated in Fig.
154, the box will turn in the

direction of the long arrow

when blown into and in the Fig. 154.
direction of the short arrow when sucked on. The air,
here, on entering the cylinder, can continue its rotation
unimpeded, and this motion is accordingly compensated
for by a rotation in the opposite direction.

7. The following case also exhibits similar condi- Reaction-
tions. Imagine a tube (Fig. 1552) which, running e
straight from a to 4, turns at right angles
to itself at the latter point, passes to ¢,
describes the circle ¢def, whose plane 4
is at right angles to a4, and whose cen- CD‘,
tre is at &, then proceeds from f to g, '“"j<
and, finally, continuing the straight line
ad, runs from ¢ to 2. The entire tube
is free to turn on an axis aZ. If we
pour into this tube, in the manner in-
dicated in Fig. 1554, a liquid, which flows in the di-
rection ¢def, the tube will immediately begin to turn

a

e

Fig. 1552,
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in the direction fede. This impulse, however, ceases,
the moment the liquid reaches the point /; and flowing
out into the radius f¢ is obliged to join in the motion
of the latter. By the use of a constant stream of liquid,
therefore, the rotation
of the tube may soon
be stopped. Butif the
stream be interrupted,
the fluid, in flowing off
through the radius fg,
will impart to the tube
a motional impulse in
the direction of its own
motion, cd¢f, and the
tube will turn in this di-
rection. All these phe-
nomena are easily ex-
plained by the law of
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angular velocity ensues. The principle might con-
ceivably be employed, instead of Foucault’s method,
to demonstrate the rotation of the carth, [in fact, some
attempts at this have been made, with no very marked
success].

A phenomenon which substantially embodies the Rotating

conditions last suggested is the following. A glass;
funnel, with its axis placed in a vertical position, is
rapidly filled with a liquid in such a manner that the
stream does not enter in the direction of the axis but
strikes the sides. A slow rotatory motion is thereby
set up 1n the liquid which as long as the funnel is full, is
not noticed. But when the {luid retreats into the neck
of the funnel, its moment of inertia is so diminished
and 1ts angular velocity so increased that a violent
eddy with considerable axial depression is created.
Frequently the entire effluent jet is penetrated by an
axial thread of air.

areas. 8. If we carefully examine the principles of the Both prin-
: f . E . ciples are
Thetrade-winds, the centre of gravity and of the areas, we shall discover in simply spe-
D . . . cial casesof
deviation of the oceanic both simply convenient the Jaw of
action and

currents and of rivers,
Foucault’'s pendulum
experiment, and the
like, may also be treated
ki ok as examples of the law

Addiionat of areas. Another pretty illustration is afforded by

illustra-
tions.

bodies with variable moments of inertia. Let a body
with the moment of inertia ® rotate with the angular
velocity e and, during the motion, let its moment
of inertia be transformed by internal forces, say by
springs, into @, & will then pass into &, where & ® =
a @, thatis a' == a(6/6"). On any considerable dimi-
nution of the moment of inertia, a great increasec of

modes of expression, for

practical purposes, of
a well-known property
of mechanical phenom-
ena. To the accelera-
tion ¢ of one mass m Eie. 256.

there always corresponds a contrary acceleration @' of
a second mass »', where allowing for the signs m @ 4
m' g =—10. To the force m @ corresponds the equal
and opposite force m'@’. When any masses » and
2m describe with the contrary accelerations 2 @ and @
the distances 2w and w (Fig. 156), the position of
their centre of gravity .S remains unchanged, and the

reaction.
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sum of their mass-areas with respect to any point O
is, allowing for the signs, 2m.f+ m.2/=0. This
simple exposition shows us, that the principle of the
centre of gravity expresses the same thing with respect
to parallel codrdinates that the principle of areas ex-
presses with respect to pelar codrdinaies. Both contain
simply the fact of reaction.

But they The principles in question admit of still another

?ull)sal.jgdbc simple construction. Just as a single body cannot,

oo without the influence of external forces, that is, without

fnern " the aid of a second body, alter its uniform motion of
progression or rotation, so also a system of bodies can-
not, without the aid of a second system, on which it
can, so to speak, brace and support itself, alter what
may properly and briefly be called its mean velocity of
progression or rotation. Both principles contain, thus,

a generalised statement of the lawe of tnertia, the correct-

ness of which in the present form we not only see but’

Jeel.
Iinportance This feeling is not unscientific; much less is it

of an in- - 5 &
stinctive  detrimental. Where it does not replace conceptual in-

:Efggﬁa%fical sight but exists by the side of it, it is really the funda-
s mental requisite and sole evidence of a complete mastery
of mechanical facts. We are ourselves a fragment of
mechanics, and this fact profoundly modifies our mental
life.* No one will convince us that the consideration
of mechanico-physiological processes, and of the feel-
ings and instincts here involved, must be excluded from
scientific mechanics. If we know principles like those
of the centre of gravity and of areas only in their ab-
stract mathematical form, without having dealt with the
palpable simple facts, which are at once their applica-

# For the development of this view, see E. Mach, Grundlinien der Lehre
von den Bewegungsempfindungen. (Leipsic: Engelmann, 1875.)

L e gr———
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tion and their source, we only half comprehend them,
and shall scarcely recognise actual phenomena as ex-
amples of the theory. We are in a position like that
of a person who is suddenly placed on a high tower
but has not previously travelled in the district round
about, and who therefore does not knew how to inter-
pret the objects he sees.

IV.
THE LAWS OF IMPACT.

1. The laws of impact were the occasion of the Historical
enunciation of the most important principles of me- et
chanics, and furnished also the first examples of the T
application of such principles. As early as 1639, a
contemporary of Galileo, the Prague professor, Marcus
Marcr (bornin 1595), published in his treatise De Pro-
j}.m'/z'anf Motus (Prague) a few results of his investiga-
txonsl on impact. He knew that a body striking in
(.ElaStIC percussion another of the same size at rest, loses
1ts own motion and communicates an equal quantity
to the other. Te also enunciates, though not always
with the requisite precision, and frequently mingled
with what is false, other propositions which still hold
good. Marcus Marci was a remarkable man. e pos-
.sessed for his time very creditable conceptions regard-
ing the composition of motions and “impulses.” In
!:he formation of these ideas he pursued a method sim-
ilar to that which Roberval later employed. He speaks
of jx;:r%‘.z'cz//y equal and opposite motions, and of wholly
opposite motions, gives parallelogram constructions
and the like, but is unable, although he speaks of El.];
accelerated motion of descent, to reach perfect clear-
ness with regard to the idea of force and consequently
also with regard to the composition of forces. In spite
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There- of this, however, he discovers Galileo’s theorem re-

searches of o . . ;5
Marens  garding the descent of bodies in the chords of circles,

Marci.

JOANNES MARCVS MARCI PHIL: & MEDIC: DOCTOR

thr?fr_fﬁr natus Landscrone Hernunduyorum i Boemm
; anme 159 5. 13 Tuny.

also a few propositions relating to the motion of the
pendulum, and has knowledge of centrifugal force and
so on. Although Galileo’s Discourses had appeared a
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year previously, we cannot, in view of the condition of
things produced in Central Europe by the Thirty Years’

An Illustration from De Progortione Motus (Marcus Marci).

War, assume that Marci was acquainted with them.
Not only would the many errors in Marci’s book thus
be rendered unintelligible, but it would also have to
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Thesources be explained how Marci, as late as 1648, in a continu-
knowledge. ation of his treatise, could have found it necessary to

defend the theorem of the chords of circles against the
Jesuit Balthasar Conradus. An imperfect ora/ com-
munication of Galileo’s researches is the more reason-
able conjecture.®* When we add to all this that Marci
was on the very verge of anticipating Newton in the
discovery of the composition of light, we shall recog-
nise in him a man of very considerable parts. Iis
writings are a worthy and as yet but slightly noticed
object of research for the historian of physics. Though
Galileo, as the clearest-minded and most able of his
contemporaries, bore away in this province the palm,
we nevertheless see from writings of this class that he
was not by any means alone in his thought and ways
of thinking.

2. GavriLeo himself made several experimental at-
tempts to ascertain the laws of impact ; but he was not
in these endeavors wholly successful. He principally
busied himself with the force of a body in motion, or
with the ¢“force of percussion,” as he expressed it,
and endeavored to compare this force with the pressure
of a weight at rest, hoping thus to measure it. To this
end he instituted an extremely ingenious experiment,
which we shall now describe.

A vessel I (Fig. 157) in whose base is a plugged
orifice, is filled with water, and a second vessel II is
hung beneath it by strings; the whole 1s fastened to
the beam of an equilibrated balance. If the plug is
removed from the orifice of vessel I, the fluid will fall

* I have been convinced, since the publication of the first edition of this
work, (see E, Wohlwill's researches, Die Entdeckung des Beharrungsgesetzes,
in the Zedtschrift fiir Volkerpsychologie, 1884, XV, page 387,) that Marcus Marci
derived his information concerning the motion of falling bodies, from Galileo’s
earlier Dialogues.—Author's Appendizx to Second Edition.

THE EXTENSION OF THE PRINCIPLES. 309

in a jet into vessel II. A portion of the pressure due Galileo's
to the resting weight of the water in I is lost and re- ment.

placed by an action of impact on vessel II. Galileo
expected a depression of the whole scale, by which he
hoped with the assistance of a counter-weight to de-
termine the effect of the impact. IHe was to some ex-
tent surprised to obtain #o depression, and he was un-
able, it appears, perfectly to clear up the matter in his
mind.

3. To-day, of course, the explanation is not diffi-
cult. By the removal of the plug there is produced,

Fig. 157.

first, a diminution of the pressure. This consists of Explana-
tion of the

two factors: (1) The weight of the jet suspended in experi-
ment,

the air is lost ; and (2) A reaction-pressure upwards is
exerted by the effluent jet on vessel I (which acts like
a Segner’s wheel). Then there is an increase of pres-
sure (Factor 3) produced by the action of the jet on the
bottom of vessel II. Before the first drop has reached
the bottom of 1I, we have only to deal with a diminu-
tion of pressure, which, when the apparatus is in full
operation, is immediately compensated for. This initial
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Determina- depression was, in fact, all that Galileo could observe.

tion of the

mechanical et us imagine the apparatus in operation, and denote

tactors in-
volved.

the height the fluid reaches in vessel I by /%, the corre-
sponding velocity of efflux by #z, the distance of the
bottom of I from the surface of the fluid in II by 4, the
velocity of the jet at this surface by 7, the area of the
basal orifice by @, the acceleration of gravity by ¢, and
the specific gravity of the fluid by s. To determine
Factor (1) we may observe that » is the velocity ac-
quired in descent through the distance 2. We have,
then, simply to picture to ourselves this motion of de-
scent continued through 2. The time of descent of
the jet from I to II is therefore the time of descent
through % - % less the time of descent through 7.
During this time a cylinder of base « is discharged
with the velocity #. Factor (1), or the weight of the
jet suspended in the air, accordingly amounts to

PR LR 24
]/Zg/z{q—(/igtfz _— \{ 7/£ i] as.
S S

To determine Factor (2) we employ the familiar
equation mo = p¢. If we put = 1, then mo = p, that
is the pressure of reaction upwards on I is equal to the
momentum imparted to the fluid jet in unit of time.
We will select here the unit of weight as our unit of
force, that is, use gravitation measure. We obtain for
Factor (2) the expression [av(s/¢)]v = p, (where the
expression in brackets denotes the mass which flows
out in unit of time,) or

aV2gk .2 V3gh =2ahs.
S

Similarly we find the pressure on II to be

&

((IEJ'. s)m:g, or factor 3:
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5 one = AL Maltll‘ema](-
: 2o AT pu > ical devel-
& o Va8 Al =48 (/f t A) opment of
Gl the result.

The total variation of the pressure is accordingly

. e 25l
— V' 2¢h {\f ——)—UJ—';‘——/—) — .\; ? ] as

S
— Qs

+ V2 V2T B

S

or, abridged,
— 2as[VAh(h+ k) — 4] —2aks

+ 2asV i (h+ k),
—which three factors completely destroy each other. In
the very necessity of the case, therefore, Galileo could
only have obtained a negative result.

We must supply a brief comment respecting Fac- ﬁxf&ﬂgﬁm
tor (2). It might be supposed that the pressure on the by the ex-
basal orifice which is lost, is ¢/s and not 2a/%s. DBut P
this szatical conception would be totally inadmissible
in the present, dynamical case. The velocity o is not
generated by gravity instantaneously in the effluent
particles, but is the outcome of the mutual pressure
between the particles flowing out and the particles left
behind ; and pressure can only be determined by the
momentum generated. The erroneous introduction of
the value a/Zs would at once betray itself by self-con-
tradictions.

If Galileo’s mode of experimentation had been less
elegant, he would have determined without much diffi-
culty the pressure which a continwons fluid jet exerts.

But he could never, as he soon became convinced,
have counteracted by a pressure the effect of an instan-
taneous #mpact. Take—and this is the supposition of
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Galileo—a freely falling, heavy body. Its final veloc-
ity, we know, increases proportionately to the time.
The very smallest velocity requires a definite porzion
of ime to be produced in (a principle which even Mari-
otte contested). If we picture to ourselves a body
moving vertically upwards with a definite velocity, the
body will, according to the amount of this velocity,
ascend a definite time, and consequently also a definite
distance. The heaviest imaginable body impressed
in the vertical upward direction with the smallest im-
aginable velocity will ascend, be it only a little, in
opposition to the force of gravity. If, therefore, a
heavy body, be it ever so heavy, receive an instan-
taneous upward impact from a body in motion, be the
mass and velocity of that body ever so small, and such
impact impart to the heavier body the smallest imagin-
able velocity, that body will, nevertheless, yield and
move somewhat in the upward direction. The slightest
impact, therefore, is able to overcome the greafest pres-
sure; or, as Galileo says, the force of percussion com-
pared with the force of pressure is snfinitely great. This
result, which is sometimes attributed to intellectual ob-
scurity on Galileo’s part, is, on the contrary, a bril-
liant proof of his intellectual acumen. We should say
to-day, that the force of percussion, the momentum,
the impulse, the quantity of motion mw, is a quantity
of different dimensions from the pressure p. The dimen-
sions of the former are m/¢~1, those of the latter m /77—2.
In reality, therefore, pressure is related to momentum
of impact as a line is to a surface. Pressure is p, the
momentum of impact is #7. Without employing mathe-
matical terminology it is hardly possible to express the
fact better than Galileo did. We now also see why it
is possible to measure the impact of a continuous fluid
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jet by a pressure. We compare the momentum de-
stroyed per second of time with the pressure acting
per second of time, that is, homogeneous quantities of
the form g+

4. The first systematic treatment of the laws of
impact was evoked in the year 1668 by a request of the
Royal Society of London. Three eminent physicists
Warnis (Nov. 26, 1668), Wrex (Dec, 17, 1668), and
Huveexs (Jan. 4, 1669) complied with the invitation of
the society, and communicated to it papers in which,
independently of each other, they stated, without de-
ductions, the laws of impact. Wallis treated only of
the impact of inelastic bodies, Wren and Huygens only
of the impact of elastic bodies. Wren, previously to
publication, had tested by experiments his theorems,
which, in the main, agreed with those of Huygens.

" These are the experiments to which Newton refers in

the Principia. The same experiments were, soon after
this, also described, in a more developed form, by Ma-
riotte, in a special treatise, Sur /e Choc des Corps. Ma-
riotte also gave the apparatus now known in physical
collections as the percussion-machine.

According to Wallis, the decisive factor in impact
is momentum, or the product of the mass (pondus) into
the velocity (celeritas). By this momentum the force
of percussion is determined. If two inelastic bodies
which have equal momenta strike each other, rest will
ensue after impact. If their momenta are unequal,
the difference of the momenta will be the momentum
after impact. If we divide this momentum by the sum
of the masses, we shall obtain the velocity of the mo-
tion after the impact. Wallis subsequently presented
his theory of impact in another treatise, Mechanica sive
de Motn, London, 1671. All his theorems may be

The syste-

matic treat-
ment of the
aws of im-

pact.

‘Wallis’s re-

sults.
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brought together in the formula now in common use,
#=(mo 4 m'v")/(m + »'), in which m, »' denote the
masses, 7, ¢ the velocities before impact, and # the
velocity after impact.

5. The ideas which led Huygens to his results, are

and results. to be found in a posthumous treatise of his, De Motzu

Corporum ex Percussione, 1703. We shall examine these
in some detail. The assumptions from which Huygens

An Illustration from De Percussione (Huygens).

proceeds are: (1) the law of inertia; (2) that elastic
bodies of equal mass, colliding with equal and oppo-
site velocities, separate after impact with the same ve-
locities ; (3) that all velocities are relatively estimated ;
(4) that a larger body striking a smaller one at rest
imparts to the latter velocity, and loses a part of its
own ; and finally (5) that when one of the colliding
bodies preserves its velocity, this also is the case with
the other.
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Huygens, now, imagines two equal elastic masses, First, equal
which meet with equal and opposite velocities o. After el
. . change ve-
the impact they rebound from each other with exactly locities.
the same velocities. Huygens is right in assuming and
not deducing this. That elastic bodies exist which re-
cover their form after impact, that in such a transac-
tion no perceptible zés viva is lost, are facts which ex-
perience alone can teach us. Huygens, now, conceives
the occurrence just described, to take place on a boat
which is moving with the velocity z. For the specta-
tor in the boat the previous case still subsists ; but for
the spectator on the shore the velocities of the spheres
before impact are respectively 27 and 0, and after im-
pact 0 and 2%. An elastic body, therefore, impinging
on another of equal mass at rest, communicates to the
latter its entire velocity and remains after the impact
itself at rest. If we suppose the boat affected with any
imaginable velocity, », then for the spectator on the
shore the velocities before impact will be respectively
# -+ v and #— v, and after impact # — v and # + 2.
But since # 4+ 7 and # — v may have any values what-
soever, it may be asserted as a principle that equal
elastic masses exchange in impact their velocities.

A body at rest, however great, is set in motion Second, the
by a body which strikes it, however small; as Ga- fglc;ftt;:v;f‘:;
lileo pointed out. Huygens, now, ek
shows, that the eogproach of the Ml ng AR
bodies before impact and their Qw_, O
recession after impact take place 4
with the same relative velocity. A
body m impinges on a body of mass 4/ at rest, to which
it imparts in impact the velocity, as yet undetermined,
w. Huygens, in the demonstration of this proposition,
supposes that the event takes place on a boat moving

3

Fig. 160.



316 THE SCIENCE OF MECHANICS.

from M towards . with the velocity @ /2. The initial
velocities are, then, # — w /2 and — a/2 ; and the final
velocities, » and + /2. But as M has not altered
the value, but only the sign, of its velocity, so , if a
loss of ©is viza is not to be sustained in elastic impact,
can only alter the sign of its velocity. Hence, the final
velocities are — (z —w/2) and + w/2. As a fact,
then, the relative velocity of approach before impact
is equal to the relative velocity of separation after im-
pact. Whatever change of velocity a body may suffer,
in every case, we can, by the fiction of a boat in mo-
tion, and apart from the algebraical signs, keep the
value of the velocity the same before and after impact.
The proposition holds, therefore, generally.

Thirditthe  If two masses A and # collide, with velocities ¥

locit : | :
vtapproach and @ énwversely proportional to the masses, M atter im-
?;?ig;gffe‘pact will rebound with the velocity ¥ and » with the

fonal to th A N
aes o velocity ».  Let us suppose that the velocities after

are the ve-

Jocitics of impact are ¥, and #, ; then by the preceding proposi-
recession 4ion we must have ¥ + # = ¥, + v, and by the prin-
ciple of vis viva
2 2 2 2
e e L i
2 PR 2%
Let us assume, now, that z, = @ - @ ; then, neces-
sarily, ¥, =V — w; but on this supposition

MV 2 v .2 MF?2  muy? w?
Ly 2 2__1_ =+ + (M + m) 5

And this equality can, in the conditions of the case,
only subsist if 2 = 0 ; wherewith the proposition above
stated is established.

Huygens demonstrates this by a comparison, con-
structively reached, of the possible heights of ascent
of the bodies prior and subsequently to impact. If
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the velocities of the impinging bodies are not inversely This propo-

? !
proportional to the masses, they may be made such by the fetion

the fiction of a boat in motion. The proposition thus cl;igtl,ur?l;idneg
includes all imaginable cases. 51?&1)52;}0

The conservation of ##s @ive in impact is asserted
by Huygens in one of his last theorems (11), which he
subsequently also handed in to the London Society.

But the principle is unmistakably at the foundation of
the previous theorems.

6. In taking up the study of any event or phenom- Typical
enon 4, we may acquire a knowledge of its component}::)gﬂiiloifn-
elements by approaching it from the point of view of a e
different phenomenon 5, which we already know ; in
which case our investigation of 4 will appear as the
application of principles before familiar to us. Or, we
may begin our investigation with 4 itself, and, as na-
ture is throughout uniform, reach the same principles
originally in the contemplation of 4. The investiga-
tion of the phenomena of impact was pursued simul-
taneously with that of various other mechanical pro-
cesses, and both modes of analysis were really pre-
sented to the inquirer.

To begin with, we may convince ourselves that the Impactin
problems of impact can be disposed of by the New- igﬁil:r?“
tonian principles, with the help of only a minimum of e
new experiences. The investigation of the laws of im-
pact contributed, it is true, to the discovery of New-
ton’s laws, but the latter do not rest solely on this foun-
dation. The requisite new experiences, not contained
in the Newtonian principles, are simply the informa-
tion that there are elastic and inelastic bodies. Inelastic
bodies subjected to pressure alter their form without
recovering it ; elastic bodies possess for all their forms
definite systems of pressures, so that every alteration
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of form is associated with an alteration of pressure, and
pice versa. Elastic bodies recover their form ; and the
forces that induce the form-alterations of bodies do not
come into play until the bodies are in contact.

tells us has no influence on the occurrence,) also readily
perceive additional cases. For equal inelastic masses
with velocities z and 0 or # and ¢ the velocity after
impact is /2 or (z + ¢')/2. It stands to reason that
we can pursue such a line of reflection only after ex-
perience has informed us w/haf the essential and de-
cisive features of the phenomena are.

If we pass to unequal masses, we must not only The expe.
know from experience that mass generally is of conse- conditions

! 3 < » of this
quence, but also 7z what manner its influence is effec- method.

Eist, fn: Let us consider two inelastic masses 4 and » mov-
masses.  ing respectively with the velocities 7 and #. If these
masses come in contact while possessed of these un-
equal velocities, internal form-altering forces will be
set up in the system A7, m. These forces do not alter

¥

the quantity of motion of the system, neither do they

<

Impactin

an equiva-

lent point
of view.

displace its centre of gravity, With the restitution of
equal velocities, the form-alterations cease and in in-
elastic bodies the forces which produce the alterations
vanish. Calling the common velocity of motion after
impact #, it follows that Mw 4+ mwe =MV + Mv, or
= (MV -+ mv) /(M + ), the rule of Wallis.

Now let us assume that we are investigating the
phenomena of impact without a previous knowledge of
Newton’s principles. We very socon discover, when
we so proceed, that velocity is not the se/e determina-
tive factor of impact; still another physical quality is
decisive—weight, load, mass, pondus, moles, massa. The
moment we have noted this fact, the simplest case is
easily dealt with. If two bodies of equal weight or

equal mass collide with equal and

2., = opposite velocities; if, further, the

O O bodies do not separate after impact
5 but retain some common velocity,
plainly the sole wwuigucly deter-
mined velocity after the collision is the velocity 0. If,
further, we make the observation that only the dif-
Jference of the velocities, that is only relative velocity,
determines the phenomenon of impact, we shall, by
imagining the environment to move, (which experience

e

Fig. 161.

tive. If, for example, two bodies of masses 1 and 3
with the velocities » and F collide, we might reason

oJlo)

Fig. 162,

e e -y

I
'
|
'
!
!

—_——

ke
w m

Fig. 163.
thus. We cut out of the mass 3 the mass 1 (Fig. 162),
and first make the masses 1 and 1 collide: the result-
ant velocity is (# +F)/2. There are now left, to
equalise the velocities (v 4 /") /2 and V, the masses
1 4 1 =2 and 2, which applying the same principle
gives
v+ V
— -+ 7
IR o
2 WER T T g
Let us now consider, more generally, the masses
m and ', which we represent in Fig. 163 as suitably
proportioned horizontal lines. These masses are af-

fected with the velocities # and ¢, which we represent
by ordinates erected on the mass-lines. Assuming that
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Lispointsof 722 ~Z 72/, we cut off from ' a portion . The offsetting
contact

withthe of m and m gives the. mass 2 with t.he Velo_city (z +
v")/2.  The dotted line indicates this relation. We
proceed similarly with the remainder 7' — ». We cut
off from 2m a portion #'— s, and obtain the mass
2m — (w'— m) with the velocity (# 4 2')/2 and the
mass 2 (#'— ) with the velocity [(z + V) /2 + '] f2.
In this manner we may proceed till we have obtained
for the whole mass # -+ w' the same velocity #. The
constructive method indicated in the figure shows very
plainly that here the surface equation (m —+ o —
mv + m's" subsists. We readily perceive, however,
that we cannot pursue this line of reasoning except the
sum #v - »'v’, that is the form of the influence of m
and #, has through some experience or other been pre-
viously suggested to us as the determinative and de-
cisive factor. If we renounce the use of the Newtonian
principles, then some other specific experiences con-
cerning the import of # » which are equivalent to those
principles, are indispensable.

Second, the 7. The impact of e/astic masses may also be treated

impact of . S .
elastic by the Newtonian principles. The sole observation

Kf:ﬁ%ﬁ? here required is, that a deformation of elastic bodies
eE calls into play forces of restitution, which directly de-
pend on the deformation. Furthermore, bodies pos-
sess Impenetrability ; that is to say, when bodies af-
fected with unequal velocities meet in impact, forces
which equalise these velocities are produced. If two
elastic masses A7, m with the velocities C, ¢ collide, a
deformation will be effected, and this deformation will
not cease until the velocities of the two bodies are
equalised. At this instant, inasmuch as only internal
forces are involved and therefore the momentum and
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the motion of the centre of gravity of the system re-
main unchanged, the common equalised velocity will be

=,

Consequently, up to this time, #’s velocity has suf-
fered a diminution € — #; and m's an increase « — ¢.

But elastic bodies being bodies that recover their
forms, in perfectly elastic bodies the very same forces
that produced the deformation, will, only in the in-
verse order, agaiz be brought into play, through the
very same elements of time and space. Consequently,
on the supposition that = is overtaken by M, M will a
second time sustain a diminution of velocity C— #, and
m will a second time receive an increase of velocity
#—¢. Hence, we obtain for the velocities 7, # after
impact the expressions V=2#— Cand 9 =2« —¢, or

MO m(2ce—Cy  me+ M(2€—0)

“ M+ m 5 M m

If in these formul® we put # =, it will follow The g;dtﬂic;

that ==¢ and v = C; or, if the impinging masses are bl
equal, the velocities which they have will be inter-
changed. Again, since in the particular case M /m —
—¢f/C or MC+ mec=0 also #=0, it follows that
V=2u#—C=—C and 9 =2u-— ¢c=—¢; that is,
the masses recede from each other in this case with the
same velocities (only oppositely directed) with which
they approached. The approach of any two masses
M, m affected with the velocities C, ¢, estimated as
positive when in the same direction, takes place with
the velocity C'— ¢; their separation with the velocity
V—wo. But it follows at once from V=2x— C,
v =2u—¢, that V'— o = — (C—¢); that is, the rela-
tive velocity of approach and recession is the same.
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By the use of the expressions V' — 24— Cand 2 —
2u# — ¢, we also very readily find the two theorems
MV 4 mp = MC + mc and
MV?2 4+ mo? = MC?2 4 mc?,
which assert that the quantity of motion before and

after impact, estimated in the same direction, is the
same, and that also the ##s vize of the system before
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the reversal of the alteration, is done by it, provided al-
ways the bodies develop forces wholly determined by
the shapes they assume, and that they regain their
original form by means of the same forces employed to
effect its alteration. That the latter process takes
place, definite experience alone can inform us. This law
gbtains, furthermore, only in the case of so-called per-
fectly elastic bodies.

and afteI lInpaCt iS the same. \”ﬁ c h.aVE: IeaCIIEd, t}lus, :CIItEIIlI: lELt.:_’j. fl C 1 I i I 3 ] l : tion of th
f . E l] E ] 1 %

by the use Of the Ne\VtOniﬂ.n PI illCipleS, a].]. Of Hus" Of thi IIL ) gfIllE el I ; P ’ b ‘ .tl
i act by the

gens’s results.
The impli- 8. If we consider the laws of impact from Huygens’s

masses, which strike each other with equal but oppo- notion'of .
bt o il 2isvipa an
site velocities, rebound with the same velocities. The work.

cations of Y, 5 -

point of view, the following reflections immediately
claim our attention. The height of ascent which the
centre of gravity of any system of masses can reach is
given by its vés viva, L Zmw?. In every case in which
work is done by forces, and in such cases the masses
follow the forces, this sum is increased by an amount
equal to the work done. On the other hand, in every
case in which the system moves in opposition to forces,
that is, when work, as we may say, is done wpon the
system, this sum is diminished by the amount of work
done. As long, therefore, as the algebraical sum of
the work done o# the system and the work done 4y the
system is not changed, whatever other alterations may
take place, the sum } 2 o? also remains unchanged.
Huygens now, observing that this first property of ma-
terial systems, discovered by him in his investigations
on the pendulum, also obtained in the case of impact,
could not help remarking that also the sum of the
vires wive must be the same before and after im-
pact. For in the mutually effected alteration of the
forms of the colliding bodies the material system con-
sidered has the same amount of work done on it as, on

velocities are #niguely determined only when they are
equal, and they conform to the principle of zis wiva
only by being the same before and after impact. Fur-
ther it is evident, that if one of the unequal masses in
impact change only the sign and not the magnitude of
its velocity, this must also be the case with the other.
On this supposition, however, the relative velocity of
separation after impact is the same as the velocity of
approach before impact. Every imaginable case can
be reduced to this one. Let ¢ and ¢’ be the velocities
of the mass » before and after impact, and let them be
of any value and have any sign.” We imagine the w/keole
system to receive a velocity # of such magnitude that
4 c=—(u-4 ) oru=_—c)/2 Itwil be seen
thus that it is always possible to discover a velocity of
transportation for the system such that the velocity of
one of the masses will only change its sign. And so
the proposition -concerning the velocities of approach
and recession holds generally good. i

As Huygens's peculiar group of ideas was not fully
perfected, he was compelled, in cases in which the ve-
locity-ratios of the impinging masses were not origin-
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BEnos Dt # will see the particular case presented, and the spec-
mass. Such an APDIepRat on of the concepts Hings ‘E‘nd alon tator who is at rest will see the general case, be the
mentum, s COIlt:’llIIEd., S although. not CXP.hCItI_V S : velacities what they may. The general formula of im-
pre_ssed, n ﬂlﬁ" prgpostion acco.rdlng to which .the Ye 1 pact, above deduced, follow at once from this concep-
locity of each impinging mass simply changes its sign 1 tion: We obtain :
when before impact M /m =—¢/C. 1f Huygens had Ve 4 gM(C—c) MCA m(2c—C)
wholly restricted himself to his own point of'v_iew, he F7e S A R
would scarcely.have discovered this propos:ta?n, al- ; ; ﬂf(f'ﬁc) me + JW("C B
though, once discovered, he was able, after his own % QB 2 e it
fashion, to supply its deduction. Here, owing to the | Huygen’s successful employment of the fictitious Signis-
fE‘L0t that the 111'011‘1811118- QI‘OduCGd are equal and oppo- | motions is the outcome of the simple perception that e
Slte,. the equalised velocity of t}_le masses on the com- bodies not affected with differences of velocities do not it
pletmn' of the chapfge of form will be #=0. When the act on one another in impact. All forces of impact are
alteraltlon of form is reversed, and the~ss_tme amount of determined by differences of velocity (as all thermal
work is perforl'n_ed t}?at the S}fStef.n or1g:.nally suffered, effects are determined by differences of temperature).
the same ‘_felDCftICS with AprdizEe BIgUs will be _"”t""“f- And since forces generally determine, not velocities,
Construc- If we imagine the entire system affected with a ve- but only changes of velocities, or, again, differences of
Bl locity of zranslation, this particular case will simulta- velocities, consequently, in every aspect of impact the
and general i neously PrEcsnt t%leéf"’“”‘ alcase. sole decisive factor is differences of velocity. With re-
pact. D P Let the Impinging Thasces be spect to which bodies the velocities are estimated, is
I—=r< K represented in the figure by indifferent. In fact, man fi hi ;
g : ; y cases of impact which from
Al s g M= BC am_:l A A.C (Fig. lack of practice appear to us as different cases, turn
164), and their respective velo- out on close examination to be one and the same}
cities by €= A0 and ¢ = BE. Similarly, the capacity of a moving body f 1 V locit
A C B8 On AR erect the perpendicular : o e N
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ally known, to draw on the Galileo-Newtonian system
for certain conceptions, as was pointed out above.

B CF, and through F draw 7K
parallel to 48. Then /D = (m.C — ¢)/(M + m) and
= (M.C—¢)/(M + m). On the supposition now
that we make the masses M and m collide with the
velocities 7D and K%, while we simultaneously impart
to the system as a whole the velocity
u=AI=KB=C—(m.C—o)/(M+ m)y=
e+ (M. C—o) /(M4 m) = (MC+ me) /(M + m),
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the spectator who is moving forwards with the velocity

whether we measure it with respect to the time of its e
action by its momentum or with respect to the distance
through which it acts by its #is 2i2a, has no signifi-
cance referred to a single body. It is invested with
such, only when a second body is introduced, and, in
the first case, then, it is the difference of the veloci-
ties, and in the second the square of the difference that
is decisive.  Felocity is a physical /Zevel, like tempera-
ture, potential function, and the like.

w-‘l
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;
il It remains to be remarked, that Huygens could ] fore impact, and # their common velocity after impact ; Conserva-
liffere .. J ¢ T e tion of v/
Bifrent e eached, orginally,'in the investigation of the then the loss of #is viva is a—flz?-fr:x?n?;f
or i : i pact inter-
idess. " phenomena of impact, the same results that he pre- IMC? + Jme? — L (M4 m)uz, . .. .. .. ¢} proted.
viously reached by 1'{15 lnvesitl.gatlong of the; _Pendu}u“g- which in view of the fact that w = (M C + m c) /(M + )
In every case there is one thing an Or]le t_lmg;ﬂ y to may be expressed in the form (Mm /M + m)(C — c)2.
be done, and'fthat 15,.;‘;7 dzsc’mrc; in all l.wfact.r f zet.vi;z(, Carnot has put this loss in the form
elements, or, if we will, to rediscover 1n one Iac e 07 ‘
: : M(C—u)2 - fm(e—o)2. . . . .. 2
elements of another which we already know. From A e it I e e (€))
which facts the investigation starts, is, however, a If we select the latter form, the expressions }4/( C — #)?
ot L] Sodaat and 1 (#— )2 will be recognised as the v viva gen-
Conserva- 9. Let us close our examination of this part of the erated by the work of the internal forces. The loss of
tion of mo- subject with a few general tomarkks ‘Ehessum O the vis wive in impact is equivalent, therefore, to the work
werpreted. . omenta of a system of moving bodies is preserved in done by the internal or so-called molecular forces. If

impact, both in the case of inelastic and elastic bodies.
But this preservation does not take place precisely in
the sense of Descartes. The momentum of a body is
not diminished in proportion as that of another is in-
creased ; a fact which Huygens was the first to note.
If, for example, two equal inelastic masses, possessed
of equal and opposite velocities, meet in impact, the
two bodies lose in the Cartesian sense their entire mo-
mentum. If, however, we reckon all velocities iz @
given direction as positive, and all in the opposite as
negative, the sum of the momenta zs preserved. Quan-
tity of motion, conceived in this sense, is always pre-
served.

The vis viva of a system of inelastic masses is al-
tered in impact; that of a system of perfectly elastic
masses is preserved. The diminution of vss v/va pro-
duced in the impact of inelastic masses, or produced
generally when the impinging bodies move with a com-
mon velocity, after impact, is easily determined. Let
M, m be the masses, C, ¢ their respective velocities be-

we equate the two expressions (1) and (2), remember-
ing that (4 + m)u=MC + mc, we shall obtain an
identical equation. Carnot’s expression is important
for the estimation of losses due to the impact of parts
of machines.

In all the preceding expositions we have treated Oblique

the impinging masses as points which moved only in the
direction of the lines joining them. This simplifica-
tion is admissible when the centres of gravity and the
point of contact of the impinging masses lie in one
straight line, that is, in the case of so-called direct im-
pact. The investigation of what is called ob/igue im-
pact is somewhat more complicated, but presents no
especial interest in point of principle.

impact.

A question of a different character was treated by The centre

WarLis. If a body rotate about an axis and its motion
be suddenly checked by the retention of one of its
points, the force of the percussion will vary with the
position (the distance from the axis) of the point ar-
rested. The point at which the intensity of the impact
is greatest is called by Wallis the centre of percussion.

of percus-
sion,
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[f this point be checked, the axis will sustain no pres-
sure. We have no occasion here to enter in detail
into these investigations ; they were extended and de-
veloped by Wallis’s contemporaries and successors in
many ways.

10. We will now briefly examine, before concluding
this section, an interesting application of the laws of
impact ; namely, the determination of the velocities of
projectiles by the ballistic pendulum. A mass M is sus-
pended by a weightless and massless
string (Fig. 165), so as to oscillate as a
pendulum. While in the position of
equilibrium it suddenly receives the hori-
zontal velocity ¥, It ascends by virtue
of this velocity to an altitude £ = (/)
(1 —cosa) =F?2/2 ¢, where /denotes the
length of the pendulum, « the angle of
elongation, and g the acceleration of
gravity. As the relation 7'= 7}/ //g subsists between
the time of oscillation 7" and the quantities /, g, we

M —

Fig. 165.
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If it is not permissible to regard the ballistic pen- a different

dulum as a simple pendulum, our reasoning, in con-
formity with principles before employed, will take the
following shape. The projectile m with the velocity #
has the momentum mw, which is diminished by the
pressure ¢ due to impact in a very short interval of
time 7 to m¥. Here, then, m (v —71F") = p7, or, if
compared with # is very small, mo = p7. With Pon-
celet, we reject the assumption of anything like Zn-
stantancous forces, which generate zustanfer velocities.
There are no instantaneous forces. What has been
called such are very great forces that produce per-
ceptible velocities in very short intervals of time, but
which in other respects do not differ from forces that
act continuously. If the force active in impact cannot
be regarded as constant during its entire period of ac-
tion, we have only to put in the place of the expression
#7 the expressionjjﬁ d¢. In other respects the reason-
ing is the same.

deduction.

A force equal to that which destroys the momentum The s
. . . . viva and
of the projectile, acts in reaction on the pendulum. If work of ihe
- . & pendulum.
we take the line of projection of the shot, and conse-
quently also the line of the force, perpendicular to the
axis of the pendulum and at the distance & from it, the
moment of this force will be 2, the angular accelera-
tion generated &/Zm#2, and the angular velocity pro-
duced in time 7

easily obtain V== (g7/m) V'2(1 — cosa), and by the
use of a familiar trigonometrical formula, also
; 9 :
V:} gTsin -

a

itsformula.  1f now the velocity / is produced by a projectile of
the mass » which being hurled with a velocity # and
sinking in M is arrested in its progress, so that whether
the impact is elastic or inelastic, in any case the two
masses acquire after impact the common velocity V) it
follows that mz = (M + m)V; or, if m be sufficiently
small compared with A7, also v = (M /m)V; whence
finally

b.pT bmy
e e e e et
¢ 2 Zmre

The »is éve which the pendulum has at the end of
time 7 is therefore

21 ot T L TN
Z . g Tsin- el ey Smrt
T il ] ]

e




The result,
the same,

Interpreta-
tion of the
result.
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By virtue of this zis w7oa the pendulum performs
the excursion «, and its weight Mg, (a being the dis-
tance of the centre of gravity from the axis,) is lifted
the distance (1 — cosa&). The work performed here
1s M ga(l—cosa), which is equal to the above-men-
tioned w##s ziza. Equating the two expressions we

readily obtain

V2 MgaZmri(l — cos a)
o= —- — — e . G I

b %

and remembering that the time of oscillation is
Zmr?
=t "—— e
N Mga
and employing the trigonometrical reduction which
was resorted to immediately above, also

2 M a

7)== -
T om b

7. sin%.
2

This formula is in every respect similar to that ob-
tained for the simple case. The observations requisite
for the determination of », are the mass of the pendu-
lum and the mass of the projectile, the distances of
the centre of gravity and point of percussion from the
axis, and the time and extent of oscillation. The form-
ula also clearly exhibits the dimensions of a velocity.
The expressions 2/7 and sin(«/2) are simple num-
bers, as are also M /m and a/b, where both numerators
and denominators are expressed in units of the same
kind. But the factor ¢ 7" has the dimensions /271, and
is consequently a velocity. The ballistic pendulum
was invented by Rorins and described by him at length
in a treatise entitled New Principles of Gunnery, pub-
lished in 1742.
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V.
D’ALEMBERT’S PRINCIPLE.

1. One of the most important principles for the
rapid and convenient solution of the problems of me-
chanics is the principle of D’ Alemberi. The researches
concerning the centre of oscillation on which almost all
prominent contemporaries and successors of Huygens
had employed themselves, led directly to a series of
simple observations which D’ALEMBERT ultimately gen-
eralised and embodied in the principle which goes by
his name. We will first cast a glance at these prelim-
inary performances. They were almost without excep-
tion evoked by the desire to replace the deduction of
Huygens, which did not appear sufficiently obvious, by
one that was more convincing. Although this desire was
founded, as we have already scen, on a miscompre-
hension due to historical circumstances, we have, of
course, no occasion to regret the new points of view
which were thus reached.

2. The first in importance of the founders of the
theory of the centre of oscillation, after Huygens, is
James Bernovrnt, who sought-as early as 1686 to ex-
plain the compound pendulum by the lever. He ar-
rived, however, at results which not only were obscure
but also were at variance with the conceptions of Huy-
gens. The errors of Bernoulli were animadverted on
by the Marquis de L'HorrraL in the Jewrnal de Roiter-
dam, in 16go. The consideration of velocities acquired
in #nfinitely small intervals of time in place of velocities
acquired in finize times—a consideration which the last-
named mathematician suggested—led to the removal

History of
the prin-
ciple.

James Ber-
noulli's
contribu-
tions to the
theory of
the centre
of oscilla-
tion.
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of the main difficulties that beset this problem ; and in
1691, in the Acia Eruditorun, and, later, in 1703, in the
Proceedings of the Pards Academy James Bernoulli cor-
rected his error and presented his results in a final and
complete form. We shall here reproduce the essential
points of his final deduction.

James Ber- A horizontal, massless bar 45 (Fig. 166) is {ree to

noulli’s de-

;lluc;mn Dtt rotate about 4; and at the distances 7, 7' from A the
1€ 1aw O

the com-  masses 1, M’ are attached. The accelerations with which
pound pen-

dulum from these masses as fhus conuected
the princi- By x mr ¢ v "
plectthe g /|/A will fall must be different from
EVET. - .

the accelerations which they

would assume if their connec-
tions were severed and they fell
freely. There will be one point and one only, at the
distance x, as yet unknown, from 4 which will fall
with the same acceleration as it would have if it were
free, that is, with the acceleration g. This point is
termed the centre of oscillation.

If » and #' were to be attracted to the earth, not
proportionally to their masses, but s so as to fall when
free with the acceleration @ = g7/x and »’ with the
acceleration @' = g#'/x, that is to say, if the natural
accelerations of the masses were proportional to their
distances from A, these masses would not interfere with
one another when connected. In reality, however,
sustains, in consequence of the connection, an upward
component acceleration ¢ — @, and 7' receives in virtue
of the same fact a downward component acceleration

' — g; that is to say, the former suffers an upward
force of m(g— @) =gx — 7/x)m and the latter a
downward force of w' (¢ — &) =g (+' — x/x) ',

Since, however, the masses exert what influence
they have on each other solely through the medium of

Fig. 166.
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the lever by which they are joined, the upward force The 1awot

the distri-
upon the one and the downward force upon the other i

3 : he eff
must satisfy the law of the lever. If m in conse- of theie
5 3 . d
quence of its being connected with the lever is held forces. in
James Ber-

back by a force /from the motion which it would take, nouli's ex.
if free, it will also exert the same force 7 on the lever- et
arm 7 by reaction. It is this reaction pull alone that

can be transferred to »" and be balanced there by a
pressure /"= (r/#") f; and is therefore equivalent to the
latter pressure. There subsists, therefore, agreeably

to what has been above said, the relation g (" — w )

' =r/r.g(x—r/x)mor, (x— Pymr = (" — x)m's,

from which we obtain w = (m#2 4 w2 [y - ',
exactly as Huygens found it. The generalisation of

this reasoning, for any number of masses, which need

not lie in a single straight line, is obvious.

3. Joux BrrnourLi (in 1712) attacked in a different The prin-
manner the problem of the centre of oscillation. His Jcé}ﬁlfﬁfar-
performances are easiest consulted in his Collected fution ot
Works (Opera, Lausanne and Geneva, 1762, Vols. 1T s
and IV). We shall examine in detail here the main Inion
ideas of this physicist. Bernoulli reaches his goal by
conceiving the masses and forces separated.

First, let us consider two simple pendulums of dif- The first
ferent lengths 7, /" whose bobs are affected with gravi- B
tational accelerations proportional to the lengths of the e
pendulums, that is, let us put " =g/¢'. As the time
of oscillation of a pendulum is 7'=— 7V /g, it follows
that the times of oscillation of these pendulums will be
the same. Doubling the length of a pendulum, ac-
cordingly, while at the same time doubling the accel-
e_ration of gravity does not alter the period of oscilla-
tion.

Second, though we cannot directly alter the accel-
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The sccond cration of gravity at any one spot on the earth, we
step in John

Berediie can do what amounts virtually to this. Thus, imagine
deduction. L -
RO 4 straight massless bar of length 24, free to rotate about

its middle point; and attach to the one ex-

the time of oscillation of the pendulum. If a force f
act on a lever-arm a (Fig. 168) while at the distance »
from the axis a mass » is attached, f will be equiva-
lent to a force af/» impressed on ;

: ¢ tremity of it the mass 7 and to the other the m and will impart to it the linear X -
a mass ?h!,. Then the tOtﬂ.]. mass iS 7H —|— ﬂl" at acceleration af/ﬂz 7 and the angug T
the distance « from the axis. DBut the force lar acceleration af/ms2. Hence,
| @ which acts on it is (m —»") g, and the ac- to find the angular acceleration )
im celeration, consequently, (m—m'/m~+ m') g of a compound pendulum, we R

Fig. 16;. Hence, to find the length of the simple pen- b
dulum, having - the ordinary acceleration of
gravity g, which is isochronous with the present pen-

divide the sum of the statical moments by the sum ot
the meoments of inertia.

Broox Tavior, an Englishman,* also developed The re-

. searches of
dulum of the length «, we put, employing the preced- " this idea, on substantially the same principles, but Brook Tay i
ing theorem, : quite independently of John Bernoulli. His solution,

RN 19 i i{t!_ji_lfé howev'er, \‘:vas not published until some time later, in
2 et m—m' 1715, in his work, Methodus Incrementorum.
w4’ & The above are the most important attempts to solve
The third Third, we imagine a simple pendulum of length 1 ] the problem of the centre of oscillation. We shall see

step, or the . ! : ,
e . with the mass m at its extremity. The weight of m
tion of the

that they contain the very same ideas that D’Alembert
centre of  produces, by the principle of the lever, the same ac-

enunciated in a generalised form.

gyration- o leration as half this force at a distance 2 from the i 4. Onasystem of points M, /', M". ... connected Motion ofa
g - - o tem of
point of suspension. Half the mass » placed at the with one another in any way,} the forces 2, 7/, P". . . . pointssub-

o . 5 ject to con-
are impressed. (Fig. 169.) These forces would im- straints.

part to the free points of the system certain determinate
motions. To the connected points, however, different
motions are usually imparted—motions which could
be produced by the forces I, W', W".. .. These

distance 2, therefore, would suffer by the action of the
force impressed at 1 the same acceleration, and a fourth
of the mass » would suffer double the acceleration ; so
that a simple pendulum of the length 2 having the orig-
inal force at distance 1 from the point of suspension

and one-fourth the original mass at its extremity would
be isochronous with the original one. Generalising
this reasoning, it is evident that we may transfer any
force f acting on a compound pendulum at any dis-
tance 7, to the distance 1 by making its value 7, and
any and every mass placed at the distance 7 to the
distance 1 by making its value »2, without changing

last are the motions which we shall study.
Conceive the force P resolved into W and V, the
force P’ into W' and V', and the force 2" into W

* Author of Taylor’'s theorem, and also of a remarkable work on perspec-
tive.— Trans.

T In precise technical language, they are subject to constraints, that is,
forces regarded as infinite, which compel a certain relation between their
motions.— I rans.
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Statement and /7", and so on. Since, owing to the connections,
of D'Alem- 2 i = 5
bert's prin- only the components W, W', IW". ... are effective,
ciple. - Sy
therefore, the forces ¥, V', F”. ... must be equilib-
rated by the connections. We will call the forces P, 7',
P" the dmpressed forces,

v the forces W, W, W . . .,

M which produce the ac-
g tual motions, the efective
e %&é forces, and the forces ¥,
e v, V'.... the forces
gained and lost, or the

Vi equilibrated forces. We

perceive, thus, that if we
resolve the impressed forces into the effective forces
and the equilibrated forces, the latter form a system
balanced by the connections. This is the principle of
D’Alembert. 'We have allowed ourselves, in its expo-
sition, only the unessential modification of putting
forces for the momenta generated by the forces. In this
form the principle was stated by D’ArEmBERT in his
Traité de dynamigue, published in 1743.
Various As the system V, V', V7", ... isin equilibrium, the

forms in o A . . . :
which the - principle of virfual displacements is applicable thereto.

-%iig:é%{:x- This gives a second form of D’Alembert’s principle.
A third form is obtained as follows : The forces 2P
are the resultants of the components %, . . . . and
7, V' ... I, therefore, we combine with the forces
W, W'....and V, V', ... the forces =P P
equilibrium will obtain. The force-system —P, W,V
is in equilibrium. But the system ¥ is independently
in equilibrium. Therefore, also the system — 2, ¥ is
in equilibrium, or, what is the same thing, the system
£, — Wis in equilibrium. Accordingly, if the effective
forces with opposite signs be joined to the impressed

A
i
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forces, the two, owing to the connections, will balance.
The principle of virtual displacements may also be ap-
plied to the system 2, — J#. This Lacrance did in his
Mécaniqgue analytigue, 1788.
The fact that equilibrium subsists between the sys- An equiva-

= ... lent princi-
tem 2 and the system — /7, may be expressed in still g{g;ﬁ-by
another way. We may say that Hermann
- . and Euler.
the system ¥ is equivalent to the _P i L
system 7. In this form Her- N

MANN (Lhoronomia, 1716) and
EvLER (Comment. Acad. Petrop.,
Old Series, Vol. VII, 1740) employed the principle.
It is substantially not different from that of D’Alembert.

5. We will now illustrate D’Alembert’s principle by
one or two examples.

On a massless wheel and axle with the radii &, 7 the Ilustration

Fig. 170.

: s of D’Alem-
loads # and Q are hung, which are not in equilibrium. E’f&‘;ﬁﬁf‘t‘ﬁ;
1 motion of a
We resolve t}.]e force P into (1) W motion of
(the force which would produce the axle,

actual motion of the mass if this were
free) and (2) ¥, that is, we put
P= W+ Vand also Q = W'+ V';
it being evident that we may here
neglect all motions that are not in
the perpendicular. We have, accord-
ingly, V=P — Wand V'=Q —W",
and, sinde the forces V, V' are in equilibrium, also
V.R=V" r. Substituting for ¥, "’ in the last equa-
tion their values in the former, we get

R R — (0 W . e (1)

which may also be directly obtained by the employ-
ment of the second form of D’Alembert’s principle.
From the conditions of the problem we readily perceive
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that we have here to deal with a uniformly accelerated
motion, and that all that 1s therefore necessary is to
ascertain the acceleration. Adopting gravitation meas-
ure, we have the forces # and W7, which produce in
the masses 7/¢ and /¢ the accelerations y and y';
wherefore, W =(£/g)y and "= (Q/g)y'.. But we
also know that y'=—= — y(#//&). Accordingly, equation
(1) passes into the form

7 Q
T ALe i el 9
(p—57)e=(e+22): ®
whence the values of the two accelerations are ob-
tained
PR— QOr PR— Qr

Y= Prarpade BAY == pmarsas

These last determine the motion.

Employ- It will be seen at a glance that the same result can
ment of the 4 5 :
ideas stat- be obtained by the employment of the ideas of statical
Jical mo- s 2 -

mentand - moment and moment of inertia. We get by this method
moment o

inerria, to  for the angular acceleration
obtain this

G ik PR— Qr I
= e e e A
2y 9, PRFQr
& &
and as ¥y =/ @ and y'= — » @ we re-obtain the pre-

ceding expressions.

When the masses and forces are given, the problem
of finding the motion of a system is deferminate. Sup-
pose, however, only the acceleration p 1s given with
which 2 moves, and that the problem is to find the loads
P and Q that produce this acceleration. We obtain
easily from equation (2) the result 2= Q (&K g+ »9)
r/(g— y) R?2, that is, a relation between 7 and (.
One of the two loads therefore is arbitrary. The prob-
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lem in this form is an indeterminate one, and may be
solved in an infinite number of different ways.

The following may serve as a second example.

A weight 7 (Fig. 172) free to move on a vertical A second il-

5 5 5 lustration
straight line 4B, is attached to a cord of the prin-
passing over a pulley and carrying a G dbuges
weight Q at the other end. The cord,
makes with the line 44 the variable &
angle @. The motion of the present ff}lf/ ]

case cannot be uniformly accelerated.

n
But if we consider only vertical mo- Y’ B
ticns we can easily give for every :

Fig. 172.

value of « the momentary accelera-
tion (3 and » ") of £ and (). Proceeding exactly as
we did in the last case, we obtain

Ve i
Q=W+ V"
also
V'cosa — F, or, since ' = — ycosa,
e
(Q -+ Qcos afy) cosawe = /' — — y; whence
& &
P — Qcosw
e e s &
(Jcos2a - F
ot P — Qcosw Deridin
A Qcos?a + P &
Again the same result may be easily reached by the solution of
: ! his case
employment of the ideas of statical moment and mo- ééé'é by the
ment of inertia in a more generalised form. The fol- Rl
ment and

lowing reflexion will render this clear. The force, of woment o
statical moment, that acts on Pis 27— Q cosa. But eralised
the weight Q moves cosa times as fast as 7; conse-
quently its mass is to be taken cos 2« times. The ac-

celeration which /7 receives, accordingly is,
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P — Qcosa P — Qcosa
K sn B Qoo T B
cos?w |- /7
(: cos2a = ¢ i
& 8

In like manner the corresponding expression [or ' may
be found.

The foregoing procedure Tests on the simple re-
mark, that not the circular path of the motion of the
masses is of consequence, but only the relative veloci-
ties or relatize displacements. This extension of the
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other methods. The principle fulfils in the solution
of problems, the office of a routine-form which, to a
certain extent, spares us the trouble of thinking out
each new case, by supplying directions for the employ-
ment of experiences before known and familiar to us.
The principle does not so much promote our iusight
into the processes as it secures us a practical mastery of
them. The value of the principle is of an economical
character.

‘When we have solved a problem by D’Alembert’s The rela-
B ; : : t
principle, we may rest satisfied with the experiences D’ Alem-

concept moment of inertia may often be employed to . h
advantage.

Impost and 6. Now that the application of D’Alembert’s prin- 4 previously made concerning equilibrium, the applica- cipla th. the
char - & a % : & i A . " s o 5 in-
of D’Alem- ciple has been sufficiently illustrated, it will not be diffi- i tion of which the principle implies. DBut if we wish gitgrersg?n
bert’s prin- 3 % = it : mechandics.
ciple. cult to obtain a clear idea of its significance. Problems ' clearly and thorowughly to apprehend the phenomenon,

relating to the motion ol connected points are here dis-
posed of by recourse to experiences concerning the
mutual actions of connected bodies reached in the in-
vestigation of problems of eguilibrium. Where the last
mentioned experiences do not suffice, D'Alembert’s
principle also can accomplish nothing, as the examples
adduced will amply indicate. We should, therefore,
carefully avoid the notion that D’Alembert’s principle
is a general one which renders special experiences su-
perfluous. Tts conciseness and apparent simplicity are
wholly due to the fact that it refers us to experiences
already in our possession. Detailed knowledge of the
subject under consideration founded on exact and mi-
nute experience, cannot be dispensed with. Thisknowl-
edge we must obtain either from the case presented,
by a direct investigation, or we must previously have
obtained it, in the investigation of some other subject,
and carry it with us to the problem in hand. We learn,
in fact, from D’Alembert’s principle, as our examples
show, nothing that we could not also have learned by

that is, to rediscover in it the simplest mechanical ele-
ments with which we are familiar, we are obliged to
push our researches further, and to replace our expe-
riences concerning equilibrium either by the Newtonian
or by the Huygenian conceptions, in some way similar
to that pursued on page 266. 1If we adopt the former
alternative, we shall mentally see the accelerated mo-
tions enacted which the mutual action of bodies on one
another produces ; if we adopt the second, we shall di-
rectly contemplate the wer% done, on which, in the
Huygenian conception, the »is #/oa depends. The latter
point of view is particularly convenient if we employ
the principle of virtual displacements to express the
conditions of equilibrium of the system I or 2 — IV,
D’ Alembert’s principle then asserts, that the sum of
the virtual moments of the system ¥, or of the system
£ — W, is equal to zero. The elementary work of the
equilibrated forces, if we leave out of account the strain-
ing of the connections, is equal to zero. The total
work done, then, is performed selely by the system 2,
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and the work performed by the system /7 must, accord-
ingly, be equal to the work done by the system Z. All
the work that can possiély be done is due, neglecting
the strains of the connections, to the fmpressed forces.
As will be seen, D’Alembert’s principle in this form is
not essentially different from the principle of zzs viva.

Formofap: 7. In practical applications of the principle of

plication of e = -

E(;rAng;;in- P’Alembert it is convenient to resolve every force 7

ciple, and impressed on a mass m of the system into the mutually
the result-

ingequa- perpendicular components X, ¥, Z parallel to the axes
tion, of a system of rectangular coérdinates ; every effective
force W into corresponding components m&, mn, ms,
where &, 7, ¢ denote accelerations in the directions of
the codrdinates ; and every displacement, in a similar
manner, into three displacements dx, dy, d2. As the
work done by each component forcé is effective only in
displacements parallel to the directions in which the
components act, the equilibrium of the system (Z,— W)

is given by the equation

S X—m&E)Sx + (Y—mm) 0y + (Z—mg)dz}=10 (1)
or

2 (X¢x + Yy -+ Z62) = Zm(Edx+ ndy+ 867) . . (2)

These two equations are the direct expression of the
proposition above enunciated respecting the possible
work of the impressed forces. If this work be == 0, the
particular case of equilibrium results. The principle
of virtual displacements flows as a specia/ case from
this expression of D’Alembert’s principle ; and this is
quite in conformity with reason, since in the general
as well as in the particular case the experimental per-
ception of the Zmport of work is the sole thing of con-
sequence.

Equation (1) gives the requisite equations of mo-

TR
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tion; we have simply to express as many as possible
of the displacements dx, dy, 8z by the others in terms
of their relations to the latter, and put the coefficients
of the remaining arbitrary displacements — 0, as was
illustrated in our applications of the principle of vir-
tual displacements.
The solution of a very few problems by D’Alem- Conve-

5 . f & a nience and
bert’s principle will suffice to impress us with a full utility of |

sense of its convenience. It will also give us the con- berJS‘S;in-
viction that it is possible, in every case in which it may 2n

be found necessary, to solve directly and with perfect

insight the very same problem by a consideration of
elementary mechanical processes, and to arrive thereby

at exactly the same results. Qur conviction of the
JSeasibility of this operation renders the performance of

it, in cases in which purely practical ends are in view,
unnecessary.

VI.

THE PRINCIPLE OF VIS VIVA.

1. The principle of #is viva, as we know, was first The orig-
employed by HuvGEns. JouN and DANIEL BERNOULLI ool
had simply to provide for a greater generality of X g5
pression ; they added little. If g, #', #”. . .. are weights,

m, m', m'". . .. their respective masses, 4, 4, 2. . . . the
distances of descent of the free or connected masses,
andig, of, 9% 0.
obtains

. the velocities acquired, the relation

Zph—=LrZmo2.

If the initial velocities are not — 0, but are 7 il
2.”. ..., the theorem will refer to the increment of the
vis viva by the work and read

Zph=1Zm(02—?).
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;Fﬁk;e;:];;rll::::l The principle still remains applicable when #. . ..

:31501:5:; ofare, not weights, but any constant forces, and 4. ..
not the vertical spaces fallen through, but any paths in
the lines of the forces. If the forces considered are
variable, the expressionsp/z A7 .. . must bereplaced
by the expressions fjﬁa’s,fp ds’. . .., in which p de-
notes the variable forces and s the elements of dis-
tance described in the lines of the forces. Then

f;ﬁzl&‘+fp’r[s'—[—. o =4%2m (v —o?)
or
\Jp:ir_,ZZm(w—ﬂ?) ......... @)
The princi- 2. In illustration of the principle of zis viva we

ple illus- = y 2
trated by  shall first consider the simple problem which we treated

the motion
e by the principle of D’Alembert. On
a wheel and axle with the radii &, »
hang the weights 7, 0. When this
machine is set in motion, work is per-
formed by which the acquired vis viva
is fully determined. For a rotation of
the machine through the angle «, the
work 18
iy P Rae— Q.ra=a(PR—Qr).
Calling the angular velocity which
corresponds to this angle of rotation, ¢, the vis viva
generated will be

P (R g2 ) Z
( [) (_ (’ Z’) g‘; (PR2 4 Qr2).

Consequently, the equation obtains

a(PR— Qr) = ‘3” (PRE | Orty. . . o, (1)

Now the motion of this case is a uniformly accelerated
motion ; consequently, the same relation obtains here
between the angle a, the angular velocity ¢, and the

g
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angular acceleration i, as obtains in free descent be-
tween s, 7, g&. 1f in free descent s =22 /2 ¢, then here
=2 /2.

Introducing this value of & in equation (1), we get
for the angular acceleration of £, 9 — (PR
PR? 4 Qr?®)g, and, consequently, for its absolute ac-
celeration y = (PR — Qr/PR? 4 (Qr?) Rg, exactly as
in the previous treatment of the problem.

As a second example let us consider the case of a A rolling

cylinder on

massless cylinder of radius 7, in the surface of which, a-;:;clmed

diametrically opposite each other, are fixed two equal
masses 7, and which in consequence of the weight of

Fig. 174. Fig. 175,

these masses rolls without sliding down an inclined
plane of the elevation . First, we must convince our-
selves, that in order to represent the total vds viva of
the system we have simply to sum up the 2is v7za of
the motions of rotation and progression. The axis of
the cylinder has acquired, we will say, the velocity #
in the direction of the length of the inclined plane, and
we will denote by » the absolute velocity of rotation of
the surface of the cylinder. The velocities of rotation #
of the two masses » make with the velocity of progres-
sion # the angles ¢ and 6 (Fig. 175), where 6 ¢’
—180". The compound velocities @ and s satisfy
therefore the equations

w? —u? | o2 —2uvcost

22 =u?+ 02 —2uvcosf'.
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The law of But since cos / — — cos &', it follows that
motilon of
zgfilzk:ller. w? 4 22 =22 -+ Zz?, or,

gmw? 4 dmz? =Ltm2u® 4 Im2o? —mu? + mol.

If the cylinder moves through the angle ¢, m describes
in consequence of the rotation the space » ¢, and the
axis of the cylinder is likewise displaced a distance »@.
As the spaces traversed are to each other, so also
are the velocities # and =, which therefore are equal.
The total »/s v/wa may accordingly be expressed by
2mu?. If /1s the distance the cylinder travels along
the length of the inclined plane, the work done is
2mg.lsine =2mu?; whenee u#—1 g/ . sina. I we
compare with this result the velocity acquired by a body
in s/ding down an inclined plane, namely, the velocity
V'2¢/ sina, it will be observed that the contrivance we
are here considering moves with only one-half the ac-
celeration of descent that (friction neglected) a sliding
body would under the same circumstances. The rea-
soning of this case is not altered if the mass be uni-
formly distributed over the entire surface of the cylin-
der. Similar considerations are applicable to the case
of a sphere rolling down an inclined plane. It will be
seen, therefore, that Galileo’s experiment on falling
bodies 1s in need of a quantitative correction.

A modifica-  Next, let us distribute the mass » uniformly over

tion of the

preceding  the surface of a cylinder of radius &, which is coaxal

e with and rigidly joined to a massless cylinder of radius
7, and let the latter roll down the inclined plane. Since
here ©/u-= R/r, the principle of vis wviva gives mg/
sina = dmu? (1 -+ K2 /r?), whence

2¢/sina

n— l—+—j€)
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For R/ = 1 the acceleration of descent assumes its
previous value g/2. For very large values of &/ the
acceleration of descent is very small. When & /r — «
it will be impossible for the machine to roll down the
inclined plane at all.

As a third example, we will consider the case of a The motion
chain, whose total length is /, and which lies partly on S
a horizontal plane and partly on a plane having the pllarileed
angle of elevation . If we imagine the surface on
which the chain
rests to be very
smooth, any very
small portion of
the chain left hang-
ing over on the in-
clined plane will draw the remainder after it. If p is
the mass of unit of length of the chain and a portion x
is hanging over, the principle of 2és wiva will give for
the velocity # acquired the equation

T

Fig. 176.

2

pio? . S R ]
= pEL s1nam,trg 2

sin a,
cr— xl/gr—?nﬁﬁ. In the present case, therefore,
the velocity acquired is proportional to the space de-
scribed. The very law holds that Galileo first con-
jectured was the law of freely falling bodies. The
same reflexions, accordingly, are admissible here as at
page 243.

3. Equation (1), the equation of #/s 2722, can always Extension
be employed, to solve problems of moving bodies, 2,‘;.‘1%‘;1;;;
when the #oza/ distance traversed and the force that ™
acts in each element of the distance are known. Tt was
disclosed, however, by the labors of Euler, Daniel Ber-
noulli, and Lagrange, that cases occur in which the
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principle of vis zive can be employed without a knowl-
edge of the actual path of the motion. We shall see
later on that Clairaut also rendered important services
in this field.
Thers Galileo, even, knew that the velocity of a heavy
Euler. falling body depended solely on the wvertical height de-
scended through, and not on the length or form of the
path traversed. Similarly, Huygens finds that the zis
viva of a heavy material system is dependent on the
pertical heights of the masses of
the system. Euler was able to
make a further step in advance.
If a body & (Fig. 177) is at-
tracted towards a fixed centre
¢ in obedience to some given
law, the increase of the 2is viva
in the case of rectilinear ap-
proach is calculable from the
initial and terminal distances
(., r,)- But the increase is the
same, if A passes at all from the
position 7, to the position 7,, independently of the
Jorm of its path, KB. Tor the elements of the work
done must be calculated from the projections on the
radius of the actual displacements, and are thus ulti-
mately the same as before.

Fig. 177.

The re- 1f X is attracted towards several fixed centres C,
searches of ‘i . . . /
Dantel Ber- €7, C”. . . ., the increase of its zir #i7a depends on the

noulli and . . . 3 ’ "
Lagrange. initial distances r, 7./, 7. . ..

distances 7,, #,'s #,”. . . ., that is on the initial and ter-

and on the terminal

minal positions of K. Daniel Bernoulli extended this
idea, and showed further that where movable bodies
are in a state of muzual attraction the change of 2is viva
is determined solely by their initial and terminal dis-
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tances from one another. The analytical treatment of
these problems was perfected by Lagrange. If we join
a point having the codrdinates , 4, ¢ with a point hav-
ing the codrdinates x, ¥, z, and denote by 7 the length
of the line of junction and by «, 8, y the angles that
line makes with the axes of «, 5, 2, then, according to
Lagrange, because

= —a)t + (o — )2 + (s — P,

COoS & :—x_ a:di" cos/j’:yﬂ—b:(ﬁ’
» dx r ay’

A 7_%‘—5‘_&’7'

4 r ds

q ; ZF(7) .
Accordingly, if /(») — —--d(—) is the repulsive force, or The force
73 compo-

the negative of the attractive force acting between the o
two points, the components will be Belbir
the same
dE dr AE( function of
X =F(»)cosa = —(2 T E—) codrdi-
Zdr dx dx nates,

dF(Ndr _ dF(r)

L o

dF(rNdr  dF(r

L — f(r)lcosyt— =g )

7 % dr dsz dzh
' The force-components, therefore, are the partial
differential coefficients of one and the same function of
7, or of the coérdinates of the repelling or attracting
p.omts. Similarly, if several points are in mutual ac-

tion, the result wili be

Y (mieos b —

i 7
s
dx
Y:{i,U,
ay
Z:’,{U,

ds’
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The force- where (71s a function of the codrdinates of the points.

unction. oo ¥ .
This function was subsequently called by Hamilton™
the force-function.

the form which mechanics has historically assumed, dy- History of

o ¢ . 3 the princi-
namics is founded upon statics, (for example, D’Alem- ple of least
constraint,

Transforming, by means of the conceptions here
reached, and under the suppositions given, equation
(1) into a form applicable to rectangular coérdinates,
we obtain

E‘ f'(de + Ydy 4 Zd5) = Z}m(v®— 0,2) or,

since the expression to the left is a complete differen-

tial,
7T d a0
= f el e PO il e
( dx e dy Ay sk s d)

S (dU=Z(U,— U)=Zlm(v:—.2),
where (}I is a function of the terminal values and 7/
the same function of the initial values of the codrdi-
nates. This equation has received extensive applica-
tions, but it simply expresses the knowledge that under
the conditions designated the zwork done and therefore
also the v wiva of a system is dependent on the posi-
tions, or the coérdinates, of the bodies constituting it.

Tf we imagine all masses fixed and only a single

bert’s principle on the principle of virtual displace-
ments,) whereas one naturally would expect that in
the highest stage of the science statics would appear
as a particular case of dynamics. Now, the principle
which Gauss supplied, and which we shall discuss in
this section, includes both dynamical and statical cases.
It meets, therefore, the requirements of scientific and
logical westhetics. We have already pointed out that this
1s also true of D’Alembert’s principle in its Lagrangian
form and the mode of expression ahove adopted.
No essentially new principle, Gauss remarks, can now be
established in mechanics ; but this does not exclude
the discovery of new poinis of vicze, from which mechan-
ical phenomena may be fruitfully contemplated. Such
a new point of view is afforded by the principle of
Gauss.

2. Let m, m,. ... be masses, connected in any man- Statement
4 £ of the prin-
ner with one another. These masses, if /i¢e, would, under ciple.

the action of the forces im-

. - B’
one in motion, the work changes only as & changes. 8 bressedon them,descr}bema :
The equation &7 — constant defines a so-called level j veryshort element of time &_le ;
surface, or surface of equal work. Movement upon STREES G t but in ,a,f &;;
such a surface produces no work. & increases in the e O_f oo ¢ o
direction in which the forces tena to move the bodies. tions they desctibe in the same Fig. 18

VII.
THE PRINCIPLE OF LEAST CONSTRAINT,
1. Gauss enunciated (in Crelle’s Jowrnal fiir Mathe-
maitik, Vol. IV, 1829, p. 233) a new law of mechanics,
the principle of least constraint. He observes, that, in

* On a General Method in Dynamics, Flil. Trans. for 1834. See also C. G.
J. Jacobi, Foriesungen diber Dynamik, edited by Clebsch, 1856.

o

elementof timethe spacesac,
@, ¢, .... Now, Gauss’s principle asserts, that the mo-
tion of the connected points is such that, for tie motion
actually taken, the sum of the products of the mass of
each material particle into the square of the distance of
its deviation from the position it would have reached if-
free, namely (6 )2 - m, (b,c}2 +. .. .=Zm(bo)2, is
a minimum, that is, is smaller for the actual me/dion



Definition
of ** con-
straint.”’
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than for any other conceivable motion é# the same con-
nections.  1f this sum, Zm(bc)?, is less for rest than
for any motion, equilibrium will obtain. The principle
includes, thus, both statical and dynamical cases.

The sum X m(5e)? is called the ““constraint.”* In
forming this sum it is plain that the velocities present
in the system may be neglected, as the relative posi-
tions of a, 4, ¢ are not altered by them.

3. The new principle is equivalent to that of
D’Alembert ; it may be used in place of the latter ; and,
as Gauss has shown, can also be deduced from it. The
ampressed forces carry the free mass m in an element of
time through the space @4, the ¢ffective forces carry the
same mass in the same time in consequence of the con-
nections through the space zc. We resolve aé into a¢

: and ¢4; and do the same for all the

a masses. It is thus evident that
forces corresponding to the dis-

>y tancescé, ¢, 4, . ... and propor-

tional thereto, do not, owing to the
connections, become effective, but
form with the connections an equilibrating system. If,
accordingly, we erect at the terminal positions ¢, ‘s
¢, - - - the virtual displacements ¢y, ¢, y,. .. ., form-
ing with cé, ¢, 4, . the angles #,4,. ... we may
apply, since by D’Alembert’s principle forces propor-
tional to ¢4, ¢,?2, are here in equilibrium, the
principle of virtual velocities. Doing so, we shall have

Fig. 179.

# Professor Mach’s termn is Abweichungssumme. The Abweichung is the
declination or departure from free motion, called by Gauss the Ablenkung.
(See Duhring, Principien der Mechanik, §§ 168, 169; Routh, Rigid Dynamiics,
Part I, §§ 390-304.) The quantity 3 (hc)2 is called by Gauss the Zwang; and

. German mathematicians usnally follow this practice. In English, the term

Copstraint is established in this sense, although it is also used with another,
h’llllly quantitative meaning, for the force which restricts a body absolutely
t0 MOwing in a certain w ay.—Trans.
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o= a - - - (Clyerhetdeduce

Bl eycos=0 . . L Lo ()ﬁmw“he
principle
But of least

constraint,

(Ey)2 = (4% + (cy)? —2bc.cy cosfl,
(by):—(b0): = (cy)? —2be. cy cosfl, and
Sm(by)2—Zm(b)2=2m(cy)?—2Zmbc.cycost (2)
Accordingly, since by (1) the second member of
the right-hand side of (2) can only be —0 or 71.5’g{ztz'?c,
that is to say, as the sum = (¢ )2 can never be dimin-
ished by the subtraction, but only increased, therefore
the left-hand side of (2) must also always be positive
and consequently Zm(by)? always greater than Zm
(6¢)2, which is to say, every conceivable constra?nt
from unhindered motion is greater than the constraint

for the actual motion.

-
. The declination, é¢, for the very small ﬁlementfofgln&u;srl

of tlme 7, may, for purposes of practical treatment, be wl;;cci‘\ptll;e
designated by s, and following Scheffler (Schlémilch’ Sglriys:‘):cécx-
Zeitschrift fiir Mathematik wund Phystk, 1858, Vol. 111,
p. 197), we may remark that s = 72 /2, where y de-
notes acceleration. Consequently, 3 s? may also be
expressed in the forms
T2 T2 T4 A
Zm.s.s=Zmy.s= 5 2p. 5_— —Emy ;s
where p denotes the force that produces the declination
from free motion. As the constant factor in no wise
affects the minimum condition, we may say, the actual
motion is always such that

el an T GulGl e E R SR
or
or

Zmyt e e e ot e )

is a minimum.
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MEmmae We will first employ, in our illustrations, the
andaxle.  third form. Here again, as our first example, we se-
lect the motion of a wheel and axle by
the overweight of one of its parts
and shall use the designations above
frequently employed. Our problem
is, to so determine the actual accel-
erations y of 2 and y, of @, that
P} & =y)2+ @ile—~e
shall be a minimum, or, since y, =
— y (#/R), so that P (g — )2 +
Q(g + y.#/R)? = N shall assume its smallest value.
Putting, to this end,

anN g

5l W b0

we get y = (PR — Qr/PR?* £ Qr?)Rg, exactly as in

the previous treatments of the problem.,
Descent on 'As our second example, the motion of descent on
plane, an inclined plane may be taken. In this case we shall
employ the first form, = m s 2.

YF Since we have here only to

£F deal with one mass, our in--

5
quiry will be directed to find-

B ing that acceleration of de-
scent y for the plane by
which the square of the de-

clination (s2) is made a minimum. By Fig. 181 we

have

r2\2 72 \2 2 2\ |
S (e o

and putting 4(s2)/dy =0, we obtain, omitting all
constant factors, 2 — 2¢sina = 0 or y = g¢.sina, the
familiar result of Galileo’s researches.

Fig, 181.
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The following example will show that Gauss’s prin- A case ot
5 Ceibrhibon ' equilib-
ciple also embraces cases of equilibrium. On the arms rum.
a, @' of a lever (I'ig. 182) are hung the heavy masses
m, n'. The principle requires that m(g— )2 +
w'(g — )2 shall be a minimum. But y'= — y(a'/a).

Further, if the masses are in-

: a:
versely proportional to the
lengths of the lever-arms, that - h
is to say, if m/m' = a'/a, then
' Fig. 182.

y' = — y (m/m"). Conse-
quently, m (g — )2 + w'(g + y . m/m"H)2 = N must
be made a minimum. Putting dV/dy — 0, we get
(1 - m/m"yy = 0 or y =10. Accordingly, in this case
equilibrium presents the least constraint from Iree mo-

tion.
Every new cause of constraint, or restriction upon New causes
g = i o1 con-
the freedom of motion, increases the quantity of con- straintin-

£ . . . crease the
straint, but the increase is always the least possible. departure

If two or more systems be connected, the motion of mor o
least constraint from the motions of the unconnected
systems is the actual motion.

If, for example, we join together several simple
pendulums so as to form a compound hnear pendulum,
the latter will oscillate with the motion
of least constraint from the motion of the
single pendulums. The simple pendulum,
for any excursion a, receives, in the di-
rection of its path, the acceleration g
sin@. Denoting, therefore by y sina the i
acceleration corresponding to this excur-
sion at the axial distance 1 on the com-
pound pendulum, = (gsina — 7y sina)? or Zm (g —
#97)2 will be the quantity to be made a minimum. Conse-
quently, Sm(g—ry)r=20,and y =g (Zmr/Zmr?).

TFig. 183.
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The problem is thus disposed of in the simplest man- ; :
ner. But this simple solution is possible only because A number, #, of equal weights, p, lying on a smooth
the experiences that Huygens, the Bernoullis, and oth- horizontal surface, L attacht‘:d t s?nall movable
ers long before collected, are implicitly contained in : Pul%eys th_rough which a cord is dra‘}’n in the Malnes
Gauss’s principle. 1n-d1cated in the.ﬁgure and loaded at its {ree extremity
preceding declination, from free motion by #zew causes of con- : m”j),mf DG /N, e iy e
straint may be exhibited by the following examples. allowing for the relative velacities of the MASILS 95 16
Over two stationary pulleys 4, B, and beneath a ferred t::a 2, respectively, the accelerations (4 2/1 4+ 47) g
movable pulley C (Fig. 184), a cord is passed, each 2 - and (4/5) g If all the # 4 1 masses are movable, the

deviation assumes the value p ¢ /4% -I- 1, which increases
as #, the number of the movable masses, is decreased.

v w
F4
P cx
%, Imagine a body of weight (), movable on rollers Treatment
; £ 3 of a me-
D}’ ] . on a horizontal surface, and having an inclined plane cha&malb
- e - . . Pproblem by
Fig. 184, Fig. 185, face. On this inclined face a body of weight /2 is different

mechanical

y : : : : : 1 nstinctively P wi - prineiples.
extremity of which is weighted with a load 2; and on Heied o EnorpsRene mepmel thor Aali e S

: : scend with guicker acceleration when is movable
Caload 27 4 ¢ is placed. The movable pulley will T i . %
: ; e and can give way, than it will when @ is fixed and %
now descend with the acceleration (/47 + ) & But i .
; . descent more hindered. To any distance of descent /
if we make the pulley 4 fast, we impose upon the : ¢ : ; 3
; : of # a horizontal velocity » and a vertical velocity # of
system a new cause of constraint, and the quantity of : : ?
: $Re Y . . /£ and a horizontal velocity w of ¢ correspond. Owing
constraint, or declination, from free motion will be in- : : -
: s to the conservation of the quantity of horizontal mo-
creased. The load suspended from B, since it now ; :
. : tion, (for here only internal forces act,) we have Fo ==
moves with double the velocity, must be reckoned as : ; :
: ; : e Qw, and for obvious geometrical reasons (Fig. 186)
possessing four times its original mass. The mova-

8 ; ; : 1
ble pulley accordingly sinks with the acceleration g
(p/6F + p) g Asimple calculation will show that the
constraint in the latter case is greater than in the former.

# = (7 - 2)tan &

The velocities, consequently, are

H—=1U
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First, by the i Q
principles R L,

of the con- £ | Q
servation of P
momentum

and of wis w

viva. = Vo ‘* (2

For the work £ performed, the principle of zis
viva gives

cota. u,

cotw. u.

£ 2 P Q 2,2
P e e O] ) u?
gz+sr<f,+gcot(r o

g( £ Lcota‘ fds
g\ P+ 2%
Multiplying by ;, we obtain

2 2
ki e
P+ Qsinza/ 2

To find the zertical acceleration y with which the
space / is described, be it noted that 2 — #2/2y. In-
troducing this value in the last equation, we get

(P4 Q)sin?« .
=== —— g.
i Psina+ Q "%

For Q =, y =—=g¢sin?«, the same as on a sta-
tionary inclined plane. For Q =10, = g, as in free
descent. For finite values of Q0 = m P, we get,

: il ol
Singe wean E ]
sim?a 4+ w7
(14 m)sinza
T - sin?a

b4

Vv . &> gsin?a.
The making of Q stationary, being a newly imposed
cause of constraint, accordingly 7uecreases the quantity
of constraint, or declination, from free motion.

To obtain y, in this case, we have employed the
principle of the conservation of momentum and the
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principle of zis wiva. Employing Gauss’s principle,
we should proceed as follows. To the velocities de-
noted as #, », w the accelerations y, &, & correspond.
Remarking that in the free state the only acceleration
is the vertical acceleration of 7, the others vanishing,
the procedure required is, to make

P 2
Ze—pr+lory oy
& S S

a minimum. As the problem possesses significance
only when the bodies 2 and Q touch, that is only when
¥ = (0 + &) tana, therefore, also

N:J; [¢— (6 4 &)tana]? —1—5?62 +-g62.

Forming the differential coefficients of this expression
with respect to the two remaining independent vari-
ables ¢ and ¢, and putting each equal to zero, we ob-
tain
—[¢— (6 + &tana] Ptana |- 23 =0 and
—[g— (6 + &) tana] Ptana + Qe=10.

From these two equations follows immediately
Pd— Qe—=0, and, ultimately, the same value for y
that we obtained before.

We will now look at this problem from another
point of view. The body /2 describes at an angle f
with the horizon the space s, of which the horizontal
and vertical components are 7 and #, while simulta-
neously Q describes the horizontal distance w. The
force-component that acts in the direction of s is sin /3,
consequently the acceleration in this direction, allow-
ing for the relative velocities of 2 and (, is

Second, by

the prin-

ciple of
auss,
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5},‘3}%]’5’ Employl{qg the followirig equations which are di- and by means of the equat‘fon y — (6 + &) tana, ulti-
e oy rectly deducible, mately, as before,
ment of in- v w— Po
e ,Q( o }j = (P Onsinta ; 1
o= S o it e S e e e e e
S T Psinta+ @°
— wtan f.
; sin ar cos
the acceleration in the directi To ()
a0 e e ey S S R e S 2
ion in the 1rt?ct10n of s becomes = Peointa |- Q(a
4 Sl.n_ﬁ,i g Psinacosa 3)
] 2 —__ L e R S
. Q + Fcos?f Psina |+ Q°
and the vert: i : :
rtical acceleration corresponding thereto is If we put >— Q and @ — 45° we obtain for this Dissussion
o e re-
yr— @sin?f particular case y = 3%g, 6 =1¢ ¢ =1%g For Plg=nsuls
Gl o cosZit § Q/g=— 1 we find the “constramt ”or dechnatlon from

free motion, to be g2/3. If we make the inclined plane
stationary, the constraint will be g2 /2. If 2 moved on
a stationary inclined plane of elevation f, where
tan 8 = y /6, that is to say, in the same path in which
it moves on the movable inclined plane, the constraint

an expression, which as soon as we introduce by means
o.f the equation #= (2 + w)tan«, the angle-func-
tions of a for those of 3, again assumes the form above
given. By means of our extended conception of mo-
ment of inertia we reach, accordingly, the same result

as before. would only be g2/5. And, in that case it would, in
gic;_lg:tthbl)i);l“ Finally we will deal with this problem in a direct reality, be less impeded than if it attained the same
ciples. manner. The body 2 does not descend on the mova- acceleration by the displacement of .

8. The examples treated will have convinced us that Gauss® s
principle

no substantially new insight or perception is afforded by affords no
Gauss's principle. Employing form (3) of the prin-mwmﬂghh
ciple and resolving all the forces and accelerations in

the mutually perpendicular coérdinate-directions, giv-

ing here the letters the same significations as in equa-

tion (1) on page 342, we get in place of the declination,

ble inclined plane with the vertical acceleration g, with
which it would fall if free, but with a different vertical
acceleration, y. It sustains, therefore, a vertical coun-
terforce (P/¢)(¢— ). But as 27 and (, friction
neglected, can only act on each other by means of a
pressure S, normal to the inclined plane, therefore

P
¢ (§—y)=Scosa and or constraint, =my 2, the expression
e 2 24 a1 }_/ﬁ'<44 2] 4
s g o E d. e w s v g i é &

From this is obtained and by virtue of the minimum condition

(¢ y):?&cota, AN =2Z2m Ki-—f)dg+(f—7?)ffﬂ+

o
=] &
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Z
(ﬂl Frgy 8) ([ajl == 0
of Z[(X—m&)d&E+ (V—m Mdn4- (Z—mé)dg]=\.

Gauss'sand s . L
ot If no connections exist, the coefficients of the (in

lc);)rlteipcréﬂ. tl_lat case arbitrary) Z&, d#, d&, severally made — 0,

mutable.  give the equations of motion. But if connections do
exist, we have the same relations between &, &7, 48
as above in equation (1), at page 342, between dx, 8,
dz.  The equations of motion come out the same; as
the treatment of the same example by D’Alembert’s
principle and by Gauss’s principle fully demonstrates.
The. first principle, however, gives the equations of
motion directly, the second only after differentiation.
I'f we seek an expression that shall give by differentia-
tlo_n D’Alembert’s equations, we are led perforce to the
principle of Gauss. The principle, therefore, is new
only in jform and not in matter. Nor does it, further
possess any advantage over the Lagrangian form 0:.’
D’Alembert’s principle in respect of competency to com-
prehend both statical @nd dynamical problems, as has
been before pointed out (page 342).

E;? phys- . There is no need of seeking a mystical or metaphys-

gf]]tll;e prin- zcal reason for Gauss’s principle. The expression ¢ least
constraimnt” may seem to promise something of the
sort ; but the name proves nothing. The answer to the
question, ¢/ what does this constraint consist ?”’ can-
not be derived from metaphysics, but must be sought
in the facts. The expression (2) of page 353, or (4) of
page 361, which is made a minimum, represents the
work done in an element of time by the deviation of the
constrained motion from the free motion. This work
the work due fo the constraint, is less for the thiOI;.
actually performed than for any other possible motion.
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Once we have recognised wor# as the factor deter- Role of the
minative of motion, once we have grasped the mean- Bolnrde
ing of the principle of virtual displacements to be, that
motion can never take place except where work can be
performed, the following converse truth also will in-
volve no difficulty, namely, that a// the work that can
be performed in an element of time actually s per-
formed. Consequently, the total diminution of work
due in an element of time to the connections of the
system’s parts is restricted to the portion annulled by
the counter-work of those parts. It is again merely a
new aspect of a familiar fact with which we have here
to deal.

This relation is displayed in the very simplest cases. The foun,

E dations of

Let there be two masses m and s at 4, the one 1m- the princi-

. . ple recog-

pressed with a force p, the other with e
1e sim-

the force ¢. If we connect the two, we plest cases.

shall have the mass 2» acted on by a
resultant force ». Supposing the spaces
described in an element of time by the
free masses to be represented by AC,
A B, the space described by the con-
joint, or double, mass will be A0 =
34 D. The deviation, or constraint, Bis, 5y,
is m(0OB2 4 0C?). It is less than
it would be if the mass arrived at the end of the ele-
ment of time in A or indeed in any point lying out-
side of BC, say &V, as the simplest geometrical con-
siderations will show. The deviation is proportional
to the expression };f_?é?_i_ 2$¢ COS 9'/2, which in the
case of equal and opposite forces becomes 252, and in
the case of equal and like-directed forces zero.

Two forces # and ¢ act on the same mass. The
force g we resolve parallel and at right angles to the
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space, when the time is not stated in which the space

lepen o in gt pdrandy, The work done in an element is described. If, however, unit of time be meant, the

principle of E S £
the compo- of time is proportional to the squares of the forces, and

gitionfol distinction of space and velocity in the examples treated
};—::c;:r:lt:s if there be no connections is expressible by 42 4- ¢ = by Maupertuis is, to say the least, peculiar. It appears

arefound. #2 4- 72 | 52, If now » act directly counter to the

force #, a diminution of work will ‘be effected and the
sum mentioned becomes (p —7)2 4 s2. Even in the
principle of the composition of forces, or of the mutual
independence of forces, the properties are contained
which Gauss’s principle makes use of. This will best
be perceived by imagining all the accelerations simul-
taneously performed. If we discard the obscure verbal
form in which the principle is clothed, the metaphysical
impression which it gives also vanishes. We see the
simple fact ; we are disillusioned, but also enlightened.

The elucidations of Gauss’s principle here presented
are in great part derived from the paper of Scheffler
cited above. Some of his opinions which I have been
unable to share I have modified. We cannot, for ex-
ample, accept as new the principle which he himself
propounds, for both in form and in import it is identical
with the D’Alembert-Lagrangian.

VIII,

THE PRINCIPLE OF LEAST ACTION.

that Maupertuis reached this obscure expression by an
unclear mingling of his ideas of zis ziwe and the prin-
ciple of virtual velocities. Its indistinctness will be
more saliently displayed by the details.

1 1 1 inciple. Determina-
2, Let us see how Maupertuis applies his principle Bl

If A7, m be two inelastic masses, C and ¢ their velocities La;:sig)fxtnlrllm
before impact, and # their common velocity after im- principle.

E

pact, Maupertuis requires, (putting here velocities for
spaces,) that the ““action” expended in the change of
the velocities in impact shall be a minimum. Hence,
M(C—u)? 4+ m(c—u)? is a minimum; that is,
M(C—u)+m(c—u)=0; or

MC -+ me
T

For the impact of elastic masses, retaining the same
designations, only substituting / and o for the two ve-
locities after impact, the expression M (C— V)% 4
m(c— v)? is a minimum ; that is to say,

M(C—dV 4+ m(c—v)de=0. .. .. (1

In consideration of the fact that the velocity of ap-

proach before impact is equal to the velocity of reces-

The orig- I. MAUPERTUIS enunciated, in 1747, a principle sion after impact, we have

inal, ob- 5 S 5 Sees
scure form Which he called ¢“/e principe de la moindre quantité @ ac-

of the prin- . e . : i, ( i 7:) or
cipleof  fion,” the principle of /Jeast action. He declared this e e o LR SN TR S (2
g principle to be one which eminently accorded with the i

wisdom of the Creator. He took as the measure of Wt () D e e 3

the ‘‘action” the product of the mass, the velocity,
and the space described, or mos. Why, it must be
confessed, is not clear. By mass and velocity definite
quantities may be understood ; not so, however, by

The combination of equations (1), (2), and (3)
readily gives the familiar expressions for 7" and .
These two cases may, as we see, be viewed as pro-
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cesses in which the least change of #s5 o/va by reaction
takes place, that is, in which the Zeast counter-work is
done. They fall, therefore, under the principle of
Gauss.

Mauper- 3. Peculiar is Maupertuis’s deduction of the 2z of

tuis’s de-

duction of  ffre Jever. Two masses & and » (Fig. 188) rest on a
the law o

Slever by bar @, which the fulcrum divides into the portions
ciple. xand a—x.  If the bar be set in rotation, the veloci-
ties and the spaces described will be proportional to
the lengths of the lever-arms, and M x2 4 m (e — )2
is the quantity to be made a minimum, that is #x —
m(@— x)=10; whence x =m a/M + m,—a condition
! that in the case of equilid-
#iwm is actually fulfilled. In

@

M m  criticism of this, it is to be
LA T R Y

= nay remarked, first, that masses

Fig. 188. not subject to gravity or

other forces, as Maupertuis
here tacitly assumes, are afways in equilibrium, and,

secondly, that the inference from Maupertuis’s deduc- .

tion is that the principle of least action is fulfilled
ondy in the case of equilibrium, a conclusion which it
was certainly not the author’s intention to demonstrate.

The correc-  1f it were sought to bring this treatment into ap-

Sgﬁlﬁﬁ_\éa“' proximate accord with the preceding, we should have

deduction: 1 assume that the keawy masses A and m constantly
produced in each other during the process the least
possible change of @és zive. On that supposition, we
should get, designating the arms of the lever briefly by
a, &, the velocities acquired in unit of time by #, #, and
the acceleration of gravity by g, as our minimum ex-
pression, M (g— u)? + m(g— ©)%; whence M (g— u)
du | m(g— v)dv = 0. Butin view of the connection
of the masses as lever,
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7 4
— el
a b’
a
du — — p av;

whence these equations correctly follow

_ Ma—mi SRR Ma—mb
S a7 @ - md2®’ A A + mbe &

A

and for the case of equilibrium, where # — ¢ 7,

Ma—mb=0.
Thus, this deduction also, when we come to rectify
it, leads to Gauss’s principle.
4. Following the precedent of Fermat and Leib-

Treatment
of the mo-

nitz, Maupertuis also treats by his method the motion {jion of light

of light. "Here again, however,

he employs the notion ¢“least ac- 4
tion” in a totally different sense.

The expression which for the ¢
case of refraction shall be a min- 1
imum, i1s m. AR + #n.RB,
where 4 £ and R 7 denote the
paths described by the light in
the first and second media re-
spectively, and and » the corresponding velo-
cities. True, we really do obtain here, if £ be de-
termined in conformity with the minimum condition,
the result sina/sin 8 = n/m = const. But before, the
¢¢action ” consisted in the change of the expressions
mass X velocity X distance ; now, however, it is con-
stituted of the sum of these expressions. Before, the
spaces described in unit of time were considered ; in

R D

Fig. 18g.

the present case the Zofal spaces traversed are taken.
Should not m. AR —n.RB or (m—un)(AR—KD)
be taken as a minimum, and if not, why not? DBut

y the prin-

ciple of
least ac-
tion,
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even if we accept Maupertuis’s conception, the recip-
rocal values of the velocities of the light are obtained,
and not the actual values.

Characteri- It will thus be seen that Maupertuis really had no

i?;fé‘e?f principle, properly speaking, but only-a vague form-

Sl ula, which was forced to do duty as the expression of
different familiar phenomena not really brought under
one conception. I have found it necessary to enter
into some detail in this matter, since Maupertuis’s per-
formance, though it has been unfavorably criticised by
all mathematicians, is, nevertheless, still invested with
a sort of historical halo. It would seem almost as if
something of the pious faith of the church had crept
into mechanics. However, the mere endeavor to gain
a more extensive view, although beyond the powers of
the author, was not altogether without results. Euler,
at least, if not also Gauss, was stimulated by the at-
tempt of Maupertuis.

Eulerscon- 5. Euler’s view is, that the purposes of the phe-

fo this wub- nomena of nature afford as good a basis of explana-

5 tion as their cawses. If this position be taken, it will
be presumed a priors that all natural phenomena pre-
sent 2 maximum or minimum. Of what character this
maximum or minimum is, can hardly be ascertained
by metaphysical speculations. But in the solution (?f
mechanical problems by the ordinary methods, it is
possible, if the requisite attention be bestowed on th_e
matter, to find the expression which in all cases 1s
made a maximum or a minimum. Euler 1s thus not
led astray by any metaphysical propensities, and pro-
ceeds much more scientifically than Maupertuis. He
seeks an expression whose variation put = 0 gives the
ordinary equations of mechanics.

For a single body moving under the action of forces

THE EXTENSION 01 THE PRINCIPLES, 369

Euler finds the requisite expression in the formula The form

hich the
v ds, where ds denotes the element of the path and principle.

o the corresponding velocity. This expression is smaller fyione.
for the path actuaily taken than for any other infinitely M
adjacent neighboring path between the same initial

and terminal points, which the body may be constrained

to take. Conversely, therefore, by seeking the path that
makes (o /¢ a minimum, we can also determine the
path. “The problem of minimising [@dsis, of course,

as Euler assumed, a permissible oﬁe, only when ¢ de-
pends on the position of the elements Zs, that is to

say, when the principle of /s iza holds for the forces,

or a force-function exists, or what is the same thing,
when v is a simple function of coérdinates. For a mo-

tion in a plane the expression would accordingly as-
sume the form

S, }’)\/] T(g) L

In the simplest cases Euler’s principle is easily veri-
fied. If no forces act, v is constant, and the curve of
motion becomes a straight line, for which (2 ds ==
sz ds is unquestionably skorter than for any other
curve between the same terminal points.
Also, a body moving on a curved surface 4
without the action of forces or friction,
preserves its velocity, and describes on
the surface a skortest line.

The consideration of the motion of a
projectile in a parabola 4 5C (Fig. 190) §
will also show that the quantity (=5 O S}%“;‘Z‘D‘fél
is smaller for the parabola than for any i o
other neighboring curve ; smaller, even,
than for the straight line ABC between the same ter-
minal points. The velocity, here, depends solely on the

Euler's
principle
applied to
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‘Mathemat- vertical space described by the body, and is therefore

::?rhgffﬂ the same for all curves whose altitude above OC is the

discase: came. If we divide the curves by a system of horizontal
straight lines into elements which severally correspond,
the elements to be multiplied by the same 2’s, though
in the upper portions smaller for the straight line 4.0
than for 4 B, are in the lower portions just the reverse;
and as it is here that the larger #’s come into play, the
sum upon the whole is smaller for 4 B C than for the
-straight line,

Putting the origin of the coérdinates at 4, reckon-
ing the abscissas x vertically downwards as positive,
and calling the ordinates perpendicular thereto y, we
obtain for the expression to be minimised

f1/> gla+ A)\’ il AL ( )_ dx,

o
where g denotes the acceleration of gravity and @ the
distance of descent corresponding to the initial velocity.
As the condition of minimum the calculus of variations
gives

¥ dy
Jzﬂa+mii

—iClor
dy?
\,] +(rix)
e o L
dx ]/r)w(,;+ 1)_5.%

i Cdx
f]/‘?rr(a+x)—6'2

and, ultimately,

B ooty :
UiV G RGO

——
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where C and (' denote constants of integration that
passinto C=1 2gaand C'=0, if fora =0, dx /dy =0
and y = 0 be taken. Therefore, y =21 ax. By this
method, accordingly, the path of a projectile is shown
to be of parabolic form.

6. Subsequently, Lagrange drew cxpress attention The addi-
to the fact that Euler’s principle is applicable only in grange and
cases in which the principle of vis ziwa holds.  Jacobi i
pointed out that we cannot assert that (2 &s for the ac-
tual motion is a ménimum, but simply that the variation of
this expression, in its passage to an infinitely adjacent
neighboring path, is = 0. Generally, indeed, this con-
dition coincides with a maximum or minimum, but it
is possible that it should occur withont such; and the
minimum property in particular is subject to certain
limitations. For example, if a body, constrained to
move on a spherieal surface, is set in motion by some
impulse, it will describe a great circle, generally a
shortest line. But if the length of the arc described
exceeds 180° it is easily demonstrated that there exist
shorter infinitely adjacent neighboring paths between
the terminal points.

7. So far, then, this fact only has been pointed out, Euler’s
that the ordinary equations of motion are obtained by et
equating the variation of ("2 s to zero. But since the EIS‘J%E’Q““"

" 2 s . equ'itmnq
properties of the motion of bodies or of their paths may of motion.
always be defined by differential expressions equated
to zero, and since furthermore the condition that the
variation of an integral expression shall be equal to
zerois likewise given by differential expressions equated
to zero, unquestionably zarieus other integral expres-
sions may be devised that give by variation the ordi-
nary equations of motion, without its following that the
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integral expressions in question must possess on that
account any particular physica/ significance.
Yet the ex- 8. The striking fact remains, however, that so simple

pression -
must pos-  an expression as [ ¢ &5 does possess the property men-

fg:l;;};}?rf tioned, and we will now endeavor to ascertain its phys-
ical import. To this end the analogies that exist be-
tween the motion of masses and the motion of light, as
well as between the motion of masses and the equilib-
rium of strings—analogies noted by John Bernoulli
and by Mébius—will stand us in stead.

A body on which no forces act, and which there-
fore preserves its velocity and direction constant, de-
scribes a straight line. A ray of light passing through
a homogeneous medium (one having everywhere the
same index of refraction) describes a straight line. A
string, acted on by forces at its extremities only, as-
sumes the shape of a straight line.

Elucidation A body that moves in a curved path from a point

port by the 4 to a point B and whose velocity v = @(x, », z) isa

motion of a

mass, the function of codrdinates, describes between 4 and 7 a
motion of a

ray of light, curve for wh.ich generally J"ﬁ' as is_a minimum. A ray
gct;\;ilsi&s_ir;\gn of light passing ijom A to _B descr}bes the same curve,
if the refractive index of its medium, » = @ (x, y, 2),
is the same function of coérdinates; and in this case
(nds is a minimum. Finally, a string passing from
A to B will assume this curve, if its tension .§-—
@ (x, ¥, %) 1s the same above-mentioned function of co-
6rdinates ; and for this case, also, [\Ss is a minimum.

The motion of @ mass may be readily deduced from
the equilibrium of a string, as follows. On an element
s of a string, at its two extremities, the tensions S, .S’
act, and supposing the force on unit of length to be 7,
in addition a force P. #4s. These three forces, which

we shall represent in magnitude and direction by 5.4,

pe——
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BC, BD (Fig. 191), are in equilibrium. If now, a body, The motion

. - . . - of a mas
with a velocity » represented in magnitude and direc- deduced

tion by 4B, enter the element of the path &s, and re- ig?glitl:]r?mn
ceive within the same the velocity component BrilEes
— B, the body will proceed on-
ward with the velocity ' = BC. j
Let Q be an accelerating force
whose action is directly opposite 3 C
to that of 72; then for unit of time
the acceleration of this force will
be @, for unit of length of the
string @/», and for the element
of the string (Q/2)4s. The body will move, therefore,
in the curze of the string, if we establish between the
forces 77 and the tensions .S, in the case of the string,
and the accelerating forces Q and the velocity # in the
case of the mass, the relation

¢

P —==5:0
7

V) E
Fig. 101.

The minus sign indicates that the directions of 2 and
() are opposite.

A closed circular string is in equilibrium when be- The eqni-
tween the tension .S of the string, everywhere cdnstant, lclll?:,rslel:]c{n %
and the force 2 falling radially outwards on unit oL T
length, the relation P = S/ obtains, where 7 is the
radius of the circle. A body will move with the con-
stant velocity # in a circle, when between the velocity
and the accelerating force @ acting radially inwards
the relation

(@ Ers
T =

o2 :
— obtains.

=

A body will move with constant velocity © in any curve
when an accelerating force Q — 22 /» constantly acts
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on it in the direction of the centre of curvature of each
element. A string will lie under a constant tension S
in any curve if a force 7 = .5/ acting outwardly from
the centre of curvature of the element is impressed on
unit of length of the string.

The deduc- No concept analogous to that of force is applicable
tion ot the .
{Ifl%;;iotr_l of to the motion of light. Consequently, the deduction of
ight from z : G 5

the motions the motion of light from the equilibrium of a string or
of masses _ .

and the. the motion of a mass must be differently effected. A
equilibrium 4 % 3 g

of strings, mass, let us say, is moving with the velocity 45 = ».

(Fig. 192.) A force in the direction

A H BDis impressed on the mass which
produces an increase of velocity BZ,
7 5B K so that by the composition of the ve-

locities BC =— AFB and BE the new
velocity BF = o' is produced. If we
resolve the wvelocities #, ¢’ into com-
ponents parallel and perpendicular to
the force in question, we shall per-
D - celve that the parallel components alone
are changed by the action of the force.
This being the case, we get, denoting
by # the perpendicular component, and by @ and &
the angles # and #’ make with the direction of the
force,

Fig. 192.

kA —2osinuw

A —72'sina’ or

sin & 7'

sing’ v’

If, now, we picture to ourselves a ray of light that
penetrates in the direction of ¢ a refracting plane at
right angles to the direction of action of the force, and
thus passes from a medium having the index of refrac-
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tion # into a medium having the index of refraction #’, Develop- .
where z/#' = v/¢’, this ray of light will describe the Hiosteation
same path as the body in the case above. If, there-

fore, we wish to imitate the motion ¢f & mass by the

motion of @ ray of light (in the same curve), we must
everywhere put the indices of refraction, », proportional

to. the velocities. To deduce the indices of refraction

from the forces, we obtain for the velocity

72

& ké ) = Pdg, and

for the index of refraction, by analogy,

n2
4 (—2> — Pdg,
where /2 denotes the force and ¢ a distance-element
in the direction of the force. If 4sis the element of
the path and « the angle made by it with the direction
of the force, we have then

]
[X]

rz’('; > = Pcosa.ds

2
d <’§),) =S cosa

For the path of a projectile, under the conditions above
assumed, we obtained the expression y = 21 @x. This
same parabolic path will be described by a ray of light,
if the law 2 =1"2g(a + x) be taken as the index of
refraction of the medium in which it travels.

9. We will now more accurately investigate the Relation of
manner in which this minimum property is related to ::;ﬁ:;:l;:‘tjp
the form of the curve. Let us take, first, (Fig. 193) a?cfgnlgfhe
broken straight line 4 2 C, which intersects the straight Tl
line MN, put A8 = s, BC =y, and seek the condition

that makes o5 + #'s' a minimum for the line that passes
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on it in the direction of the centre of curvature of each
element. A string will lie under a constant tension .S
in any curve if a force 2 =S/ acting outwardly from
the centre of curvature of the element is impressed on
unit of length of the string.

The deduc- No concept analogous to that of force is applicable
tion of the 2 ’
}p‘gﬁiolgm of to the motion of light. Consequently, the deduction of
ight from & = sobs, 2 &

{ motions the motion of light from the equilibrium of a string or
of masses . .

aud the the motion of a mass must be differently effected. A
equilibrium - p = -

ofstrings. mass, let us say, is moving with the velocity 48 =— 2.

(Fig. 192.) A force in the direction

A 124 BDis impressed on the mass which
produces an increase of velocity BZ,
7 B K so that by the composition of the ve-

locities BC = AB and BL the new
velocity BF — o' is produced. If we
resolve the velocities », ' into com-
E ponents parallel and perpendicular to
the force in question, we shall per-
ceive that the parallel components alone
are changed by the action of the force.
This being the case, we get, denoting
by # the perpendicular component, and by « and o
the angles » and »’ make with the direction of the
force,

D

Fig. 192.

bk —uvsina

k=7 sina’ or
sin 7
sina’ v

If, now, we picture to ourselves a ray of light that
penetrates in the direction of v a refracting plane at
right angles to the direction of action of the force, and
thus passes from a medium having the index of refrac-
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tion z into a medium having the index of refraction #/, Develap-
where »/n' = o/7', this ray of light will describe the Mot
same path as the body in the case above. If, there-

fore, we wish to imitate the motion of & mass by the

motion of a ray of light (in the same curve), we must
everywhere put the indices of refraction, », proportional

to. the velocities. To deduce the indices of refraction

from the forces, we obtain for the velocity

-2

st
& kT’) — Pdy, and
for the index of refraction, by analogy,

d ( ’f;) — Pdy,
Where £ denotes the force and #¢ a distance-element
in the direction of the force. If #sis the element of

the path and & the angle made by it with the direction
of the force, we have then

2
d ( )> — Pcosa.ds

4

d (?; ) = Pcosa.ds.

For the path of a projectile, under the conditions above

assumed, we obtained the expression y = 2} ax. This

same parabolic path will be described by a raylof light,

if the law »=1"2g (a —|—}) be taken as the index of

refraction of the medium in which it travels.

mal?r.l :F\Te wlil.l hnc::;v. more accurately investigate the Relation of

er in whic 11s mini 1 m pro

the form of the curve. Elelin ;:Tiireopf?:stf ](SP{elated - sy is e
; a 5 h 1g. 193) a form of

b'roken straight line 4 BC, which intersects the straight*

line MN, put 4B — s, BC— ¢, and seek the condition

that makes #s + 7’5’ a minimum for the line that passes
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First, de-  through. the fixed points 4 and B, where v and o’ are

duction of s
the mini- ~ supposed to have different, though constant, values

mum ¢ondi- 3
tion. above and below AV, If we displace the point Z an
infinitely small distance to £, the new line through 4
and C will remain parallel to the original one, as the
drawing symbolically shows. The expression o + o's’
is increased hereby by an amount
—emsing -+ ¢ msina’,
where 7 = D2, or by an amount — zsina + ¢ sina'.
The condition of the minimum, consequently, is that
— osina -} ¢ sina’ =0
sinay 7'
or =

sin &’ 7

A

Fig. 1g3. Tig. 19,.

If the expression s/¢ -+ ' /" is to be made a minimum,

we have, in a similar way,
sin« v
sina’ 2"

Second, the If, next, we consider the case of a string stretched
application , . . 3 5 . oy

g; this con- i1l the direction 45, the tensions of which .S and .S
ition to the

equilibrium are different above and below A7V, in this case it is
of a string. YA : « o
the minimum of S - S's" thatis to be dealt with. To

obtain a distinct idea of this case, we may imagine the

THE EXTENSION OF THE PRINCIPLES. 377

string stretched once between 4 and B and thrice be-
tween £ and C, and finally a weight # attached. Then
S= /P and §' = 3/ If we displace the point 5 a dis-
tance m, any diminution of the expression Ss 4 S's’
thus effected, will express the increase of woré which
the attached weight 2 performs. If — Swsina 4
S'm sina’ = 0, no work is performed. Hence, the min:-
mum of Ss 4+ S's’ corresponds to a maximum of work.
In the present case the principle of least action is sim-
ply a different form of the principle of virtnal displace-
ments.
Now suppose that 4BC is a ray of light, whose ve- Third, the
locities  and o’ above and below M4V are to each other of this con-

2 . dition tothe
as 3 to 1. The motion of light be- motion of a

tween two points 4 and B is such (£ 4 R
that the light reaches #Z in a mini- 2

mum of time. The physical reason DiE N

of this is simple. The light travels #

from 4 to B, in the form of ele- o

mentary waves, by different routes.

Owing to the periodicity of the light, B £

the waves generally destroy each Fie. 195,

other, and only those that reach the
designated point in equal times, that is, in equal phases,
produce a result. But this is true only of the waves
that arrive by the minimum path and its adjacent neigh-
boring paths. Hence, for the path actually taken by
the light s/2 4 s' /2" is a mmimum. And since the in-
dices of refraction » are inversely proportional to the
velocities ¢ of the light, therefore also #s 4+ 25" is a
minimum.

In the consideration of the motion of a mass the con-
dition that #s -} #'s’ shall be a minimum, strikes us as
something novel. (Fig.195.) If a mass, in its passage
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Fourth, its through a plane A7V, receive, as the result of the action
?é.){'}llf?élcﬁn of a force impressed in the direction 25, an increase of
ek velocity, by which ¢, its original velocity, is made o', we
have for the path actually taken by the mass the equa-
tion 7 sina = o' sin &’ = %. This equation, whick is alse
the condition of minimum, simply states that only the ve-
locity-component parallel to the direction of the force is
altered, but that the component ke al right angles therelto re-
mains unchanged. Thus, in this case also, Euler’s prin-
ciple simply states a familiar fact in a new form.
Formofthe  10. The minimum condition — 2 sine& - #’sina’'=0

minimum . . .
condition may also be written, if we pass from a finite broken

Ty straight line to the elements of curves, in the form
—osina + (v + d2) sin(a + da) =0
or
d(zsina) =0
or, finally,
o sin & = const.

In agreement with this, we obtain for the motion

of light
d(nsina) =0, nsina = const,
sin « sin w
r‘l’(-- : ) =0, = const,
2] Zr

and for the equilibrium of a string
d(Ssina) =0, Ssina = const.

To illustrate the preceding remarks by an ex-
ample, let us take the parabolic path of a projectile,
where « always denotes the angle that the element of
the path makes with the perpendicular. Let the ve-
locity be 7 =172 g(a + «), and let the axis of the y-or-
dinates be horizontal. The condition #. sin & = cons?,
or V' 2g(a-+ x).dy/ds = const, is identical with that
which the calculus of variation gives, and we now know
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its simple physical significance. If we picture to ourselves Illustration
a string whose tension is S =1"2¢ (¢ + x), an arrange- E}szilelc}f“ee
ment which might be effected by fixing frictionless ?&’Jt‘i‘é;‘ze“
pulleys on horizontal parallel rods placed in a vertical

plane, then passing the string through these a sufficient

number of times, and finally attaching
a weight to the extremity of the string,
we shall obtain again, for equilibrium,
the preceding condition, the phys-
ical significance of which is now ob-
vious. When the distances between
the rods are made infinitely small the
string assumes the parabolic form.
In a medium, the refractive index of
which varies in the vertical direction
by the law # =12 g(a -+ x), or the velocity of light in
which similarly varies by the law o =1/1"2¢(a + x),
a ray of light will describe a path which is a parabola.
If we should make the velocity in such a medium
2 =1"2¢(a-+x), the ray would describe a cycloidal path,
for which, not [V 2¢(e + x). ds, but the expression

ds/V 2g(a-+ x) would be a minimum.

11. In comparing the equilibrium of a string with
the motion of a mass, we may employ in place of a
string wound round pulleys,

a simple homogeneous cord,
provided we subject the cord
to an appropriate system of
forces. We readily observe 4
that the systems of forces
that make the tension, or,
as the case may be, the ve-
locity, the same function of codrdinates, are differ-
ent. 1f we consider, for example, the force of gravity,

Fig. 196,

B

Fig. 197.
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sk S V'2g(a + x). A string, however, subjected to the

conse- action of gravi i
gty gravity, forms a catenary, the tension of

e which is given by the formula .S—=m — zx, where m

gies. and # are constants. The analogy subsisting between
the equilibrium of a string and the motion of a mass is
substantially conditioned by the fact that for a string
subjected to the action of forces possessing a force-
function U, there obtains in the case of equilibrium
the easily demonstrable equation & - .S = consz. This
Physical interpretation of the principle of least action
is here illustrated only for simple cases ; but it may
also be applied to cases of greater complexity, by
imagining groups of surfaces of equal tension, of equal
velocity, or equally refractive indices constructed which
divide the string, the path of the motion, or the path
of the light into elements, and by making e in such a
case represent the angle which these elements make
with the respective surface-normals. The principle of
least action was extended to systems of masses by La-
grange, who presented it in the form

t)‘E'mjfm’s — 0.

If we reflect that the principle of vés viva, which is the
real foundation of the principle of least action, is not
annulled by the connection of the masses, we shall

comprehend that the latter principle is in this case also
valid and physically intelligible.

IX.
HAMILTON’S PRINCIPLE.
1. It was above remarked that parious expressions
can be devised whose variations equated to zero give

the ordinary equations of motion. An expression of
this kind is contained in Hamilton’s principle
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£y
6I(U+ T)(l’f:@, or The points
of identity
to of Hamil-
£y ton’s and
7 — D’Alem-
[6U+ 6T)dt =0, DAlen-
to ciples.

where § 7 and 6 7" denote the variations of the work
and the is viva, vanishing for the initial and terminal
epochs. Hamilton’s principle is easily deduced from
D’Alembert’s, and, conversely, D’Alembert’s from
Hamilton'’s ; the two are in fact identical, their differ-
ence being merely that of form.*

2. We shall not enter here into any extended in- Hamilton's
principle

vestigation of this subject, but simply exhibit the iden- et o

tity of the two principles by an example—
the same that served to illustrate the prin-
cipleof D’Alembert: the motion of a wheel
and axle by the over-weight of one of its
parts. In place of the actual motion, we
mayimagine, performed in the same inter-
val of time, a Zifferent motion, varying in-
finitely little from the actual motion, but
coinciding exactly with it at the beginning
and end. There are thus produced in every element
of time &7, variations of the work (§ ) and of the vss
viva (67"); variations, that is, of the values U and 77
realised in the actual motion. But for the actual mo-
tion, the integral expression, above stated, is = 0, and
may be employed, therefore, to determine the actual
motion. If the angle of rotation performed varies in
the element of time #7 an amount « from the angle of
the actual motion, the variation of the work corre-
sponding to such an alteration will be-
6U=(PR— Qr)a= Ma.

* Compare, for example, Kirchhoff, Vorlesungen iiber mathematische Phy-
sik, Mechanik, p. 25 et seqq., and Jacobi, Verlesungen iiber Dynamik, p. 58.

he motion
of a wheel
and axle.
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The zés ziva, for any given angular velocity @, is
1 @*
i DR2 | -2 |
T—.\r(‘”\TQ}>2’

and for a variation de of this velocity the variation of
the zis viva is
1
D — = (PR? + Q07?) w0 w.
S
But if the angle of rotation varies in the element 7/ an
amount «,

da
gt

The form of the integral expression, accordingly, is
7y

da
I[Ma 4 Ndz‘i| e —

1
8§T=—(PR2 + Qr?) @”;?ﬁN
: ‘

Zo
But as
o dN da
A
therefore,
y
z
f(Mf‘”‘_’_ . dt + (Na)' =0
. at ‘o

‘o
The second term of the left-hand member, though,
drops out, because, by hypothesis, at the beginning

and end of the motion & =10. Accordingly, we have
e

f Y i{‘{ adt — O,
dit
‘o
an expression which, since a in every element of time
is arbitrary, cannot subsist unless generally
VR
VT

0.
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Substituting for the symbols the values they represent,
we obtain the familiar equation :

da IR G

WA PR G

D’Alembert’s principle gives the equation The same
results ob-
tained by

T ﬁv\\(x — {0 the use of
at j 4 D’Alem-
bert’s prin-

ciple.

which holds for every possible displacement. We might,
in the converse order, have started from this equation,

have thence passed to the expression
; 4

an
f(M— T ) adt =0,

(1]
and, finally, from the latter proceeded to the same re-
sult

24

: 5
f(.ﬂfa’ L me) di—(Na) =
. \‘ ([l‘ to

o

£
da
Mo+ N — |dt = 0.
f ( i (fz‘>
‘0

3. As a second and more simple example let us Miustration
. . . of this point
consider the motion of vertical descent. For every by themo-

: 5 . . tion of ver-
infinitely small displacement s the equation subsists tical de-

] . 5 >nt.
[mg— m(de/dt)]s =10, in which the letters retain”
their conventional significance. Consequently, this

equation-obtains
y

4y
g — _Js.dE=0
‘I‘<J’H 5—n ) 5. ?
‘o
which, as the result of the relations

7 7z & s
g?%j) —m :?; S o d;- and
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¢ - = 5 8 . o
'f/(,,,, #5) £, 2. First, let us imagine a weightless liquid mass The work of
7 — (s sy — ¢ molecular
f di dé=imas] =0 free in space. Its molecular forces, we know, act only forces de-

to pendent on

“o ! at very small distances. Taking as our radius the dis- a change in

provided s vanishes at both limits, passes into the form
z

1
' as
#‘OJ (mgs +ma ﬁ,f} di=0,
that 1s, into the form of Hamilton’s principle.

Thus, through all the apparent differences of the
mechanical principles a common fundamental same-
ness is seen. These principles are not the expression
of different facts, but, in a measure, are simply views
of different aspects of the same fact.

X.

SOME APPLICATIONS OF THE PRINCIPLES OF MECHANICS TO
HYDROSTATIC AND HYDRODYNAMIC QUESTIONS.

Method of 1. We will now supplement the examples which
eliminating

;l;eg:;tiﬁn we have given of the application of the principles

on l_i_quidy of mechanics, as they applied to rigid bedies, by a

WIS few hydrostatic and hydrodynamic illustrations. We
shall first discuss the laws of equilibrium of a weight/ess
liquid subjected exclusively to the action of so-called
molecular forces. The forces of gravity we neglect in
our considerations. A liquid may, in fact, be placed
in circumstances in which it will behave as if no forces
of gravity acted. The method of this is due to Pra-
TEAU.* It is effected by immersing olive oil in a mix-
ture of water and alcohol of the same density as the
oil. By the principle of Archimedes the gravity of the
masses of oil in such a mixture is exactly counterbal-
anced, and the liquid really acts as if it were devoid of
weight.

* Statique expérimentale ot thiorique des liquides, 1873.

measurable influence, let us describe about a particle
@, b, ¢ in the interior of the mass a sphere—the so-
called sphere of action. This sphere of action is regu-
larly and uniformly filled with other particles. The
resultant force on the central particles «, 4, ¢ is there-
fore zero. Those parts only that lie at a distance from
the bounding surface less than the radius of the sphere
of action are in different dynamic conditions from the
particles in the interior. If the radil of curvature of

Fig. 199. Tig. 200,
the surface-elements of the liquid mass be all regarded
as very great compared with the radius of the sphere
of action, we may cut off from the mass a superficial
stratum of the thickness of the radius of the sphere of
action in which the particles are in different physical
conditions from those in the interior. 1f we convey
a particle @ in the interior of the liquid from the posi-
tion & to the position 4 or ¢, the physical condition
of this particle, as well as that of the particles which
take its place, will remain unchanged. No work can
be done in this way. Work can be done only when a
particle is conveyed from the superficial stratum into
the interior, or, from the interior into the superficial
stratum. That is to say, work can be done only by a

i the liquid’s
tance at which the molecular forces cease to exert a superficial

arca.
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change of size of the surface. The consideration whether
the density of the superficial stratum is the same as
that of the interior, or whether it is constant through-
out the entire thickness of the stratum, is not primarily
essential. As will readily be seen, the variation of the
surface-area is equally the condition of the perform-
ance of work when the liquid mass is immersed in a
second liquid, as in Plateau’s experiments.

Diminution ~ We now inquire whether the work which by the

of super- % . . . -
fieial area  transportation of particles into the interior effects a

due to posi- ., =
tivework. diminution of the surface-area is positive or negative,
that is, whether work is performed or work is ex-
pended. If we put two fluid drops in contact, they
will coalesce of their own accord;
/ O and as by this action the area
) of the surface is diminished, it

l 1 follows that the work that pro-

duces a diminution of superfi-

Biesot cial area in a liquid mass is posi-

Zive. Van der Mensbrugghe has

demonstrated this by a very pretty experiment. A

square wire frame is dipped into a solution of soap and

water, and on the soap-film formed a loop of moistened

thread is placed. If the film within the loop be punc-

tured, the film outside the loop will contract till the

thread bounds a circle in the middle of the liquid sur-

face. But the circle, of all plane figures of the same

circumference, has the greatest area; consequently,
the liquid film has contracted to a minimum.

Consequent ~ The following will now be clear. A weightless

condition 2 . 9 5
célljii?_z{)iq 1qumd, the forces acting on which are molecular forces,
& 1priar 7 - e i . - -
will be in equilibrim in all forms in which a system of
virtual displacements produces e alteration of the

liquid’s superficial area. But all infinitely small changes

N e—
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of form may be regarded as wirfwal/ which the liquid
admits without alteration of its vefwme. Consequently,
equilibrium subsists for all liquid forms for which an
infinitely small deformation produces a superficial va-
riation = 0. For a given volume a minimum of super-
ficial area gives stable equilibrium; a maximum un-
stable equilibrium. |

Among all solids of the same volume, the sphere
has the least superficial area. Hence, the form which
a free liquid mass will assume, the form of stable equi-
librium, is the sphere. For this form a maximum of
work is done; for it, no more can be done If the
liquid adheres to rigid bodies, the form assumed is de-
pendent on various collateral conditions, which render
the problem more complicated.

3. The connection between the size and the form of i\;{ggiﬁge
the liquid surface may be investigated as follows. We the connec,
imagine the closed outer sur- I size and
face of the liquid to receive ” liquid sur-
without alteration of the li-
quid’s velume an infinitely
small variation. By two sets of
mutually perpendicular lines
of curvature, we cut up the
original surface into infinitely small rectangular ele-
ments. At the angles of these elements, on the original
surface, we erect normals to the surface, and determine
thus the angles of the corresponding elements of the
varied surface. To every element #0 of the original
surface there now corresponds an element Z0' of the
varied surface ; by an infinitely small displacement, ¢ 7,
along the normal, outwards or inwards, Z0O passes into
Z0' and into a corresponding variation of magnitude.

Let dp, d¢ be the sides of the element 0. For the
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The mathe- sides Zp', d¢' of the element #0', then, these relations
mafical de-

: the superficial elements (in the latter case reckoned as
velopment Obtaln

of this 5 negative) shall be equal to zero, or the zo/ume remain
cthod. ,
metho ({f)' e (i/) (1 + C i[) constant.
4 ' Accordingly, expressions (1) and (2) can be puta condition
. . ’ on wh
y & simultaneously = 0 only if 1 /» + 1 /7" has the same value the general-
{[{{ :tig 1+ . ; ! v L = ity of the ex-
” for all points of the surface. This will be readily seen pressions
obtained,

where » and » are the radii of curvature of the princi- from the following consideration. Let the elements depends.

pal sections touching the elements of the lines of cur-
vature p, ¢, or the so-called principal radii of curva-
ture.®* The radius of curvature of an outwardly convex
element is reckoned as positive, that of an outwardly
concave element as negative, in the usual manner. For

the variation of the element we obtain, accordingly,
su\/
s. a’O:a’O’—JO:n’pd«/(l +.7_”>K1 o >Aff;sfzq.

Neglecting the higher powers of d# we

_ % dp get
[ 1 1
0T — ;,)6‘:1.(170.

S
-

dp e e
Al The variation of the whole surface,
then, is expressed by
il 1
6‘0:f< —{—f,)d‘n.:l() b A
= !

Furthermore, the normal displacements
must be so chosen that

J‘(?JA.:ZO:U Stk R DO ()

Fig. 203.

that is, they must be such that the sum of the spaces
produced by the outward and inward displacements, of

# The normal at any point of a surface is cut by normals at infinitely neigh-
boring points that lie in two directions on the surface from the original point,
these two directions being at right angles to each other; and the distances
from the surface at which these normals cut are the two principal, or extreme,
radii of curvature of the surface.—7»ans.

20 of the original surface be symbolically represented
by the elements of the line 4X (Fig. 204) and let the
normal displacements ¢z be erected as ordinates
thereon in the plane £, the outward displacements up-
wards as positive and the inward displacements down-
wards as negative.

Join the extremities £
of these ordinates so
as to form a curve,
and take the quadra-
ture of the curve,
reckoning the sur-
face above 4X as positive and that below it as nega-
tive. For all systems of &# for which this quadra-
ture = 0, the expression (2) also = 0, and all such
systems of displacements are admissible, that is, are
virtual displacements.

Now let us erect as ordinates, in the plane £’, the
values of 1/ -+ 1/+ that belong to the elements 0. A
case may be easily imagined in which the expressions
(1) and (2) assume coincidently the value zero. Should,
however, 1/7 4 1/#' have different values for different
elements, it will always be possible without altering
the zero-value of the expression (2), so to distribute
the displacements ¢ » that the expression (1) shall be
different from zero. Only on the condition that 1/» +
1 /7" has the same value for all the elements, is expres-

Fig. 204.
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sion (1) necessarily and universally equated to zero
with expression (2).
The sum_ Accordingly, from the two conditi?ns (1) and (2) it
equilibrium follows that 1/r - 1/r'= const; Fha_t is to say, the sum
constant for of the reciprocal values of the principal rad.n of curva-
surface,  ture, or of the radii of curvature of the principal nor-
mal sections, is, in the case of equilibrium, constant
for the whole surface. By this theorem the dependence
of the area of a liquid surface on its superficial form is
defined. The train of reasoning here pursued was
first developed by Gauss,* in a much fuller and more
special form. It is not difficult, however, to present
its essential points in the foregoing simple manner.
???k}ii;?eig? 4. A liquid mass, lefjc wholly to itself, assumes, as
eral condi- we have seen, the spherical form, and presents an ab-
E;{EEE’E’J’?!‘IESESCE solute minimum of superficial area. The equation
ses. 1/7 -+ 1/»' == const is here visibly fulfilled in the form
2/R = const, R being the radius of the sphere. If the
free surface of the liquid mass be bounded by two solid
circular rings, the planes of which are parallel to each
other and perpendicular to the line joining their mid-
dle points, the surface of the liquid mass will assume
the form of a surface of revolution. The nature of the
meridian curve and the volume of the enclosed mass
are determined by the radius of the rings R, by the
distance between the circular planes, and by the value
of the expression 1/ - 1/r' for the surface of revolu-
tion. When
1 1 1 1 il
VT s
the surface of revolution becomes a cylindrical surface.
For 1/7 + 1/r'= 10, where one normal section is con-

* Principia Generalia Theorie Figure Fluidorwm in Statu AEquilibrii,
Gottingen, 1830 ; Werke, Vol. V, 29, Gittingen, 1867,

——
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vex and the other concave, the meridian curve assumes
the form of the catenary. Plateau visibly demonstrated
these cases by pouring oil on two circular rings of wire
fixed in the mixture of alcohol and water above men-
tioned. ;

Now ‘let us picture to ourselves a liquid mass Liquidmas.
bounded by surface-parts for which the expression :ﬁif\:ge(ﬁre
1/ 4 1/r' has a positive value, and by other parts e s
for which the same expression has a negative value, ol
or, more briefly expressed, by convex and concave sur-
faces. It will be readily seen that any displacement
of the superficial elements outwards along the normal
will produce in the concave parts a diminution of the
superficial area and in the convex parts an increase.
Consequently, work is performed when concave surfaces
move outwards and comwvex surfaces inwards. Work
also is performed when a superficial portion moves
outwards for which 1/ + 1/7'—= + @, while simulta-
neously an equal superficial portion for which 1/

1/’ > @ moves inwards.

Hence, when differently curved surfaces bound a
liquid mass, the convex parts are forced inwards and
the concave outwards till the condition 1/ + 1/»"'=
const is fulfilled for the entire surface. Similarly, when
a connected liquid mass has seperal isolated surface-
parts, bounded by rigid bodies, the value of the ex-
pression 1/ 4+ 1 /7' must, for the state of equilibrium
be the same for all free portions of the surface.

For example, if the space between the two circular Experi-
rings in the mixture of alcohol and water above re- i abtation
ferred to, be filled with oil, it is possible, by the use S
of a sufficient quantity of oil, to obtain a cylindrical
surface whose two bases are spherical segments. The

curvatures of the lateral and basal surfaces will accord-
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ingly fulfil the condition 1/R -+ 1/ =1/p+ 1/p, or
p = 2K, where p is the radius of the sphere and & that
of the circular rings. Plateau verified this conclusion
by experiment.
Liguidmas- 5. Let us now study a weightless liquid mass which
ing ‘é;;"ég. encloses a hollow space. The condition that1 /7 1 /7'
shall have the same value for the interior and exterior
surfaces, is here not realisable. On the contrary, as
this sum has always a greater positive value for the
closed exterior surface than for the closed interior sur-
face, the liquid will perform work, and, flowing from
the outer to the inner surface, cause the hollow space
to disappear. If, however, the hollow space be occu-
pied by a fluid or gaseous substance subjected to a de-
terminate pressure, the work done in the last-men-
tioned process can be counteracted by the work ex-
pended to produce the compression, and thus equilib-
rium may be produced.
The me- Let us pictu.re to ourselves a liquid mass confined
properties between two similar and similarly situated surfaces
very near each other. A Jubble is such
a system. Its primary condition of equi-
librium is the exertion of an excess of
pressure by the inclosed gaseous con-
tents. If the sum 1/» 4 1/’ has the
value -} a for the exterior surface, it will
have for the interior surface very nearly
the value —a. A bubble, left wholly to itself, will al-
ways assume the spherical form. If we conceive such
a spherical bubble, the thickness of which we neglect,
the total diminution of its superficial area, on the
shortening of the radius » by &7, will be 16 77 d». I,
therefore, in the diminution of the surface by unit
of area the work A is performed, then 4. 167 747 will
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be the total amount of work to be compensated for
by the work of compression p.472mdr expended by
the pressure p on the inclosed contents. From this
follows 4.4 /r = p ; from which 4 may be easily calcu-
lated if the measure of 7 is obtained and g is found by
means of a manometer introduced in the bubble.

An open spherical bubble cannot subsist. If an oner il
open bubble is to become a figure of equilibrium, the 7
sum 1/7 + 1/ must not only be constant for each of
the two bounding surfaces, but must also be equal for
both. Owing to the opposite curvatures of the sur-
faces, then, 1/ + 1/7'=0. Consequently, » = — 7'
for all points. ~Such a surface is called a minimal sur-
face ; that is, it has the smallest area consistent with
its containing certain closed contours. It is also a sur-
face of zero-sum of principal curvatures; and its ele-
ments, as we readily see, are saddle-shaped. Surfaces
of this kind are obtained by constructing closed space-
curves of wire and dipping the wire into a solution of
soap and water.* The soap-film assumes of its own
accord the form of the curve mentioned.

6. Liquid figures of equilibrium, made up of thin lr:lalf]eda%;
films, possess a peculiar property. The work of the l{gegofequi-
forces of gravity affects the entire mass of a 1iquid;hbmm'
that of the molecular forces is restricted to its super-
ficial film. Generally, the work of the forces of grav-
ity preponderates. But in thin films the molecular
forces come into very favorable conditions, and it is
possible to produce the figures in question without
difficulty in the open air. Plateau obtained them by
dipping wire polyhedrons into solutions of soap and
water. Plane liquid films are thus formed, which meet

# The mathematical problem of determining such a surface, when the
forms of the wires are given, is called Plateaw’'s Problem,—Trans.
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one another at the edges of the framework. When
thin plane films are so joined that they meet at a hol-
low edge, the law 1/7 -+ 1/7" = const no longer holds
for the liquid surface, as this sum has the value zero
for plane surfaces and for the hollow edge a very large
negative value. Conformably, therefore, to the views
above reached, the liquid should run out of the films,
the thickness of which would constantly decrease, and
escape at the edges. This is, in fact, what happens.
But when the thickness of the films has decreased to a
certain point, then, for piysical reasons, which are, as
it appears, not yet perfectly known, a state of equilib-
#inm 1s effected.

Yet, notwithstanding the fact that the fundamental
equation 1/7+1/#" = const is not fulfilled in these fig-
ures, because very thin liquid films, especially films of
viscous liquids, present physical conditions somewhat
different from those on which our original suppositions
were based, these figures present, nevertheless, in all
cases a minimum of superficial area. The liquid films,
connected with the wire edges and with one another,
always meet at the edges by threes at approximately
equal angles of 120° and by fours in corners at approxi-
mately equal angles. And it is geometrically demon-
strable that these relations correspond to a minimum
of superficial area. In the great diversity of phenom-
ena here discussed but one fact is expressed, namely
that the molecular forces do work, positive work, when
the superficial area is diminished.

7. The figures of equilibrium which Plateau ob-
tained by dipping wire polyhedrons in solutions of
soap, form systems of liquid films presenting a re-
markable symmetry. The question accordingly forces
itself upon us, What has equilibrium to do with sym-

THE EXTENSION OF THE PRINCIPLES. 395

metry and regularity ? The explanation is obvious.
In every symmetrical system every deformation that
tends to destroy the symmetry is complemented by an
equal and opposite deformation that tends to restore it.
In each deformation positive or negative work is done.
One condition, therefore, though not an absolutely
sufficient one, that a maximum or minimum of work
corresponds to the form of equilibrium, is thus sup-
plied by symmetry. Regularity is successive symme-
try. There is no reason, therefore, to be astonished
that the forms of equilibrium are often symmetrical
and regular.

8. The science of mathematical hydrostatics arose
in connection with a special problem—-that of ke figure

B C \\\Hg
N
/ =
A fs=ls ey
i 2 3

Fig. 200. "

of the earth. Physical and astronomical data had led
Newton and Huygens to the view that the earth is an
oblate ellipsoid of revolution. Nrwrox attempted to
calculate this oblateness by conceiving the rotating
earth as a fluid mass, and assuming that all fluid fila-
ments drawn from the surface to the centre exert the
same pressure on the centre. HUvGENS's assumption
was that the directions of the forces are perpendicular
to the superficial elements. Boucukr combined both
assumptions. Crairauvy, finally (Zhéorie de la Jfigure
de la terve, Paris, 1743), pointed out that the fulfilment
of soth conditions does not assure the subsistence of
equilibrium.

The figure
of theearth
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Clairaut’s starting-point is this. If the fluid earth
is in equilibrium, we may, without disturbing its equi-
librium, imagine any portion of it solidified. Accord-
ingly, let all of it be solidified but a canal 427, of any
form. The liquid in this canal must also be in equilib-
rium. But now the conditions which control equilib-
rium are more easily investigated. If equilibrium exists
in ewery imaginable canal of this kind, then the entire
mass will be in equilibrium. Incidentally Clairaut re-
marks, that the Newtonian assumption is realised when
the canal passes through the centre (illustrated in Fig.
206, cut 2), and the Huygenian when the canal passes
along the surface (Fig. 206, cut 3).

But the kernel of the problem, according to Clai-
raut, lies in a different view. In al/ imaginabie canals,

Fig. zo07. ' Fig. 208,

even in one which returns into itself, the fluid must be
in equilibrium. Hence, if cross-sections be made at
any two points A7 and V of the canal of Fig. 207, the
two fluid columns APV and # QN must exert on the
surfaces of section at M and & equal pressures. The
terminal pressure of a fluid column of any such canal
cannot, therefore, depend on the Jengti and the form
of the fluid column, but must depend sclely on the po-
sition of its terminal points.

Imagine in the fluid in question a canal 47V of any
form (Fig. 208) referred to a system of rectangular co-
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ordinates. Let the fluid have the constant density p Mathemat
and let the force-components X, ¥, Z acting on unit of %zgeés%irs
mass of the fluid in the codrdinate directions, be func- ﬁiéizgi.sil_]d
tions of the codrdinates x, y, z of this mass. Let the quent gen-
element of length of the canal be called &5, and let its Fen
projections on the axes be dx, @y, 5. The force-com- librium.
ponents acting on unit of mass in the direction of the

canal are then X (dx/ds), YV (dy/ds), Z(ds/ds). Let

¢ be the cross-section ; then, the total force impelling

the element of mass pgds in the direction s, is

adx dy dz
Rgds (Xrla‘. i Y{i} g3 Z(f.s‘)

This force must be balanced by the increment of pres-
sure through the element of length, and consequently
must be put equal to ¢. Zp.  We obtain, accordingly,
dp=p(Xdx -+ Ydy+ Zdz). The difference of pres-
sure ( p) between the two extremities 47 and 2V is found
by integrating this expression from 47 to V. But as this
difference is not dependent on the form of the canal
but solely on the position of the extremities 4/ and %,
it follows that p (Xdx + Ydy+ Zds), or, the density
being constant, Xdx -+ Vdy 4 Zds, must be a com-
plete differential. For this it is necessary that

X:{[U, Y:{HZ, 5 :rLU,
dx dy V4

where {7 1s a function of coérdinates. Hence, according
to Clairaut, the general condition of liguid cquilibrivm is,
that the liguid be controlled by forces which can be cx-
pressed as the partial differential cocfficients of one and
the same function of coordinates.

g. The Newtonian forces of gravity, and in fact all
central forces,—forces that masses exert in the direc-
tions of their lines of junction and which are functions
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character  of the distances between these masses,—possess this
of the . 4

forces property. Under the action of forces of this character
requisite to g o : . =

produce  the equilibrium of fluids is possible. If we know U,
equilibrium g
we may replace the first equation by

U dU
(l’]’):p(r ’fjx‘i‘(?j,

dalt
\ 2 Dt )

or
dp = pdU and p = pU+ const.

The totality of all the points for which U = const
is a surface, a so-called level surface. For this surface
also p = const.  As all the force-relations, and, as we
now see, all the pressure-relations, are determined by
the nature of the function U, the pressure-relations,
accordingly, supply a diagram of the force-relations,
as was before remarked in page 98.

8113(1);2;“15;3 : In the theory of Clairaut, }‘wre presented, i's con-

g of e tained, beyond all doubt, the idea that underlies the

potential, doctrine of Jorce-function or potential, which was after-
wards developed with such splendid results by La-
place, Poisson, Green, Gauss, and others. As soon
as our attention has been directed to this property of
certain forces, namely, that they can be expressed as
derivatives of the same function U, it is at once recog-
nised as a highly convenient and economical course to
investigate in the place of the forces themselves the
function .

If the equation

dp = p (Xdx+ Ydy+ Zds) = pdU

be examined, it will be seen that Xdz+ Ydy -+ Zds
is the element of the work performed by the forces on
unit of mass of the fluid in the displacement &5, whose
projections are dx, dy, ds. Consequently, if we trans-
port unit mass from a point for which &' = C, to an-
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other point, indifferently chosen, for which &= C,, Character-
=" istics of the
or, more generally, from the surface &/ - C, to the force-func-
tiom.
surface ¢/ — C,, we perform, no matter by what path
the conveyance has been effected, the same amount of
work. All the points of the first surface present, with
respect to those of the second, the same difference of

pressure ; the relation always being such, that

Dot =p(Cy'— ),

where the quantities designated by the same indices
belong to the same surface.

1o. Let us picture to ourselves a group of such character-
very closely adjacent surfaces, of which every two suc- ﬁi‘ff?}r
cessive ones differ from each other by the same, very fﬂ\llnléﬁim
small, amount of work required to transfer a mass from o
one to the other ; in other words, imagine the surfaces
s U—C1dC T— C-+24C, and so forth.

A mass moving on a level surface evidently per-
forms no work. Hence, every component force in a
direction tangential to the
surface is— 0 ; and the di-
rection of the resultant
forceis everywhere normal
to the surface. If we call @n
the element of the normal

intercepted between two ¢ -gac
consecutive surfaces,and C+=2dC
the force requisite to con- C+4dC

vey unit mass from the ¢

one surface to the other Fig. 200.

through this element, the

work doneis /.dn=d C. As dCis by hypothesis every-
where constant, the force f= & C/dn is inversely pro-
portional to the distance between the surfaces consid-
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ered. T1f, therefore, the surfaces U are known, the The level surfaces are cylindrical surfaces, whose
directions of the forces are given by the elements of a generating lines are at right angles to the plane of the
system of curves everywhere at right angles to these paper, and whose directrices, xy == consf, are equi-
surfaces, and the inverse distances between the sur- lateral hyperbolas. The lines of force are obtained by
faces measure the magnitude of the forces.* These sur- turning the first mentioned system of curves through
faces and curves also confront us in the other depart- l= an angle of 45° in the plane of the paper about O. If
ments of physics. We meet them as equipotential a unit of mass pass

surfaces and lines of force in electrostatics and mag- from the point » to O L

netism, as isothermal surfaces and lines of flow in the by the route 70, or

theory of the conduction of heat, and as equipotential
surfaces and lines of flow in the treatment of electrical
and liquid currents.

7¢O, or by any other
route, the work done
is always Op X Og.

Hlustration 11. We will now illustrate the fundamental idea of If we imagine a ¥
?n.ut';zéoc— Clairaut’s doctrine by another, very simple example. closed canal Oprq0

éﬁiﬁl‘ile]”a Imagine two mutually perpendicular planes to cut the filled with a liquid,

example.

paper at right angles in the straight lines OX and 0V
(Fig. 210). We assume that a force-function exists
U = — xy, where x and y are the distances from the
two planes. The force-components parallel to OX and
OY are then respectively

the liquid in the ca-
nal will be in equi-

IS

librium. If transverse
sections be made at
any two points, each
section will sustain at both its surfaces the same

Fig. 210,

Slai f‘f[,f__: Ly pressure.
dx We will now modify the example slightly. Let the 4 modifica-
and forces be X= —y, Y= — a, where ¢ has a constant tel\():n’?;lgnh
_(fgr_ i value. There exists now no function / so constituted
T - that X —= JU//dx and ¥—dU/dy ; forin such a case it

# The same conclusion may be reached as follows. Tmagine a water pipe
laid from New York to Key West, with its ends turning up vertically, and of
glass. Let a gquantity of water be poured into it, and when equilibrium is
attained, let its height be marked on the glass at both ends. These two marks
will be on one level surface. Now pour in a little more water and again mark
the heights at both ends. The additional water in New York balances the
additional water in Key West. The gravity of the two are equal, But their
quantities are proportional to the vertical distances between the marks.
Hence, the force of gravity on a fixed quantity of waler is inversely as those

vertical distances, that is, inversely as the distances between consecutive.

level surfaces.—Tvrans.

would be necessary that /X /dy — & ¥ /dx, which is ob-
viously not true. There is therefore no force-function,
and consequently no level surfaces. If unit of mass
be transported from 7 to O by the way of p, the work
done is @ 3} Og. 1If the transportation be effected by
the route »¢0, the work done is ¢ X Q¢+ Op X Og.
If the canal O pr¢0 were filled with a liquid, the liquid
could not be in equidibrium, but would be forced to
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rotate constantly in the direction Op#¢0O. Currents of
this character, which revert into themselves but con-
tinue their motion indefinitely, strike us as something
quite foreign to our experience. Qur attention, how-
ever, is directed by this to an important property of
the forces of nature, to the property, namely, that the
wortk of such forces may be expressed as a function of
cosrdinates. Whenever exceptions to this principle
are ohserved, we are disposed to regard them as appa-
rent, and seek to clear up the difficulties involved.
Torricelli's 12. We shall now examine a few problems of liquid
researches = o
2:1{;123{;‘010 motian. The founder of the theory of hydmdynamlcs 18
oieiux. Torricrrit. Torricelli,* by observations on liquids dis-
charged through orifices in the bottom of vessels, dis-
covered the following law. If the time occupied in the
complete discharge of a vessel be divided into # equal
intervals, and the quantity discharged in the last, the
21, interval be taken as the unit, there will be dis-
charged in the (z— 1), the (z— 2)th, the (r—3)™. ...
interval, respectively, the quantities 3, 5, 7. . . . and
so forth. An analogy between the motion of falling
bodies and the motion of liquids is thus clearly sug-
gested. Further, the perception is an immediate one,
that the most curious consequences would ensue if the
liquid, by its reversed velocity of efflux, could rise
higher than its original level. Torricelli remarked,
in fact, that it can rise a? e wimost to this height,
and assumed that it would rise exacs/y as high if all
resistances could be removed. Hence, neglecting all
resistances, the velocity of efflux, 2, of a liquid dis-
charged through an orifice in the bottom of a vessel 1s
connected with the height % of the surface of the liquid
by the equation 2 — V' 2g/% ; thatis to say, the velocity

% De Motu Gravtum Projectorun:, 1643, -
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of efflux is the fina/ velocity of a body freely falling
‘:}hfoug? t.he height 4, or liquid-head ; for only with
11s velocity can the liquid j 1 1
e 1quid just rise again to the sur-
Torricelli’s theorem consorts excellently with the Varignon's
rest of our knowledge of natural 3t o ator
o ural processes; but we of the velo-
eel, nevertheless, the need of a more exact insight S
: - ux.
V}\RI-G]\ON attempted to deduce the principle from the
;’e ation betweenv force and the momentum generated by
orce. .The familiar equation p#— mo gives, if by a
we designate the area of the basal orifice by % the
gressur&head of 'the liquid, by s its specific gravity.
ylg the acceleration of a freely falling body, by @ the
velocity of efflux, and b 1 ]
: Yy T a small interva i
this result Ll

]

s . r:—gﬁ @ or ?_2 =
Here a/lis represents the pressure acting during the
tu'ne 7 on the liquid mass a2 7s/¢. Remembering that
2 1s a final velocity, we get, more exactly, i %

J

~a

e
ans.r-— i

| re

— e > ZT,

5;
and thence the correct formula

12

— P

13. Danier BErnouLL investigated the motions of
fluids by the principle of vis ziva. We will now treat
the‘ preceding case from this point of view, onl rea
dering t}'le idea more modern. The equatior’i whi)éh 1.:;
e'mploy 18 ps=mwv? /2. 1In a vessel of transverse sec-
tion ¢ (Fig. 211), into which a liquid of the specific

* The early inquirers deduc i i
e their propositions in the i
: : 5}
proportions, and therefore usually put » proportional to V:g%CZTEEfEte g
2,
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Daniel Ber- gravity s is poured till the head /4 is reached, the surface

noulli's o 4 . -
oniment sinks, say, the small distance dZ, and the liquid mass

otihossme 7. s /g is discharged with the velocity 2. The work
done is the same as though the weight g.d%.s had
descended the distance %#. The path of the motion in

the vessel is not of consequence here. It makes no
difference whether the stratum g.d%

- is discharged directly through the

dh
a basal orifice, or passes, say, to a
& S : e :
position @, while the liquid at @ 1s
< displaced to &, that at & displaced to
Fig 210, ¢, and that at ¢ discharged. The work

done is in each case ¢.dh.s. k.
Equating this work to the vis piva of the discharged
liquid, we get

2
gt o SETENIEZ Gy

Ty
/] :]/:Zg].z,

The sole assumption of this argument is that a//
the work done in the vessel appears as vis piva in the
liquid discharged, that is to say, that the velocities
within the vessel and the work spent in overcoming
friction therein may be neglected. ‘This assumption is
not very far from the truth if vessels of sufficient width
are employed, and no violent rotatory motion is set up.

The law of Let us neglect the gravity of the liquid in the ves-

liquid efflux : Eal :
when pro- sel, and imagine 1t loaded by a movable piston, on

ﬁ:‘:;ﬂ;? whose surface-unit the pressure 2 falls. If the piston

f;il;fogfs. be displaced a distance @/, the liquid volume ¢.d%
will be discharged. Denoting the density of the liquid
by p and its velocity by o, we then shall have
72 _3;)
p.dh=q.dhl. {——, Or 22— J Z 2t
g-7 g i N o

THE EXTENSION OF THE PRINCIPLES, 405
Wherefore, under the same pressure, different liquids
are discharged with velocities inversely proportional to
the square root of their density. It is generally sup-
posed that this theorem is directly applicable to gases.
Its form, indeed, is correct; but the deduction fre-
quently employed involves an error, which we shall
NOwW expose.

I4. Two_vessels (Fig. 212) of equal cross-sections The appli-
are placed side by side and connected with each other R
by a small aperture in the base of their dividing walls. Gor
F(?r the velocity of flow through this aperture we ob- S
tain, under the same suppositions as before,

22
g.-dh.s(h,—hy)= q{lji;'--f i; yor 0==1"2¢(h;—h,).

If we neglect the gravity of the liquid and imagine

the pressures p, and g, produced by pistons, we shall

Sl-milarly have v =1"2(p,—p,)/p. For example, if the
pistons employed be loaded with the weights 2 and
P/z, the weight 2 will sink the distance % and 7/2
will rise the distance 4. The work (2/2)/ is thus left
to generate the vz w/va of the efluent fluid. ,
A gas under such circumstances would behave dif- The behav-

ferently. Supposing the gas to flow from the vessel :g%grtﬁnfd?er
f:ontaining the load Pinto that contain- e
ing the load 7/2, the first weight will s

fall a distance /, the second, however, /1 e
since under half the pressure a gas dou-
bles its volume, will rise a distance 2/,
so that the work Ph— (P/2)2i =10
would be performed. In the case of
gases, accordingly, some additional
work,competent to produce the flow between the vessels
must be performed. This work the gas itself performs,

by expanding, and by overceming by its force of expan-,

Fig. 212,
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The result sion a pressure. The expansive force p and the volume ‘ this is not also true of compressed liquids. As a mat- Re]lﬁtive :
the same in s a7 - i o 2 volumes o
formbut v of a gas stand to each other in the familiar relation ter of fact, every liquid under pressure is compressed. compressed

different in

gases and
magnitude. 7w = 4, where %, so long as the temperature of the

To effect compression work is requisite, which reap- liguids.

gas remains unchanged, is a constant. Supposing the 1 pears the moment the liquid expands. But this work,

volume of the gas to expand under the pressure p by
an amount #w, the work done is

dw
Jw—18f§) ——.
ff“ & w

For an expansion from #, to @, or for an increase of
pressure from p, to p, we get for the work

, e s 2o
klog (7"-’() = tlog (P )

Conceiving by this work a volume of gas = of
density p, moved with the velocity #, we obtain

e
Vo
The velocity of efflux is, accordingly, in this case also
inversely proportional to the square root of the density;
Its magnitude, however, is not the same as in the case

of a liquid.
Incom- But even this last view is very defective. Rapid
ll’.?ﬁﬂiﬁog changes of the volumes of gases are always accom-
panied with changes of temperature, and, consequently
also with changes of expansive force. For this reason,
questions concerning the motion of gases cannot be
dealt with as questions of pure mechanics, but always
involve questions of /%eaz. [Nor can even a thermo-
dynamical treatment always suffice: it is sometimes
necessary to go back to the consideration of molecular

motions. ]

15. The knowledge that a compressed gas contains
stored-up work, naturally suggests the inquiry, whether

in the case of the mobile liquids, is very small. Imag-
ine, in Fig. 213, a gas and a mobile liquid of the same
volume, measured by 04, subjected to the same pres-
sure, a pressure of one atmosphere, designated by 45.
If the pressure be reduced to one-half an atmosphere,
the volume of the gas will be doubled, while that of
the liquid will be increased by only about 25 millionths.
The ‘expansive work of the gas is represented by the
surface ABDC, that of the liquid by ABLK, where

4 D
A
0 o]
AKT ( ) G
Fig. 213.

AK — 0-0000250A. If the pressure decrease till it
become zero, the total work of the liquid is represented
by the surface 4 B/, where A4/ — o-ooco504, and the
total work of the gas by the surface contained between
ARB, the infinite straight line 4CEG . ..., and the
infinite hyperbola branch BDFH . ... Ordinarily,
therefore, the work of expansion of liquids may be
neglected. There are however phenomena, for ex-
ample, the soniferous vibrations of liquids, in which
work of this very order plays a principal part. In such
cases, the changes of temperature the liquids undergo
must also be considered. We thus see that it is only
by a fortunate concatenation of circumstances that we
are at liberty to consider a phenomenon with any close
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approximation to the truth as a mere matter of molar
mechanics.

16, We now come to the idea which Dawisr Ber-
NOULLI sought to apply in his work Zydrodynamica, sive
de Viribus ot Motibus Fluidorum Commentaris (1738).
When a liquid sinks, the space through which its cen-
tre of gravity actually descends (descensus actualis) is
equal to the space through which the centre of gravity
of the separated parts affected with the velocities ac-
quired in the fall can ascend {(ascensus potentialis). This
idea, we see at once, is identical with that employed
by Huygens. Imagine a vessel filled with a liquid
(Fig. 214); and let its horizontal cross-
section at the distance x from the plane
of the basal orifice, be called f(x). Let
the liquid move and its surface descend
a distance #x. The centre of gravity,
then, descends the distance x /() . Zx /M,
where M = f'f(x) dx. If % is the space of
potential ascent of the liquid in a cross-
section equal to unity, the space of po-
tential ascent in the cross-section /(x) will be Z/7 (x)2,
and the space of potential ascent of the centre of

Fig. 214.

gravity will be

» dx
L SE) e,
B i
where
ax
N= |-
f(x)

For the displacement of the liguid’s surface through a
distance #x, we get, by the principle assumed, both
A and £ changing, the equation

—xflxydae = Ndk+ Ld V.
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This equation was employed by Bernoulli in the solu-
tion of various problems. It will be easily scen, that
Bernoulli’s principle can be employed with success
only when the re/ative welocities of the single parts of
the liquid are known. Bernoulli assumes,—an assump-
tion apparent in the formula,—that all particles once
situated in a horizontal plane, continue their motion
in a horizontal plane, and that the velocities in the
different horizontal planes are to each other in the in-
verse ratio of the sections of the planes. This is the
assumption of e parailelism of strata. It does not, in
many cases, agree with the facts, and in others its
agreement is incidental. When the vessel as compared
with the orifice of efflux is very wide, no assumption
concerning the motions within the vessel is necessary,
as we saw in the development of Torricelli’s theorem.
17. A few isolated cases of liquid motion were
treated by Newron and JoHN Berwourni. We shall
consider here one to which a
familiar law 1s directly applic-
able. A cylindrical U-tube with
vertical branches is filled with 4t
a liquid (Fig. 215). The length 3
of the entire liquid column is /.
If in one of the branches the
column be forced a distance x
below the level, the column in
the other branch will rise the distance x, and the
difference of level correspending to the excursion «
will be 2a.  If @ is the transverse section of the tube
and s the liquid’s specific gravity, the force brought
into play when the excursion x is made, will be 2 a s x,
which, since it must move a mass a/Zs/¢ will determine
the acceleration (2 wsx) /(& /s /g) = (25/7) #, or, for unit

Fig. a15.

The paral-
lelism of
strata,

The water-
pendulum
of Newton,



The liquid
pendulum
of John

Bernoulli,
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excursion, the acceleration 2¢/Z. We perceive that
pendulum vibrations of the duration

i
= \j‘)lr'
=

will take place. The liquid column, accordingly, vi-
brates the same as a simple pendulum of half the length
of the column.

A similar, but somewhat more general, problem was
treated by John Bernoulli. The two branches of a
cylindrical tube (Fig. 216), curved in any manner, make

: with the horizon, at the
points at which the
surfaces of the liquid

and . Displacing one
of the surfaces the dis-
tance x, the other sur-

face suffers an equal
displacement. A difference of level is thus produced
x (sin a - sin /), and we obtain, by a course of reason-
ing similar to that of the preceding case, employing
the same symbols, the formula

/
7=\ e By
The laws of the pendulum hold true exact/y for the
liquid pendulum of Tig. 215 (viscosity neglected), even
for vibrations of great amplitude ; while for the filar
pendulum the law holds only approximately true for
small excursions.

18. The centie of gravity of a liquid as a whole can
rise only as high as it would have to fall to produce its
velocities. In every case in which this principle appears
to present an exception, it can be shown that the excep-

move, the angles a -

S —
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tion is only epparent. One example is Hero’s fountain.
This apparatus, as we know, consists of three vessels,
which may be designated in the descending orcer as
A, B, C. The water in the open vessel 4
falls through a tube into the closed vessel (-\
C; the air displaced in C exerts a pressure
on the water in the closed vessel B, and
this pressure forces the water in 5 in a
jet above A4 whence it falls back to its
original level. The water in 7 rises, it is
true, considerably above the level of 7,
but in actuality it merely flows by the
circuitous route of the fountain and the
vessel A4 to the much lower level of C.
Another ap-
parent exception
to the principle
in question 1s
that of Montgol-
fier’'s  Zwdrawlic
ram,in which the

2=

liquid by its own
gravitational
work appears to
rise considerably
aboveitsoriginal
level. The liquid
flows (Fig. 217)
from a cistern 4
through a long
pipe £& and a valve F, which opens inwards, into a
vessel 5. When the current becomes rapid enough, the
valve V7 is forced shut, and a liquid mass m affected with
the velocity # is suddenly arrested in K&, which must

Fig, 217.

Hero's
fountain.

Montgol~
fier’s hy-
draulic
ram.
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be deprived of its momentum. If this be done in the
time ¢, the liquid can exert during this time a pressure
g =umuv/l, to which must be added its hydrostatical
pressure g.  The liquid, therefore, will be able, during
this interval of time, to penetrate with a pressure p 4+ ¢
through a second valve into a pile Heronds, H, and in
consequence of the circumstances there existing will
rise to a higher level in the ascension-tube SS than
that corresponding to its simple pressure p. It is
to be observed here, that a considerable portion of the
liquid must first low off into B, before a velocity requi-
site to close J7is produced by the liquid’s work in A Z.
A small portion only rises above the original level ;
the greater portion flows from 4 into B. If the liquid
discharged from S5 were collected, it could be easily
proved that the centre of gravity of the quantity thus
discharged and of that received in & lay, as the result
of various losses, actually 4efow the level of A.

THE EXTENSION OF THE PRINCIPLES, 413

1s equivalent to the descent of the contents of the funnel
from the centre of gravity .S of the superficial stratum
to the centre of gravity .5’ of the contents of the fun-
nel. If the vessel 1s sufficiently wide the velocities in
it are all very small, and almost the entire zis ziva is
concentrated in the contents of the funnel. If all the
parts of the contents had the same velocities, they
could all rise to the original level, or the mass as a
whole could rise to the height at which its centre of
gravity was coincident with S. But in the narrower
sections of the funnel the velocity of the parts is
greater than in the wider sections, and the former
therefore contain by far the greater part of the z/s
vipa.  Consequently, the liquid parts above are vio-
lently separated from the parts below and thrown
out through the neck of the funnel high above the
original surface. The remainder, however, are left
considerably below that point, and the centre of grav-

An illusra-  The principle of the hydraulic ram, that of the ity of the whole never as much as reaches the original
tion, which - . level of .S
clucidates transference of work done by a large liquid mass t9 a - O‘ o o g ; _
ot Sl Shl i 1‘9.1 ne of the most important ac 1e‘treme1.1ts 0 L‘L’f{ﬁiﬁém
0 thus acquires a great ; aniel Bernoulli is his distinction of /Zydrestzatic and ;‘Eé‘;?é?
e i leydrodynamic pressure.  The pressure A $
trated in the following which liquids exert is altered by motion;
very simple manner. and the pressure of a liqmd #n motion 7
s T may, according to the circumstances, be 4 0e
opening O of a funnel v | greater or less than that of the liquid a# rest
and plunge it, with its i with the same arrangement of parts, We
gy wide opening down- ‘ 3 will illustrate th]_s by a simple example. ;
wards, deep into a + The vessel 4, which has the form of a body -
large vessel of water. If the finger closing the upper 4 of revolution with vertical axis, is kept o

opening be quickly removed, the space inside the
funnel will rapidly fill with water, and the surface of the
water outside the funnel will sink. The work performed

-

constantly filled with a frictionless liquid, so that its
surface at m#z does not change during the discharge
at /. We will reckon the vertical distance of a particle
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Determina- from the surface m#n downwards as positive and call
tion of the

recsiee itz. Let us follow the course of a prismatic element of
generally

acting in li- volume, whose horizontal base-area 1s & and height £,
motei? o its downward motion, neglecting, op the assump-
tion of the parallelism of strata, all velocities at right
angles to . Let the density of the liquid be p, the
velocity of the element », and the pressure, which is
dependent on z, g If the particle descend the dis-

tance #z, we have by the principle of o5 viza

aﬁpd( ):(xﬂpg(iz—aﬁgﬁa’z B (W

that is, the increase of the o5 #/oa of the element 1s
equal to the work of gravity for the displacement in
question, less the work of the forces of pressure of the
liquid. The pressure on the upper surface of the element
is ap, that on the lower surface is a [ p - (dp/d=)5].
The element sustains, therefore, if the pressure in-
crease downwards, an upward. pressure a(dp/dz)f ;
and for any displacement 7z of the element, the work
a(dp/dz)fds must be deducted. Reduced, equation
(1) assumes the form

P (212:) =pgdz — &l dz

02
=

dsz

and, integrated, gives

o

i

e S o2 Al conyiai R R (2)

~1
el

If we express the velocities in two different hori-
zontal cross-sections @, and a, at the depths 5, and sz,
below the surface, by #,, 7,, and the corresponding
pressures by p,, p,, we may write equation (2) in the
form

L =) =pgG—a) 4 (5 —2) - B
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Taking for our cross-section @, the surface, 5, =0, The hydro-
G . - dynamic
#,=0; and as the same quantity of liquid flows through pressure :
. . - . varies with
all cross-sections in the same interval of time, @, v, = the circun-
stances of
a,v,. Whencg, finally, the motion.

The pressure p, of the liquid 7z metion (the hydro-
dynamic pressure) consists of the pressure pgs, of the
liquid @ rest (the hydrostatic pressure) and of a pres-
sure (p/2)0% [(e3 — a?)/ei] dependent on the density,
the velocity of flow, and the cross-sectional areas. In
cross-sections larger than the surface of the liquid, the
hydrodynamic pressure is greater than the hydrostatic,
and wice versa.

A clearer idea of the significance of Bernoulli’s Illustration
of these re-

principle may be obtained by imagining the liquid in PR
- 5 W O =
the vessel 4 unacted on by gravity, and its outflow auidsunder

pressures
produced by a constant pressure g, on the surface. produced

1 by pistons,
Equation (3) then takes the form PR
o o P
Pr=r+ 9 (v3 — EDE

If we follow the course of a particle thus moving, it
will be found that to every increase of the velocity of
flow (in the narrower cross-sections) a decrease of
pressure corresponds, and to every decrease of the ve-
locity of flow (in the wider cross-sections) an increase
of pressure. This, indeed, is evident, wholly aside
from mathematical considerations. In the present case
every change of the velocity of a liquid element must be
exclusively produced by the work of the liquid’s forces
of pressure.  When, therefore, an element enters into
a narrower cross-section, in which a greater velocity -
of flow prevails, it can acquire this higher velocity only
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» will be less than that deducible from Torricelli’s law,

as a portion of the work is consumed by resistances
due to viscosity and perhaps to friction. We find, in
fact, that o =V 2 /4,, where /iy << . Expressing by /,

the pelocity-head, and by /%, the resistance-head, we may
put k=rh, + 7. If to the main cylindrical tube we
affix vertical lateral tubes, the liquid will rise in the
latter tubes to the heights at which it equilibrates the
pressures in the main tube, and will thus indicate at all
points the pressures of the main tube. The noticeable
fact here is, that the liquid-height at the point of influx
of the tube is = %,, and that it diminishes in the direc-
tion of the point of outflow, by the law of a straight
line, to zero. The elucidation of this phenomenon is
the question now presented.

Gravity here does not act directly on the liquid in The condi-
tions of the

the horizontal tube, but all effects are transmitted to it perform-
ance o

by the pressure of the surrounding parts. If we imag- worl in

. - - - - Ses.
ine a prismatic liquid element of basal area « an o
length £ to be displaced in the direction of its length

a distance @z, the work done, as in the previous case, is

ap P ap
Sl L e
For a finite displacement we have
ﬁlf]ﬁ
- ;
-—aﬂj G ) fe 1
22

Work is done when the element of volume is displaced
from a place of Aigher to a place of /lower pressure.
The amount of the work done depends on the size of
the element of volume and on the difference of pressure
at the initial and terminal points of the motion, and
not on the length and the form of the path traversed.

e —————————

Treatment
of a liquid
problem in
which vis-
cosity and
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on the condition that a greater pressure acts on its rear
surface than on its front surface, that is to say, onl
when it moves from points of higher to points of’lowe{'
pressure, or when the pressure decreases in the direc-
tlon.of the motion. If we imaginé the pressures in
a wide section and in a succeeding narrower sec;ci011
to be ff)r a moment equal, the acceleration of the ele-
ments in the narrower section will not take place ; the
elements will not escape fast enough ; they will acc;mu-
lattls before the narrower section ; and a/ #he entrance
to it the requisite augmentation of pressure will be im-
mediately produced. The converse case is obvious
zo. In dealing with more complicated cases thc;,
problems of liquid motion, even though viscosit’y be

friction are ‘l
considered. ==

OHAME M MU HEHE

Fig. 220,

neglected, present great difficulties; and when the
enormous effects of viscosity are taken into account
anything like a dynamical solution of almost ever’
problem is out of the question. So much so, that al}-,
though these investigations were begun by’NewtOn
we have, up to the present time, only been able tc,J
master a very few of the simplest problems of this class
ar}d that but imperfectly. We shall content ourselve;
?Vlth a simple example. If we cause a liquid contained
ina V'BSSCI of the pressure-head /% to flow, not through
an orifice in its base, but through a long cylindricbal
tube fixed in its side (Fig. 220), the velocity of efflux
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If the diminution of pressure were twice as rapid in
one case as in another, the difference of the pressures
on the front and rear surfaces, or the force of the work,
would be doubled, but the space through which the
work was done would be halved. The work done would
remain the same, whether done through the space a4
or ac of Fig. 221.
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generate the zss vive of the element discharged into
the mouth of the tube 1s

o2
9P =9B—21)=aBgph—Ny)=qfgph,

and the work transmitted by the pressure of the liquid
to the element traversing the length of the tube, is

The conse- Through every cross-section ¢ of the horizontal tube GBp, =g Bgph,,

ces of ¥, E = .
these con-  the liquid flows with the same velocity z. If, neglect-
ditions,

ing the differences of velocity in the same cross-section,
we consider a liquid element which exactly fills the
section ¢ and has the length f, the vis viva ¢ 8 p(22 /2)
of such an element will persist unchanged throughout
its entire course in the tube.
This is possible only provided
the vis viva consumed by friction
is replaced by the work of 2he
liquid’s jorces of pressure. Hence,
in the direction of the motion
of the element the pressure
must diminish, and for equal distances, to which the
same work of friction corresponds, by equal amounts.
The total work of gravity on a liquid element ¢/ p
issuing from the vessel, is ¢ 8 pgh. Of this the portion
g B p (02 /2) is the vis viva of the element discharged
with the velocity z into the mouth of the tube, or, as
v ==1V'2g%,, the portion ¢ fpgk,. The remainder of
the work, therefore, ¢ Bpgh,, is consumed in the tube,
if owing to the slowness of the motion we neglect the
losses within the vessel.

If the pressure-heads respectively obtaining in the
vessel, at the mouth, and at the extremity of the tube,
are /i, &y, 0, or the pressures are p —=Agp, f, = fy g 0,0,
then by equation (1) of page 417 the work requisite to

Fig. 221.

or the exact amount consumed in the tube.
Let us assume, for the sake of argument, that the mdirect

demonstra-
pressure does not decrease from g, at the mouth to tion of

zero at the extremity of the tube by the law of a straight St
line, but that the distribution of the pressure is differ-
ent, say, constant throughout the entire tube. The
parts in advance then will at once suffer a loss of ve-
locity from the fri tion, the parts which follow will
crowd upon them, a d there will thus be produced at
the mouth of the tube an augmentation of pressure
conditioning a constant velocity throughout its entire
length. The pressure at the end of the tube can only
be = 0 because the liquid at that point is not prevented
from yielding to any pressure impressed upon it.

If we imagine the liquid to be a mass of smooth 4 simile
elastic balls, the balls will be most compressed at the ek thess
bottom of the vessel, they will enter the tube in a state Fr&?ggmna
of compression, and will gradually lose that state in S
the course of their motion. We leave the further de-
velopment of this simile to the reader.

It 1s evident, from a previous remark, that the work
stored up in the compression of the liquid itself, is very
small. The motion of the liquid is due to the work of
gravity in the vessel, which by means of the pressure
of the compressed liquid is transmitted to the parts in
the tube.
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éxg;:];z“a} An interesting modification of the case just dis-

1~ - . . - -

cation of cussed is obtained by causing the liquid to flow through
Sults

discussed, a tube composed of a number of shorter cylindrical
tubes of varying widths. The pressure in the direction
of outflow then diminishes (Fig. 222) more rapidly in
the narrower tubes, in which a greater consumption of
work by friction takes place, than in the wider ones.
We further note, in every passage of the liquid into a

ETHAPTER TV

THE FORMAL DEVELOPMENT OF MECHANICS.

1 I.
‘ THE ISOPERIMETRICAL PROBLEMS.
1. When the chief facts of a physical science have The formal,
. ¥ - as distin-
once been fixed by observation, a new period of its guished
from the de-
e i S )

development begins—the deductive, which we treated ductive, de-
o - 2 : velopment
in the previous chapter. In this period, the facts are of physical

Fig. 222.

wider tube, that is to a smaller velocity of flow, an zn-
crease of pressure (a positive congestion); in every
passage into a narrower tube, that is to a greater velo-
city of flow, an abrupt dminution of pressure (a nega-
tive congestion). The velocity of a liquid element on
which no direct forces act can be diminished or in-
creased only by its passing to points of higher or lower
pressure.

reproducible in the mind without constant recourse to
observation. Facts of a more general and complex
character are mimicked in thought on the theory that
they are made up of simpler and more familiar obser-
vational elements. But even after we have deduced
from our expressions for the most elementary facts
(the principles) expressions for more common and more
complex facts (the theorems) and have discovered in
all phenomena the same elements, the developmental
process of the science is not yet completed. The de-
ductive development of the science is followed by its
JSormal development. Here it is sought to put in a clear
compendious form, or sysfem, the facts to be repro-
duced, so that each can be reached and mentally pic-
tured with the Zeast intellectual effort. Into our rules
for the mental reconstruction of facts we strive to in-
corporate the greatest possible uniformity, so that these
rules shall be easy of acquisition. Itis to be remarked,
that the three periods distinguished are not sharply

sclence.
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separated from one another, but that the processes of
development referred to frequently go hand in hand,
although on the whole the order designated is unmis-
takable.

1Tnl(:?riiscoarieri- 2. A powerful influence was exerted on the formal

e : .
sichioms, development of mechanics by a particular class of

f:gfiw?: mathematical problems, which, at the close of the
andminima seventeenth and the beginning of the eighteenth cen-
turies, engaged the deepest attention of inquirers.
These problems, the so-called dsoperimetrical problems,
will now form the subject of our remarks. Certain
questions of the greatest and least values of quanti-
ties, questions of maxima and minima, were treated by

the Greek mathemati-

P cians.  Pythagoras is

i :l? . said to have taught that
A o : the circle, of all plane

Selp figures of a given peri-

Fig. 223, meter, has the greatest

area. The idea, too, of a
certain economy in the processes of nature was not
foreign to the ancients. Hero deduced the law of the
reflection of light from the theory that light emitted
from a point 4 (Fig. 223) and reflected at M will travel
to B by the shortest route. Making the plane of the
paper the plane of reflection, .SS the intersection of
the reflecting surface, 4 the point of departure, B the
point of arrival, and 47 the point of reflection of the
ray of light, it will be seen at once that the line A W5,
where 5’ is the reflection of B, is a straight line. The
line AM B’ is shorter than the line ANVZ', and there-
fore also AMPB is shorter than ANB. Pappus held
similar notions concerning organic nature; he ex-
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plained, for example, the form of the cells of the honey-
comb by the bees’ efforts to economise in materials.
These ideas fell, at the time of the revival of the There-

& : i searches of
sciences, on not unfruitful soil. They were first taken Kepler, Fer-

up by FermaT and RoBErvaL, who developed a method b
applicable to such problems. These inquirers ob-
served,—as Kepler had already done,—that a magni-

tude y which depends on another magnitude x, gen-

erally possesses in the vicinity of its greatest and least
values a peculiar property. Let x (Fig. 224) denote
abscissas and y ordinates. If, while x increases, » pass
through a maximum value, its increase, or rise, will

be changed into a decrease, or

fall; and if it pass through a

minimum value its fall will be

changed into a rise. The neigh- ]y

boring values of the maximum
or minimum value, consequently, Fig. 221,

will lie very near each other, and

the tangents to the curve at the points in question will
generally be parallel to the axis of abscissas. Hence,
to find the maximum or minimum values of a quan-

(st

tity, we seek the parallel tangents of its curve.

The method of tangenis may be put in analytical The
form. For example, it is required to cut off from a iﬁﬁ:lﬁﬂff
given line @ a portion x such that the product of the
two segments x and @ — x shall be as great as possible.
Here, the product x (¢ — x) must be regarded as the
quantity ¥ dependent on x. At the maximum value of
y any infinitely small variation of x,; say a variation &,
will produce no change in 3. Accordingly, the required
value of » will be found, by putting

Fa—x)=(+ §@—x—8)

or
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dx‘xzzaijag_'. CT ol
as o 25— a &= S f v, _sine
Lo | = —e. —;— 17
7, sing
OIaﬁgxﬁg_ 7y _l]lf
7 I b E
As & may be made as small as we please, we also get where 7z étands for the 1nc?ex ‘of rfafractmn. He%“o slaw
‘ of reflection, remarks Leibnitz, is thus a special case

5 3 e
s ke of the law of refraction. For equal velocities (7, = »,),

when — he o g i :
hence » @/2. the condition of a minimum of #me is identical with

In this way, the concrete idea of the method of | the condition of a minimum of space.
tbangents may be translated into the language of alge- Huygens, in his optical investigations, applied and Huygens's
£ 7 = s 4 5 completior
ra; the procedure also contains, as we see, the germ further perfected the ideas of Fermat, considering, not of Fermat's

e1s age . . researches.
only rectilinear, but also curvilinear motions of light,

in media in which the velocity of the light varied con-
tinuously from place to place. TFor these, also, he
found that Fermat's law obtained. Accordingly, in all

of the differential caleulus.
The refrac- 1
The er_lf;ﬁt : fermat sought t_o find for the law of the refraction
e ight an expression analogous to that of Hero for
law of reflection. He remarked

d thz-lt light, proceeding from a Q motions of light, an endeavor, so to speak, to produce
- pO}nt A, and refracted at a results in a minzmum of time appeared to be the funda-
. M___O point M, travels to B, not by mental tendency.
¢ the shortest route, but in the 3. Similar maximal or minimal properties were The prob-

. 5 lem of the
brought out in the study of mechanical phenomena. brachisto-

; ; hrone.
As we have already noticed, John Bernoulli knew that i
a freely suspended chain assumes the form for which
its centre of gravity lies lowessz. This idea was, of

course, a simple one for the investigator who first rec-

shortest time. If the path AMRB
is performed in the shortest
time, then a neighboring path
ANDB, infinitely near the real
path, will be described in the

B
Fig. 225,

same time. If we draw from & on 44/ and from 4/ on
NVEB the perpendiculars /2 and MQ, then the second
route, before refraction, is less than the first route by a
distance MP = NJf sin @, but is larger than it after
refraction by the distance NQ=NMsinff. On the
supposition, therefore, that the velocities in the first
and second media are respectively », and 7,, the time
required for the path 4/ % will be a minimum when
N sin o NMsin f3
R
or ;

ognised the general import of the principle of virtual
velocities. Stimulated by these observations, inquir-
ers now began generally to investigate maximal and
minimal characters. The movement received its most
powerful impulse from a problem propounded by John
Bernoulli, in June, 16g6*—the problem of the érachis-
Zochrone. In a vertical plane two points are situated,
A and B. It is required to assign in this plane the
curve by which a falling body will travel from 4 to B
in the skoriest time. The problem was very ingeniously

# Aeta Eruditorum, Leipsic,
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solved by John Bernoullj himself ; and solutions were
also supplied by Leibnitz, L’Hépital, Newton, and
James Bernoulli.
Jones The most remarkable solution was Joux Brg-
feniousso- NOULLI'S own.  This inquirer remarks that problems
glr:lglrc;?h?sf_of this class have already been solved, not for the mo-
tochrone.  tion of falling bodies, but for the motion of light. He
accordingly imagines the motion of a falling body re-

placed by the motion of

7 a ray of light. (Comp.

P- 379-) The two points

4 and B are supposed

5 to be fixed in a medijum

in which the velocity of

light increases in the

vertical downward direction by the same law as the

velocity of a falling body. The medium is supposed

to be constructed of horizontal layers of downwardly

decreasing density, such that o — V'2¢7% denotes the

velocity of the light in any layer at the distance 4 be-

low 4. A ray of light which travels from 4 to B un-

der such conditions will describe this distance in the

shortest time, and simultaneously trace out the curve
of guickest descent.

Calling the angles made by the element of the

curve with the perpendicular, or the normal of the
layers, a, a’, a”. .

Fig. 226.

-+, and the respective velocities
2, o, 9. . .., we have
sine  sina’ sina”
e e — s,
v v 7 ‘
or, designating the perpendicular distances below A
by , the horizontal distances from < by 3, and the arc
of the curve by s,

i
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‘The bra-
: histo-
((Z-J gﬁi'sl‘,ll?c a
s Y cycloid.

2
whence follows
dy? =k2p2dst = k202 (dx? + dy?)

and because v — 1/ 2 gx also

X 177 =
{l?)‘ = (ZJC\‘ t?_”x: where ¢ = -ZE/{,_’ 7

This is the differential equation of a cycloid, or C‘lllI'VE;:
described by a point in the cir-cumference c.>f a cl1‘rf, eo
radius 7 = a/2 == 1/4 g42, rolling on a straight Jn:;. T
To find the cycloid that passes through A4 and 5, Sttt
it is to be noted that a// cycloids, inasmuch as they are Eﬁ;"":ﬁ,’én
produced by similar con- o Bh
structions, are similar,
and that if generated by
the rolling of circles on
AD from the point 4 as
origin, are also similarly
tuated with respect to
:i‘f;mpoint A. Alxjccordingly, we draw .through. ABt’hi
straight line, and construct any cycloid, cuttmgt.
straight line in A’. The rachu_s of the genera mf
circle is, say, . Then the radius of the gc:zneratlnb
circle of the cycloid sought is = 7"(AB'/AB JE -
This solution of John Bernoulli’s, achieved ent1r'e j;‘
without a method, the outcome of pure geometrlczz1
fancy and a skilful use of such knowledge as hap]ivenbcI
to be at his command, is one of the most remar = E'l,
and beautiful performances in the his_tory of p}fym}clz_l
science. John Bernoulli was an asthetic genius mft{ 18
field. His brother James’s character was er}t.lrely differ-
ent. James was the superior of John in critical power,

Fig. 227,
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Compari-  hyt iy iginali
ST In originalit

S e

of Johu anc ss felicitous form.

noullj. he did not fail to develop, w
general method applicable ¢
mm these two brothers we £
traits of high scientific tal
another,—traits, which in t
inquirers, in Newton,
gether. We shal] soon

O such problems. Thuys

see those two tendencies

Vignette to Zeibnitsiz el Fokannis Be

PRl comerciy, stoli
g W eprstolicim
Lausanne ang Genev ¢ ;

4, Bousquet, 1745.

ames Ber- i
James Ber- 4. James Bernoull; finds that the

chief object of
marks on reg 1
ien earch hitherto had been to find the values of a vari-

hawreof - able quantity, for which a second variable quantity
2

the new
e first, assumes itg greatest or

problam.  which is a function of th
its least value. The Present problem, however, is to find

yand imagination was Surpassed by the
ewise solved thig problem,
But, on the other hand,
ith great thoroughness, a

ent separated from one
he very greatest natura)
for cxample, are combined to-
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from among an infinite mumber of curves one which pos-
sesses a certain maximal or minimal property. This, as
he correctly remarks, is a problem of an entirely dif-
ferent character from the other and demands a new
method.
The principles that James Bernoulli employed in The princi-

o = . ples em-

the solution of this problem (Acta Eruditorum, May, })loyedén
ames er-
1697)* are as follows: noulli’s so-

lution.

(1) If a curve has a certain property of maximum
Oor minimum, every portion or element of the curve has
the same property.

(2) Just as the infinitely adjacent values of the

-maxima or minima of a quantity in the ordinary prob-

lems, for infinitely small changes of the independent
variables, are constant, so also is the quantity here to
be made a maximum or minimum for the curve sought,
for infinitely contiguous curoes, constant.

(3) It1is finally assumed, for the case of the brachis-
tochrone, that the velocity is o =1"2 g4, where / de-
notes the height fallen through.

If we picture to ourselves a very small portion 4.8 C The essen-

i i ks tial fea-
of the curve (Fig. 228), and, imagining a horizontal }urcs -
ames er-
line drawn through B, cause noulli’s so-
A lution.

the portion taken to pass into
the infinitely contiguous por-
tion 4DC, we shall obtain, by Vel

considerations exactly similar 7 4 ) ot
to those employed in the treat-
ment of Fermat's law, the well- .

Fig. 228,

known relation between the
sines of the angles made by the curve-elements with
the perpendicular and the velocities of descent. In
this deduction the following assumptions are made,

* See also his works, Vol. TI, p. 768,
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(1), that the part, or clement, ABC is brachistochro-
nous, and (2), that ADC is described in the same time
as ABC. Bernoulli’s calculation is very prolix ; but
its essential features are obvious, and the problem 18
solved * by the above-stated principles.

The Pro- With the solution of the problem of the brachisto-

gramma of o 5
fames Ber- chrone, James Bernoulli, in accordance with the prac-

noulli, or . &t ¥ v
Moeproposi- tice then prevailing among mathematicians, proposed

tion of the : 1 1 1 %
o oral iso- the following more general ¢ 1soper1metncal problem ”:

Eiprob- << Of all isoperimetrical curves (that is, curves of equal
piey ¢« perimeters or équal lengths) between the same two
«fixed points, to find the curve such that the space
ctincluded (1) by a second curve, each of whose ordi-
ccpates is a given function of the corresponding ordi-
< pate or the corresponding arc of the one sought, (2)
¢y the ordinates of its extreme points, and (3) by the
¢ part of the axis of abscisse lying between those ordi-
<¢nates, shall be a maximum or minimum.”
For example. Itis required to find the curve BFN,
described on the base BN such, that of all curves of
the same length on BV,
this particular one shall make
the area BZN a minimum,
N ere PR PRy M —
(LK), and so on. Let the
relation between the ordi-
nates of BZN and the cor-
responding ordinates of BFN
be given by the curve BEH. To obtain £Z from I’F,
draw FGH at right angles to BG, where B G is at right
angles to BN By hypothesis, then, 7= GH, and

7z M

Fig. 229.

# For the details of this solution and for information generally on the his-
tory of this subject, see Woodhouse's Treatise on Isoperimetrical Problems

and the Calculus of Variations, Cambridge, 1810.—Trans.
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so for the other ordinates.
PEF— x, PZ = x".

h : :
John Bernoulli gave, forthwith, a solution of this john B
er-

Further, we put 57—y,

problem, in the form noulli’s so-
lution of
s ihls e
y :J i o em.
Va2’ — X2

where ¢ is an arbitrary constant. Tor 2 — 1
o 2

}'ﬁf e i
e = ey S 2 _2_
S g Va X2

t}lrllat 1s, BFN i's a semicircle on AV as diameter, and
:‘ e ?rea BZN is equa.l to the area B//V. For this’ par-
1cular case, the solution, in fact, is correct. But th
general formula is not universally valid. . e
Jam(zz ];I;:ngsll?ihcatlolf of John Bernoulli's solution,
e« (?1‘)en y engaged to do three things:
» to discover his brother’s method ; sccond, to point
fc)ut its con"tradictions and errors ; and, third, tc; givlc)a tllllle
b?;tihs;‘lsu‘gslnr;]inzthzJealot}lfy and animosity of the two
. : ed, on this occasion, in a violent
;Zilr}l:.omzl;t‘zrcontrowfersy, which lasted till ]amiz’csl
e James’s death, John virtually confessed
r and adopted the correct method of his brother
James Bernoulli surmised, and in all probabﬂit).z]ames Ber-

Corrcctly tha t)[ -‘3 - criticis
2 2 ll'llk‘led by th.e results Of h]S re iti .’ £
Sm o

search
i) es on the catenary and the curve of a sail filled S
% .W'lnd, had again attempted an iudirect solution e
imagining K7V filled with a liqui ‘ :
a liquid of variable densi
and taking the lowes it1 s
est position of the centre of gravi
oA of gravit
als‘dc?etetrm;)natlve of the curve required. Making thz
ordin = i .
= Oe;dei tZ_jf, the specific gravity of the quubid in
nate /' —x must be p/x, and similarly in

every other ordinate. The weight of a vertical fila-



The tunda-
mental

principle of noulli once more assumes that the small portion /&
e

James Ber-
noulli’s
general so-
lution.
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ment is then p. dy/x, and its moment with respect to
BNV is
1 7y
.’)Cj} : 'J; =

1
2 x o 2

Hence, for the lowest position of the centre of gravity,
5J'f) 4y, or fp dy = BZN, is a maximum. DBut the
fact is here overlooked, remarks James Bernoulli, that
with the variation of the curve BEN the weight of the
liquid also is wvaried. Consequently, in this simple
form the deduction is not admissible.

In the solution which he himself gives, James Ber-

of the curve possesses the prop-
erty which the whole curve pos-
sesses. And then taking the four
successive points 7 ¥, 7, F,
of which the two extreme ones
are fixed, he so varies £, and
#,, that the length of the arc #
. F,F, F, remains wuichanged,
which is possible, of course, only by a displacement
of swo points. We shall not follow his involved and
unwieldy calculations. The principle of the process is
clearly indicated in our remarks. Retaining the des-
ignations above employed, James Bernoulli, in sub-
stance, states that when

(27_}’ =

fp dy is a maximum, and when
el
VZ2ap— p2

fpa’y is a minimum.

!f_y =
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The dissensions between the two brothers were, we
may admit, greatly to be deplored. Yet the genius of
the one and the profundity of the other have borne, in
the stimulus which Euler and Lagrange received from
their several investigations, splendid fruits.
5. Buler (Problematis Isoperimetrici Solutio Generalis, Evler's

. general

Com. Acad. Petr. T. VI, for 1733, published in 1738)* classifica-

o 4 tion of the
was the first to give a more general method of treating isoperimet-

these questions of maxima and minima, or isoperimetri- gl
cal problems. But even his results were based on

prolix geometrical considerations, and not possessed of
analytical generality. Euler divides problems of this
category, with a clear perception and grasp of their
differences, into the following classes :

(1) Required, of a// curves, that for which a prop-
erty A is a maximum or minimum.

{2) Required, of all curves, equally possessing a
property A4, that for which £ is a maximum or mini-
mum.

(3) Required, of all curves, equally possessing two
properties, 4 and B, that for which Cis a maximum
or minimum. And so on.

A problem of the first class is (Fig. 231) the finding Examples.
of the shortest curve through 47 and . A problem of
the second class is the finding of a curve through 47
and &, which, having the given length 4, makes the
area M PN a maximum. A problem of the third class
would be: of all curves of the given length 4, which
pass through A/, & and contain the same area
MPN = B, to find one which describes when rotated
about MV the least surface of revolution. And so on.

* Euler’s principal contributions to this subject are contained in three
memoirs, published in the Commeniaries of Fetersburg for the years 1733, 1736,
and 1766, and in the tract Methodus inveniendi Lineas Curvas Proprietate
Maximi Minimive gaudentes, Lausanne and Geneva, 1744.—7rans.
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We may observe here, that the finding of an abso-
lute maximum or minimum, without collateral condi-
tions, is meaningless. Thus, all the curves of which in

the first example the shortest is sought
P possess the common property of pas-
sing through the points M and V.

The solution of problems of the
first class requires the variation of 7220
elements of the curve or of ene point.
This is also sufficient. In problems
of the second class ZZr¢e elements or
tawo points must be varied ; the reason
being, that the varied portion must
possess in common with the unvaried portion the prop-
erty 4, and, as B is to be made a maximum or mini-
mum, also the property 5, thatis, must satisfy 7zwe con-
ditions. Similarly, the solution of problems of the third
class requires the variation of four elements. And

Fig. 231,

S0 on.
The solution of a problem of a higher class involves,

mutability iy i A " o o 3
of theiso- by implication, the solution of its converse, in all its
perimetri- o -

cal proper- forms. Thus, in the third class, we vary four elements
ties, with

Eulersin- of the curve, so, that the varied portion of the curve

ferences.

shall share equally with the original portion the values
4 and B and, as C is to be made a maximum or a
minimum, also the value €. DBut the same conditions
must be satisfied, if of all curves possessing equally Z
and C that for which 4 is a maximum or minimum is
sought, or of all curves possessing 4 and C that for
which 2 is a maximum or minimum is sought. Thus
a circle, to take an example from the second class, con-
tains, of all lines of the same length 4, the greatest
area 5, and the circle, also, of all curves containing
the same area B, has the shortest length 4. As the

e

5 e, S s et
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condition that the property 4 shall be possessed j
common or shall be a maximum, is expressed in 'tlin
same manner, Euler saw the possibility of reducin the
problems of the higher classes to problems of. th gﬁ 3
class. If, for example, it is required to find Zf rif
curves having the common property A thatJ Wh'ah
makes 5 a maximum, the curve is souﬂilt for Wh?ch
A + mB is a maximum, where  is an Zrbitrar -
stant. If on any change of the curve, 4 4 mpB erCDnv
value of o, does not change, this is generally , oss'a}jy
only provided the change of 4, considered bP 't1 lfe
and that of B, considered by itself, are — 0 i
6. Euler was the originator of Jstill a_— -
tant advance.

brachistochrone in a resisting medium, which was in

. " - IlOthEI' impor- The funda-
reating the problem of finding the Efﬁé?éle of

James Ber-

noulli’s

vestigated by Herrmann and him, the existing meth- shomas

ods proved incompetent,

;1 xi'i;uum, the velocity depends solely on the vertical ©
1eight fallen through. The velocity in one portion of

the curve is in no wise dependent on the

ek other por-

e in this case, thenf we’can indeed say, that if
_Wwhole curve is brachistochronous, every element
of It- 1s also brachistochronous. But in a resisti :
medium the case is different. The entire len;’c?is:;lg
{t'arm c;f the prec?dlr:_lg path enters into the determina-
1on of the velocity in the element. The whole curv
can be brachistochronous without the separat lrl‘e
ments necessarily exhibiting this propertyp Be i
s1c¥era}t10n's of this character, Euler perceive.d thy tci’}n“
prz.nmple introduced by James Bernoullj did,notal 11(;
universally good, but that in cases of the kind ref i EI
to, a more detailed treatment was required o
7- The methodical arrangement and the-“re'tt
ber of the problems solved, gradually led EL‘tl’leI’( tonstillzgﬁ

shown not

= st i-
For the brachistochrone in v%lE;?lIl;;I

rue,
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history of
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stantially the same methods that Lagrange afterwards
developed in a somewhat different form, and which
now go by the name of the Calculus of Variations. First,
John Bernoulli lighted on an accidental solution of a
problem, by analogy. James Bernoulli developed, for
the solution of such problems, a geometrical method.
Euler generalised the problems and the geometrical
method. And finally, Lagrange, entirely emancipating
himself from the consideration of geometrical figures,
gave an analytical method. Lagrange remarked, that
the increments which functions receive in consequence
of a change in their form are quite analogous to the in-
crements they receive in consequence of a change of
their independent variables. To distinguish the two
species of increments, Lagrange denoted the former
by &, the latter by 4. By the observation of this anal-
ogy Lagrange was enabled to write down at once the
equations which solve problems of maxima and minima.
Of this idea, which has proved itself a very fertile one,
Lagrange never gave a verification ; in fact, did not
even attempt it. His achievement is in every respect
a peculiar one. He saw, with great economical in-
sight, the foundations which in his judgment were suf-
ficiently secure and serviceable to build upon. But
the acceptance of these fundamental principles them-
selves was vindicated only by its results. Instead of
employing himself on the demonstration of these prin-
ciples, he showed with what success they could be em-
ployed. (Zssai d’une nouvelle méthode pour déterminer
les maxima cf mintna des formules intégrales indéfinies.
Mise. Taur. 1762.)
The difficulty which Lagrange’s contemporaries and
successors experienced in clearly grasping his idea, is
quite intelligible. Euler sought in vain to clear up the
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Flifferegce between a variation and a differential b
imagining constants contained in the function wit}{
the c}.lange of which the form of the function cha,n ed
The increments of the value of the function arigin :
from- the increments of these constants were regard g
by hl}“ﬂ as the variations, while the incrementsgof t;e
functzon'springing from the increments of the inde en-
dent variables were the differentials. The conce 12

of the. Calculus of Variations that springs from SEC;IOH
view 1s singularly timid, narrow, and illogical, and c'loea
not compare with that of Lagrange. Even ;'_,indelfif’z
mode.rn work, so excellent in other respects, is marred
b_y this defect. The first really competent’ present
tion of ngrange’s idea is, in our opinion, that of ;]
LETT.* Jellett appears to have said what I:a Y s
haps was unable fully to say; ;
hecessary to say.

range per-
perhaps did not deem it

iy AT,
8. Jellett’s view is, in substance, this.

generally are divisible B

The mis-
concep-

tions of La-

range’s
fdea.

Quantities Jellett’s ex-

osition of

nto constant and variahle quan- the princi-

tities' the ]a te ing -V. n .
£ tier belng Subdl Ided into inCPEHde tC]E]CL‘lIlIS f
) 1§ ©
aﬂd depeﬂdent Va.rla.bles ke

or such as may b itrari
) . Yy be arbitraril
Changed,f anhd such whose change depends on ch
ange ot other, independent i i
variables, in so
conne I : : g
i (;Zed with them. The latter are called functions
o rmer, and the nature of the relation that con-
Ly em 1s termed the form of the function. Now
) analogo'us to this division of quantitics int ;
jant' and variable, is the divi
tON$ 10 eIy
i tc; ;ff.!';? #inale (constant) and Zndeterminate (vari-
termi-Ilat the form of a function, y— @{x), is inde
€, or variable, the va] ; :
e T :, alue of the function y can

(1) by an increment Zx of the

: o con-
sion of the forms of frune-

¥ An Elewent, 7 .
o @7y Treatise on the Caleuins

et oo B of Variations. By the Rev.
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independent variable x, or (2) by a change of form, by
a passage from @ to @,. The first change is the dif-
ferential 4y, the second, the variation 8y. Accord-

ingly,
dy = @ (x + dx)— @ (&), and
8y= @, (&) — P )
The object The change of value of an indeterminate function

?Eﬂ?géa}{a due to a mere change of, form involves no problem,
lustrated.  just as the change of value of an independent variable
involves none. We may assume any change of form
we please, and so produce any change of value we
please. A problem is not presented till the change in
value of a determinate function (#) of an indetermi-
nate function ¢, due to a change of form of the included
indeterminate function, is required. For example, if
we have a plane curve of the indeterminate form y=
@ (), the length of its arc between the abscisse x,

and x, 18

5 ;j \Jq J,(’;f;@)_ do— f : \l | +<;:i> dz,

Fo

a determinate function of an indeterminate function.
The moment a definite form of curve is fixed upon, the
value of .S can be given. For any change of form of
the curve, the change in value of the length of the arc,
85, is determinable. 1In the example given, the func-
tion S does not contain the function y directly, but
through its first differential coefficient &y/dx, which is
itself dependent on y. Let #= F () be a determinate
function of an indeterminate function y = @ (x); then

dF(y
Su=—1F(y- 06— F¥) = {1’})_) 8.

Again, let #=F(3, dy/dx) be a determinate function

E
a T

&
I' I"-

-
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of an indeterminate function, y = @(x). For a change
of form of ¢, the value of y changes by ¢y and the

value of 4y /dx by 6(dy/dx). The corresponding change
in the value of = is

ay @
ar ( 7 M) {1}?( , dy)
Su— i Jjgail __x_a({’y.

dy CF e dy dx
“dx
The expression & 2y is obtélned b iti
e y our definition from Expres-
s v _d(y+3y)  dy _dby oy o it
adx R ﬁiféifff;‘ms,

Similarly, the following results are found :

{[BJ,Z (12 (& VL ¥ 43 5}/
da? AR T T i e

and so forth.

We now proceed to a problem, namely, the de- A problew.

termlnation f the form Of the f 1 —
O (0] =
unc Il } gD(x) that

U=[Vix .

where

X _J’ e
1 ’a’x’ dx'f e

V:J:f dy d?y )

a maximum or minimum ; ¢ denoting an indetermi-
nate, and F.a determinate function. The value of &/
2)‘12{5;52 v?rulald (1) .by a change of the limits, x,, x,.
Varia'blesox the limits, the change of the independent
e ar;{ at.ls su.ch', does not affect {7; accordingly,
. Whici he limits as fixed, this is the only respect
o h'we need attend to x. The only other way

vhich the value of &/ is susceptible of variation
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is by a change of the form of y = @(x). This produces &
a change of value in f NS dé\}’ 426y A3 8y
Vb Z, o :
dy &%y ' s Ao T ')‘i et
¥, {lx’ (?}_5’ Wovey 4 =7 o 't:he thi;‘d]
: 1 ! One difficulty here i ; erm of the
amounting to * e e i i
i dy . &y erms _Jf/{' x, d28y/dx® . ... occur in this equation, variation.
Y50 O g i —terms which are dependent on one another, but not

m a di o
and so forth. The total change in 0, which we shall Be remoiéz(:tbli zs:ézz;vrg?ngé;atg:lsydrz:bazk can be
call DU, and to express the maximum- -minimum con- S Ethe formula PAris, by fitdis
dition put =0, consists of the differential U and the
variation 6. Accordingly,
DU=dU+ 6U=0.
Expression Denoting by V,dx, and — F,dx, the increments of

for the total

o0
JP1 _(';xél dx =20, 6.3"].%{;1— Sydzx,
v‘an{atlon ot {7 due to the change of the hm1ts, we then have
the func-

726y P
tion in fp < } i — Pz dé‘i}_._‘] [fP2 dé‘-y d
question. DU=V dx — Vedx, + é‘er[x:: i dx dx dx
£ ] . P dioy AP, e {[ P

fﬂ't[l’?) —uy —J’m{u
By this method

: *dx  dx ;> 0ydzx, and so on.

X
V,dx, — Vodxo —[—fc?V.dx:U.
& Performing all these integrations between the limits,

But by the principles stated on page 439 we further get . we obtain for the condition 2& —= 0 the expression
14 1V 54 AV . d2y
sV=""8y+ 580" +a; T 0= Vydx, —Vyda,
y d([y r (Z y (lx fZP
6 +1!V{Z6y AV 426y : dx el
(l’ dy dx ld"y dx® —\—(Pg___dl.pg_l_' ) (@\ —(P _aPy N [dSy
da dx? b = ax dx/, 9 tz’i\:f ) W)
T e o R S
av z!V aV _Jrf<N_‘“1 £2P, « (i
dy = f} l}fi = o dx dat / x + .. |0y.dx,
@ - {
& dx dx? whlch now contains only &y under the integral sign.
en i ! The terms in the first line of this expression are
g J iy independent of any change in the form of the function

and depend solely upon the variation of the limits,
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Theinter- The terms of the two following lines depend on the
LR change in the form of the function, for the limiting
values of x only; and the indices 1 and 2 state that
the actual limiting values are to be put in the place of
the general expressions. The terms of the last line,
finally, depend on the general change in the form of
the function. Collecting all the terms, except those in
the last line, under one designation a,—a,, and calling
the expression in parentheses in the last line B, we
have
0=, —a, —i—'}';@.é‘y.(ix.
E

But this equation can be satisfied only if

el R R R (D
and
j’ﬁayd:c e O, e g B @

For if each of the members were not equal to zero,
each would be determined by the other. But the in-
tegral of an indeterminate function cannot be expressed
in terms of its limiting values only. Assuming, there-
fore, that the equation

j;ﬁ’é‘ydx—_—ﬂ,

o

The cqua- holds generally good its conditions can be satisfied,
tion which

colves the since 0y is throughout arbitrary and its generality of
problem, or

makes the form cannot be restricted, only by making § =0. By
lUlLLlDI] in

question a the equatlon
l!lr.l\ll'n'll'ﬂl

or ll]llll

mum. N 1 _|—

t:? x

g2 R d e
Tda? dx8

st ik,

therefore, the form of the function y = ¢(x) that makes
the expression ¢/ a maximum or minimum is defined.
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Equation (3) was found by Euler. But Lagrange first
showed the application of equation (1), for the deter-
mination of a function by the conditions at its limits.
By equation (3), which it must satisfy, the form of the
functz'on y=@(x) is generally determined; but.this
equation contains a number of arditrary constants

whose values are determined solely by the condition;
at the limits. 'With respect to notation, Jellett rightly
remarks, that the employment of the symbol 6 in the
first two terms V;dx, =¥ dx, of equation (1), (the
form used by Lagrange,) is illogical, and he correctly
puts for the increments of the independent variables
the usual symbols dx,, dx,.

9. To illustrate the use to which these equations A practical

may be put, let us seek the form of the function that of the sae"

makes of these

. equations,
iy\2
S N1+(%
> \/ -+ ((i:\) adx

‘a minimum—the shortest line. Here

e F((Z’_}‘
dx)

All expressions except

vanish in equation (3), and that equation becomes
4P, fdx = 0 ; which means that £, and consequently
its only var:able, dy/dx, is independent of ». Hence
dy/dx =a, and y —ax + b, where 2 and & are con,-
stants.

The constants @, 4 are determined by the values of
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Develop- the limi

menichme 3o i 1E the straight fine |

on. points x,, y, and x_, y, th passes through the
) 12 en

Yo=ax,+ & l
S

. - , P S )

as duy=dx, =0, Ol i — 1)

vani : =0, equati
anishes. The coefficients ¢ (rz’)’/(ixl) ) (r’f;j];dhon @
H ) /¢ xz)’ A

independentl -

y vanish. Ten

are d s ce, the Va[ue

ctermined by the equations () alones i

If the limi
s x,, x -
2 ¥ o» *; only are

iderermittte. o have b ¥ given, but y,, y, are

(1) takes the form o =4x, =0, and equation

a
—2 (8, —
Vi gﬁ( Yzt hol =10,
which, since ¢y
satiSﬁ;d o 2% and dy, are arbitrary, can only be
A parallert . The' straight line is in this };
o o the axis of abscissae, and e
I1ns.te, at any distance from it , el
t wil : ;
St éinzt'at_nonced, that equation (1) and the sub
itions expressed in equation () W'thsu '.
, With re-

spect to th . .
el e determination of the constant
plement each other. nts, generally

If
Z:fy\j S (@)2 dx
E2 dx &

is to be made a mini
X minimum, the i .
priate form of (3) will give integration of the appro-

st wec

r €
.y ) ¢ ' =
L a 1 .27 aiso n u d
mim ) 5 ‘7 1S a4 minir I ar
]1 7 s I S ]
W1 5 ve )y I 0 e
t] 1€ curve ()ll]ld 3 2l
1 gl ] o} tion 1 ut til axis

Of abSCIS .
s&E t}le leaSt Su[face Of rev Dlutl’ol! I ur t}le
E] T,
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to a minimum of 7 the lowest position of the centre of
gravity of a homogencously heavy curve of this kind
corresponds ; the curve is therefore a catenary. The
determination of the constants ¢, ¢ 18 effected by means
of the limiting conditions, as above.

In the treatment of mechanical problems, a dis- variations

5 - . . s and virtual
tinction 18 made between the increments of codrdinates displace:

- - ments dis-
that actually take place in time, namely, dx, 4, 4% tinguished.
and the possible displacements &x, 0, 65, considered,
for instance, in the application of the principle of vir-
tual velocities. The latter, as a rule, are not varia-
tions ; that is, are not changes of value that spring
from changes in the form of a function. Only when
we consider a mechanical system that is a continuum,
as for example 2 string, a flexible curface, an elastic
body, or a liquid, are we at liberty to regard dx, 67,

&z as indeterminate functions of the cobrdinates x, s
5, and are wWe concerned with variations.
1t is not our purpose in this work, to develop math- Importance

i 3 ¥ of the cal-
ematical theories, but simply to treat the purely phys-culus of va-

3 _ riations for
jcal part of mechanics. But the history of the 1soper1- mechanics.
metrical problems and of the calculus of variations had
to be touched upon, because these researches have ex-
ercised a very considerable influence on the develop-
ment of mechanics: Our sense of the general prop-
erties of systems, and of properties of maxima and
minima in particular, was much sharpened by these
investigations, and properties of the kind referred to
were subsequently discovered in mechanical systems
with great facility. As a fact, physicists, since La-
grange’s time, usually express mechanical principles
in a maximal or minimal form. This predilection
would be unintelligible without a knowledge of the

historical development.
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1I.

THEOLOGICAL. ANIMISTIC, AND MYSTICAL POINTS OF VIEW
IN MECHANICS.

1. If, in entering a parlor in Germany, we happen
to hear something said about some man being very
pious, without having caught the name, we may fancy
that Privy Counsellor X was spoken of,—or Herr von
Y; we should hardly think of a scientific man of our

acquaintance. It would, however, be a mistake to sup--

pose that the want of cordiality, occasionally rising to
embittered controversy, which has existed in our day
between the scientific and the theological faculties
ah.fvays separated them. A glance at the history o,f
science suffices to prove the contrary.

e con- People talk of the ¢ conflict” of science and the-

enceand ology, or better of science and the church. It is in
truth a prolific theme. On the one hand, we have the
long catalogue of the sins of the church against pro-
gress, on the other side a ¢noble army of martyrs,”
among them no less distinguished figures than Galiléo
and Giordano Bruno. It was only by good luck that
Descartes, pious as he was, escaped the same fate.
These things are the commonplaces of history; but it
would be a great mistake to suppose that the’phrase
“warfare of science” is a correct description of its
general_ historic attitude toward religion, that the only
repression of intellectual development has come from
Pnests‘;, and that if their hands had been held off, grow-
ing science would have shot up with stupendousbvelo-
city. No doubt, external opposition did have to be
fought ; and the battle with it was no child’s play.

et
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Nor was any engine too base for the church to handleT
in this struggle. She considered nothing but how to ti

he strug-

gleof scien-

sts with

their own

conquer ; and no temporal policy ever was conducted precon-
celve

so selfishly, so unscrupulously, or so cruelly. But in- ideas.

vestigators have had another struggle on their hands,
and by no means an easy one, the struggle with their
own preconceived ideas, and especially with the notion
that philosophy and science must be founded on the-
ology. It was but slowly that this prejudice little by
little was erased.

2. But let the facts speak for themselves, while we E

a

introduce the reader to a few historical personages.

Napier, the inventor of logarithms, an austere Puri-
tan, who lived in the sixteenth century, was, in addi-
tion to his scientific avocations, a zealous theologian.
Napier applied himself to some extremely curious
speculations. He wrote an exegetical commentary on
the Book of Revelation, with propositions and mathe-
matical demonstrations. Proposition XXVI, for ex-
ample, maintains that the pope is the Antichrist ; propo-
sition XXXVI declares that the locusts are the Turks
and Mohammedans ; and so forth.

Blaise Pascal (1623-1662), one of the most rounded
geniuses to be found among mathematicians and phys-
icists, was extremely orthodox and ascetical. So deep
were the convictions of his heart, that despite the gen-
tleness of his character, he once openly denounced at
Rouen an instructor in philosophy as a heretic. The
healing of his sister by contact with a relic most seri-
ously impressed him, and he regarded her cure as a
miracle. On these facts taken by themselves it might
be wrong to lay great stress ; for his whole family were
much inclined to religious fanaticism. But there are
plenty of other instances of his religiosity. Such was

istorical
xamples,
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his resolve,—which was carried out, too,—to abandon
altogether the pursuits of science and to devote his life
solely to the cause of Christianity. Consolation, he
used to say, he could find nowhere but in the teachings
of Christianity ; and all the wisdom of the world availed
him not a whit. The sincerity of his desire for the
conversion of heretics is shown in his Zettres provin-
ciales, where he vigorously declaims against the dread-
ful subtleties that the doctors of the Sorbonne had
devised, expressly to persecute the Jansenists. Very
remarkable is Pascal’s correspondence with the theo-
logians of his time ; and a modern reader is not a little
surprised at finding this great ¢ scientist” seriously
discussing in one of his letters whether or not the Devil
was able to work miracles.

Otto von Guericke, the inventor of the air-pump,
occupies himself, at the beginning of his book, now
little over two hundred years old, with the miracle of
Joshua, which he seeks to harmonise with the ideas
of Copernicus. In like manner, we find his researches
on the vacuum and the nature of the atmosphere in-
troduced by disquisitions concerning the location of
heaven, the location of hell, and so forth. Although
Guericke really strives to answer these questions as ra-
tionally as he can, still we notice that they give him
considerable trouble,—questions, be it remembered,
that to-day the theologians themselves would consider
absurd. Yet Guericke was a man who lived after the
Reformation !

The giant mind of Newton did not disdain to employ
itself on the interpretation of the Apocalypse. On such
subjects it was difficult for a sceptic to converse with
him. 'When Halley once indulged in a jest concerning
theological questions, he is said to have curtly repulsed
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i ings ; Newtonand
him with the remark = <1 have studied these things ; Newins
11

have not !” e .
youVVe need not tarry by Leibnitz, the inventor of the

best of all possible worlds and_of p're-esta(tibh?hf:r? g::;:
mony—inventions which Voltaire dlspo.se o1 1 1 ur,i
dide, a humorous novel with a deeply p‘hllt?sop 11?211 pOSt
pose. DBut everybody knows Fhat Leibnitz wfa& a-él;lcc
if not quite as much a theologian, as a man oI scl 4

in Euler
Let us turn, however, to the last century. Euler, in
2

his Zetters to a German Princess, (_ieals Wiﬂ:l thfaglogs(;c;i
philosophical problems in the ml_dst of sc1_ent1 (i ('111-11
tions. He speaks of the difficulty _mvolved in exp aT]tgl
the interaction of body and mind, duej to _thret o}l?s
diversity of these two phenamena,{a.dlve1:51t)- do :
mind undoubted. The system of occasionalism, e};f_eh
oped by Descartes and his followers, agreeably to w 11(-:‘[”
God executes for every purpose of the 501?1, (the soul1 ;
self not being abletodoso,)a coFrespf?ndmg mover_léen
of the body, does not quite satisfy him. He defrl es,_
also, and not without humor, the _doctrme 0 Upre‘
established harmony, according to n{hlc‘h perfect abre;
ment was established from the beginning between the
movements of the body and the volitions of the -soul,g
although neither is in any way connected V\éltﬂh t}:i
other,—just as there is harmony between two dif ert;_
but like-constructed clocks. He remar.ks, that in this
view his own body is as foreign to him as '[hf.lt of a
rhinoceros in the midst of Alrica, Whic}} m]g’flt just as
well be in pre-established harmony \Vlth. his sourl as
its own. Let us hear his own words. In his day, Latin
was almost universally written. When a German
scholar wished to be especially condescen?lmg, he
wrote in French: ¢ Si dans le cas dfun défe;flement
«¢de mon corps Dieu ajustait celui d’un r’ moceros,
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his resolve,—which was carried out, too,—to abandon
altogether the pursuits of science and to devote his life
solely to the cause of Christianity. Consolation, he
used to say, he could find nowhere but in the teachings
of Christianity ; and all the wisdom of the world availed
him not a whit. The sincerity of his desire for the
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ciales, where he vigorously declaims against the dread-
ful subtleties that the doctors of the Sorbonne had
devised, expressly to persecute the Jansenists. Very
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surprised at finding this great ‘¢ scientist” seriously
discussing in one of his letters whether or not the Devil
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Otto von Guericke, the inventor of the air-pump,
occupies himself, at the beginning of his book, now
little over two hundred years old, with the miracle of
Joshua, which he seeks to harmonise with the ideas
of Copernicus. In like manner, we find his researches
on the vacuum and the nature of the atmosphere in-
troduced by disquisitions concerning the location of
heaven, the location of hell, and so forth. Although
Guericke really strives to answer these questions as ra-
tionally as he can, still we notice that they give him
considerable trouble,—questions, be it remembered,
that to-day the theologians themselves would consider
absurd. Yet Guericke was a man who lived after the
Reformation !

The giant mind of Newton did not disdain to employ
itself on the interpretation of the Apocalypse. On such
subjects it was difficult for a sceptic to converse with
him. When Halley once indulged in a jest concerning
theological questions, he is said to have curtly repulsed
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although neither is in any way connected \:'11%1 Znet
other,—just as there is harmony between two dil erh'
but like-constructed clocks. He remar.ks, that in this
view his own body is as foreign to him as thflt of a
rhinoceros in the midst of Africa, whicl} m]g%lt just as
well be in pre-established harmony w1th. his soul as
its own. Let us hear his own words. In his day, Latin
was almost universally written. When a (?erman
scholar wished to be especially condescenflmg, he
wrote in French: ¢Si dans le cas d'un dé‘reglement
¢«¢de mon corps Dieu ajustait celui d’un r’ moceros,
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‘en sorte que ses mouvements fussent tellement d’ac-
‘“cord avec les ordres de mon dme, qu’il levit la patte
‘“au moment que je voudrais lever la main, et ainsi
‘“des autres opérations, ce serait alors mon corps. Je
‘‘me trouverais subitement dans la forme d’un rhino-
‘“ceros au milieu de I’Afrique, mais non obstant cela
‘“mon dme continuerait les méme opérations. J’aurais
‘“également 'honneur d’éerire & V. A., mais je ne sais
‘“pas comment elle recevrait mes lettres.”
ﬁ::;lc?ll;;:ical One would almost im.agine that Euler, her(.e, had been
proclivities tempted to play Voltaire. And yet, apposite as was
his criticism in this vital point, the mutual action of
body and soul remained a miracle to him, still. But he
extricates himself, however, from the question of the
freedom of the will, very sophistically. To give some
idea of the kind of questions which a scientist was per-
mitted to treat in those days, 1t may be remarked that
Euler institutes in his physical ¢ Letters ” investiga-
tions concerning the mature of spirits, the connection
between body and soul, the freedom of the will, the
influence of that freedom on physical occurrences,
prayer, physical and moral evils, the conversion of sin-
ners, and such like topics ;—and this in a treatise full
of clear physical ideas and not devoid of philosophical
ones, where the well-known circle-diagrams of logic
have their birth-place.
Character 3. Letthese examples of religious physicists suffice.

E‘;EE?\;‘ ?: We have selected them intentionally from among the
the greatin- foremost of scientific discoverers. The theological pro-
TS Clivities which these men followed, belong wholly to
their innermost private life. They tell us openly things
which they are not compelled to tell us, things about
which they might have remained silent. What they

utter are not opinions forced upon them from without ;

il
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they are their own sincere views.v They were not C(.]I‘l-
scious of any theological constraint. In a court which
harbored a Lamettrie and a Voltaire, Euler had no rea-
son to conceal his real convictions.
According to the modern qotion, these 1‘1"1(31:1 should Sthfllf;?f;e
at least have seen that the questions they discussed
did not belong under the heads where they })ut them,
that they were not questions of science. St-IH, odd_ as
this contradiction between inlerited theological beliefs
and independently created scientific convictlo‘ns seems
to us, it is no reason for a diminished admiration of
those leaders of scientific thought. Nay, this very fact
is a proof of their stupendous mental power : t.hey were
able, in spite of the contracted horizon of their age, to
which even their own apercus were chiefly limited, to
point out the path to an elevation, where our genera-
tion has attained a freer point of view.
Every unbiassed mind must admit that the age in
which the chief development of the science of mechan-
ics took place, was an age of predominantly theolog_ical
cast. Theological questions were excited by everything,
and modified everything. No wonder, then, that me-
chanics took the contagion. But the thoroughness with
which theological thought thus permeated scient%ﬁc
inquiry, will best be seen by an examination of'det-alls. o
4. The impulse imparted in antiquity to this direc- Galileo's

researches
tion of thought by Hero and Pappus has been alluded on the

E 3 strength of
to in the preceding chapter. At the beginning of the materials.
seventeenth century we find Galileo occupied with prob-
lems concerning the strength of materials. He shows
that hollow tubes offer a greater resistance to flexure
than solid rods of the same length and the same quantity
of material, and at once applies this discovery to the

explanation of the forms of the bones of animals, which
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are usuall)( hollow and cylindrical in shape, The phe-
nomenon 1s easily illustrated by the comparison of a
flatly folded and a rolled sheet of paper. A hs?'I tal
beam fastened at one extremity and loaded at Siazooglcr
may be remodelled so as to be thinner at the Joaded
end without any loss of stiffness and with a con ac(i :
able saving of material. Galileo determined the Jfo:j:I “:
a beam of equal resistance at each cross-section mT—;'
also 1‘(;311‘1211’](6(1 that animals of similar geoinetrica;l con(:
struction but of considerable difference of size would
con'aply in very unequal proportions with the laws of
resistance.

-I‘he forms of bones, feathers, stalks, and other or-
ganic structures, adapted, as they are, in their minut-
est details to the purposes thev serve, are highly cal-
culated to make a profound im}:rressior; on the ?hinki;ﬁ
beholder, and this fact has again and again been adtj
duced in proof of a supreme wisdom ruling in nature
L'et us examine, for instance, the pinion-feather of a
bird. The quill is a hollow tube diminishing in thick-
ness as w'e go towards the end, that is, is a body of
equal resistance. Each little blade of the vane re-
peat:_s In miniature the same construction. It would
require considerable technical knowledge even to 1rm
tate a feather of this kind, let alone invent it We
should not forget, however, that scrutiny, or qlhlest 01;
explanation, not wonder, is the office of science W(:
know how Darwin sought to solve these prob}cnbls b
Fhe theory of natural selection. That Darwin’s solu:tiol};
1s a complete one, may fairly be doubted ; Darwin him-
self questioned it. All external conditions would be

powerless if something were not present that admitted

of varla_tion. But there can be no question that his
theory is the first serious attempt to replace mere won-
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der at the adaptations of organic nature by serious in-
i 8 Y
quiry into the mode of their origin.

Pappus’s ideas concerning the cells of honeycombs Thecells of
Y the honey-

were the subject of animated discussion as late as the comb.

eighteenth century. In a treatise, published in 1865,
entitled Homes Without Hands (p. 428), Wood substan-
tially relates the following : ¢ Maraldi had been struck
with the great regularity of the cells of the honey-
comb. He measured the angles of the lozenge-shaped
plates, or rhombs, that form the terr nal walls of the
cells, and found them to be respectively 1og” 28’ and
70°32'. Réaumur, convinced that these angles were in
some way connected with the economy of the cells,
requested the mathematician Kénig to calculate the
form of a hexagonal prism terminated by a pyramid
composed of three equal and similar rhombs, which
would give the greatest amount of space with a given
amount of material. The answer was, that the angles
should be 10g° 26" and 70° 34’. The difference, accord-
ingly, was two minutes. Maclaurin, * dissatisfied with
this agreement, repeated Maraldi’s measurements,found
them correct, and discovered, in going over the calcu-
lation, an error in the logarithmic table employed by
Konig. Not the bees, but the mathematicians were
wrong, and the bees had helped to detect the error 1
Any one who is acquainted with the methods of meas-
uring crystals and has seen the cell of a honeycomb,
with its rough and non-reflective surfaces, will question
whether the measurement of such cells can be executed
with a probable error of only two minutes.t So, we
must take this story as a sort of pious mathematical

% Philosophical Transactions for 1743.—Trans.
t But see G, F. Maraldi in the Mémoires de I académie for 1712. It is, how-
ever, now well known the cells vary considerably. See Chauncey Wright,

Philosophical Discussions, 1877, p. 311.—1vans.
7h B
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fairy-tale, quite apart from the consideration that noth-
ing would follow from it even were it true. Besides,
from a mathematical point of view, the problem is too
imperfectly formulated to enable us to decide the ex-
tent to which the bees have solved it.

The ideas of Hero and Fermat, referred to in the
previous chapter, concerning the motion of light, at
once received from the hands of Leibnitz a theolog-
ical coloring, and played, as has been before mentioned,
a predominant rdle in the development of the calculus
of variations. In Leibnitz’s correspondence with John
Bernoulli, theological questions are repeatedly dis-
cussed in the very midst of mathematical disquisitions.
Their language is not unfrequently couched in biblical
pictures. Leibnitz, for example, says that the problem
of the brachistochrone lured him as the apple had lured
Eve.

Maupertuis, the famous president of the Berlin

nel of the Academy, and a friend of Frederick the Great, gave
principle of

least ac-
tion.

a new impulse to the theologising bent of physics by
the enunciation of his principle of least action. In the
treatise which formulated this obscure principle, and
which betrayed in Maupertuis a woeful lack of mathe-
matical accuracy, the author declared his principle to be
the one which best accorded with the wisdom of the
Creator. Maupertuis was an ingenious man, but not a
man of strong, practical sense. This is evidenced by
the schemes he was incessantly devising : his bold prop-
ositions to found a city in which only Latin should be
spoken, to dig a deep hole in the earth to find new
substances, to institute psychological investigations by
means of opium and by the dissection of monkeys, to
explain the formation of the embryo by gravitation, and
so forth. e was sharply satirised by Voltaire in the
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Fistoire du docteur Akakia, a work which led, as we
know, to the rupture between Frederick and Voltaire.

Maupertuis’s principle would in all probability soon Buler's re-

tention of
alee g~ the theolog-
have been forgotten, had Euler not taken up tl?c sug- the b og
oestion.  Buler magnanimously left the prineiple its this prin-
=}

name, Maupertuis the glory of the invention, and con-
verted it into something new and really serviceable.
What Maupertuis meant to convey is very difficult to
ascertain. What Euler meant may be easily shown by
simple examples. If a body is constrained to move on a
rigid surface, for instance, on the surface of the ea.rth, it
will describe when an impulse is imparted to it, the
shortest path between its initial and terminal positions.
Any other path that might be prescribed it, wo'uldj be
longer or would require a greater time. This pr1‘11c1ple
finds an application in the theory of atmospheric and
oceanic currents. The theological point of view, Eule.r :
retained. He claimsit is possible to explain phenomena,
not only from their physical causes, but also from.their
purposes. < As the construction of the universe is the
<tmost perfect possible, being the handiwork of an
¢« gll-wise Maker, nothing can be met with in the world
¢ in which some maximal or minimal property is not
¢« displayed. There is, consequently, no doubt but
¢‘that all the effects of the world can be derived by
¢¢the method of maxima and minima from their final
¢<causes as well as from their efficient ones.” ™

5. Similarly, the notions of the constancy of the
quantity of matter, of the constancy of the quantity of

# ¢ Oyuum enim mundi universi fabrica sit perfectissima, atque a crcat.orcf
sapientissimo absoluta, nihil omnino in mundo contingit, in quo non maximi
minimive ratio quaepiam eluceat; quam ob rem dubium prorsus L:St nullum,
guin omnes mundi effectus ex causis finalibus, ope methodi 11]:1.‘(1.![101'1‘111.1 et
minimorum, acque feliciter determinari quaeant, atque ex ipsis causis eﬁl.menf
tibus.” (Methodus Tnveniendi lineas curvas maximi mintmive proprietate
gaudentes, Lausanne, 1744.)

ciple.
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The central motion, of the indestructibility of work or energy, con-

notions of
modern
physics
mainly of
theological
origin.

Gradual
transition
from the
theological
point of
view.

ceptions which completely dominate modern physics,
all arose under the influence of theological ideas. The
notions in question had their origin in an utterance of
Descartes, before mentioned, in the Principles of Philos-
epiy, agreeably to which the quantity of matter and mo-
tion originally created in the world, —such being the
only course compatible with the constancy of the Crea-
tor, —is always preserved unchanged. The conception
of the manner in which this quantity of motion should
be calculated was very considerably modified in the
progress of the idea from Descartes to Leibnitz, and to
their successors, and as the outcome of these modifi-
cations the doctrine gradually and slowly arose which
is now called the “law of the conservation of energy.”
But the theological background of these ideas only
slowly vanished. In fact, at the present day, we still
meet with stientists who indulge in self-created mys-
ticisms concerning this law.

During the entire sixteenth and seventeenth centu-
ries, down to the close of the eighteenth, the prevail-
ing inclination of inquirers was, to find in all physical
[aws some particular disposition of the Creator. But
a gradual transformation of these views must strike
the attentive abserver. Whereas with Descartes and
Leibnitz physics and theology were still greatly inter-
mingled, in the subsequent period a distinct endeavor
is noticeable, not indeed wholly to discard theology,
yet to separate it from purely physical questions. Theo-
logical disquisitions were put at the beginning or rele-
gated to the end of physical treatises. Theological
speculations were restricted, ds much as possible, to
the question of creation, that, from this point onward,
the way might be cleared for physics.
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Towards the close of the eighteenth century A re- Ultimate

markable change took place,
apparently an abrupt departure from thc current trend
of thought, but in reality was the logical outcome of
the development indicated. After an attempt in a
youthful work to found mechanics on Euler’s principle
of least action, Lagrange, in a subsequent treatment
of the subject, declared his intention of utterly disre-
garding theological and metaphysical speculations, as
in their nature precarious and foreign to science. Ie
erected a new mechanical system on entirely different
foundations, and no one conversant with the subject
will dispute its excellencies. All subsequent scientists
of eminence accepted Lagrange’s view, and the pres-
ent attitude of physics to theology was thus substan-
tially determined.

ccmplcle

uon of

physics

from theol-

ogy.

6. The idea that theology and physics are two dis- T

tinct branches of knowledge, thus took, from its first
germination: tn Copernicus till its final promulgation
by Lagrange, almost two centuries to attain clearness
in the minds of investigators. At the same time it
cannot be denied that this truth was always clear to
the greatest minds, like Newton. Newton never, de-
spite his profound religiosity, mingled theology with
the questions of science. True, even he concludes his
Optics, whilst on its last pages his clear and luminous
intellect still shines, with an exclamation of humble
contrition at the vanity of all earthly things. But his
optical researches proper, in contrast to those of Leib-
nitz, contain not a trace of theology. The same may
be said of Galileo and Huygens. Their writings con-
form almost absolutely to the point of view of La-
grange, and may be accepted in this respect as class-
ical. But the general views and tendencies of an age

rn ideal
'\1“"1}':. the
attitude of

the greatest
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of the manner in which this quantity of motion should
be calculated was very considerably modified in the
progress of the idea from Descartes to Leibnitz, and to
their successors, and as the outcome of these modifi-
cations the doctrine gradually and slowly arose which
1s now called the ¢ law of the conservation of energy.”
But the theological background of these ideas only
slowly vanished. In fact, at the present day, we still
meet with scientists who indulge in self-created mys-
ticisms concerning this law.

modern
physics
tnainly of
theological
origin,

Gradual During the entire sixteenth and seventeenth centu-
transition A - ¥ 2
qomthe  ries, down to the close of the eighteenth, the prevail-
1eologica

point of

ing inclination of Inquirers was, to find in all physical
laws some particular disposition of the Creator. But
a gradual transformation of these views must strike
the attentive observer. Whereas with Descartes and
Leibnitz physics and theology were still greatly inter-
mingled, in the subsequent period a distinct endeavor
is noticeable, not indeed wholly to discard theology,
yet to separate it from purely physical questions. Theo-
logical disquisitions were put at the beginning or rele-
gated to the end of physical treatises, Theoclogical
speculations were restricted, 4s much as possible, to
the question of creation, that, from thig point onward,
the way might be cleared for physics. -

view,
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must not be judged by its greatest, but by its average,
minds.
The theo- To comprehend the process here portrayed, the gen-

logical con-

c}eptiouiolf eral condition of affairs in these times must be consid-
the world

gilt)lil;ﬁ:-and ered. It stands to reason that in a stage of civilisation
able, in which religion is almost the sole education, and the
only theory of the world, people would naturally look
at things in a theological point of view, and that they
would believe that this view was possessed of compe-
tency in all fields of research. If we transport ourselves
back to the time when people played the organ with
their fists, when they had to have the multiplication table
visibly before them to calculate, when they did so much
with their hands that people now-a-days do with their
heads, we shall not demand of such a time that it
should ¢ritically put to the test its own views and the-
ories. With the widening of the intellectual horizon
through the great geographical, technical, and scien-
tific discoveries and inventions of the fifteenth and six-
teenth centuries, with the opening up of provinces in
which it was 1mpossible to make any progress with the
old conception of things, simply because it had been
formed prior to the knowledge of these provinces, this
bias of the mind gradually and slowly vanished. The
great freedom of thought which appears in isolated
cases In the early middle ages, first in poets and then
in scientists, will always be hard to understand. The en-
lightenment of those days must have been the work of a
few very extraordinary minds, and can have been bound
to the views of the people at large by but very slender
threads, more fitted to disturb those views than to re-
form them. Rationalism does not seem to have gained
a broad theatre of action till the literature of the eigh-
teenth century. IHumanistic, philosophical, historical,
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and physical science here met and gave each other
mutual encouragement. All who have experienced, in
part, in its literature, this wonderful emancipation of
the human intellect, will feel during their whole lives a
deep, elegiacal regret for the cighteenth century.

7. The old point of view, then, is abandoned. Its The en-

history is now detectible only in the form of the me-
chanical principles. And this form will remain strange
to us as long as we neglect its origin. The theological
conception of things gradually gave way to a more
rigid conception ; and this was accompanied with a
considerable gain in enlightenment, as we shall now
briefly indicate.

V’hen we say light travels by the paths of shortest
time, we grasp by such an expression many things.
But we do not know as yet w/iy light prefers paths of
shortest time. We forego all further knowledge of the
phenomenon, if we find the reason in the Creator’s wis-
dom. We of to-day know, that light travels by a//
paths, but that only on the paths of shortest time do
the waves of light so intensify each other that a per-
ceptible result is produced. Light, accordingly, only
appears to travel by the paths of shortest time. After
the prejudice which prevailed on these questions had
been removed, cases were immediately discovered in
which by the side of the supposed economy of nature
the most striking extravagance was displayed. Cases
of this kind have, for example, been pointed out by
Jacobi in connection with Euler’s principle of least ac-
tion. A great many natural phenomena accordingly
produce the impression of economy, simply because
they visibly appear only when by accident an econom-
ical accumulation of effects take place. This is the
same 1dea in the province of inorganic nature that Dar-

lighten-
ment of the
new vViews.

Extrava-
gance as
well as
economy in
nature.
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and physical science here met and gave each other
mutual encouragement. All who have experienced, in
part, in its literature, this wonderful emancipation of
the human intellect, will feel during their whole lives a
deep, elegiacal regret for the eighteenth century.
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460 7HE SCIENCE OF MECITANICS.

win worked out in the domain of organic nature. We
facilitate instinctively our comprehension of nature by
applying to it the economical ideas with which we are
familiar. 4

Explana- Often the phenomena of nature exhibit maximal

tion of max- ol &
imal and  or minimal properties because when these greatest or

e least properties have been established the causes of all
further alteration are removed. The catenary gives
the lowest point of the centre of gravity for the simple
reason that when that point has been reached all fur-
ther descent of the system’s parts is impossible. Li-
quids exclusively subjected to the action of molecular
forces exhibit a minimum of superficial arca, because
stable equilibrium can only subsist when the molecular
forces are able to effect no further diminution of super-
ficial area. The important thing, therefore, is not the
maximum or minimum, but the removal of wwers ; work
being the factor determinative of the alteration. It
sounds much less imposing but is much more elucida-
tory, much more correct and comprehensive, instead
of speaking of the economical tendencies of nature, to
say: ““So much and so much only occurs as in virtue
of the forces and circumstances involved can occur.”

Points of The question may now justly be asked, If the point

identity in

the theolog- of view of theology which led to the enunciation of the
1cal an

seientific  principles of mechanics was utterly wrong, how comes
tons. it that the principles themselves are in all substantial
points correct > The answer is easy. In the first place,
the theological view did not supply the confenss of the
principles, but simply determined their guise; their mat-
ter was derived from experience. A similar influence
would have been exercised by any other dominant type
of thought, by a commercial attitude, for instance, such

as presumably had its eflect on Stevinus’s thinking. Tn
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the second place, the theclogical conception of nature
itself owes its origin to an endeavor to obtain a more
comprehensive view of the world ;—the very same en-
deavor that is at the bottom of physical science. Hence,
even admitting that the physical philosophy of theology
is a fruitless achievement, a reversion to a lower state of
scientific culture, we still need not repudiate the sound
roe! from which it has sprung and which is not differ-
ent from that of true physical inquiry.
In fact, science can accomplish nothing by the con- Necessity

of a con-
sideration of /ndividual facts ; from time to time it must stant con-

cast its glance at the world as @ whole. Galileo’s?&dﬁg&zﬁh
laws of falling bodies, Huygens’s principle of #is viva,
the principle of virtual velocities, nay, even the con-
cept of mass, could not, as we saw, be obtained, ex-
cept by the alternate consideration of individual facts
and of nature as a totality. We may, in our men-
tal reconstruction of mechanical processes, start from

"the properties of isolated masses (from the elementary

or differential laws), and so compose our pictures of
the processes ; or, we may hold fast to the properties
of the system as a whole {(abide by the integral laws).
Since, however, the properties of one mass always in-
clude relations to other masses, (for instance, in ve-
locity and acceleration a relation of time is involved,
that 1s, a connection with the whole world,) it 1s mani-
fest that purely differential, or elementary, laws do not
exist, It would be illogical, accordingly, to exclude
as less certain this necessary view of the All, or of the
more general properties of nature, from our studies.
The more general a new principle is and the wider its
scope, the mere perfeci tfests will, in view of the possi-
bility of error, be demanded of it.

The conception of a will and intelligence active in
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striction placed on this tendency of thought. When we
reflect that even Luther is said to have had personal
encounters with the Devil, that Kepler, whose aunt had
been burned as a witch and whose mother came near
meeting the same fate, said that witchcraft could not
be denied, and dreaded to express his real opinion of
astrology, we can vividly picture to ourselves the
thought of less enlightened minds of those ages.
Modern physical science also shows traces of fetish-
ism, as Tylor well remarks, in its ‘‘forces.” And the
hobgoblin practices of modern spiritualism are ample
evidence that the conceptions of paganism have not
been overcome even by the cultured society of to-day.
It is natural that these ideas so obstinately assert
themselves. Of the many impulses that rule man
with demoniacal power, that nourish, preserve, and
propagate him, without his knowledge or supervision,
of these impulses of which the middle ages present
such great pathological excesses, only the smallest
part is accessible to scientific analysis and conceptual
knowledge. The fundamental character of all these
instincts is the feeling of our oneness and sameness
with nature ; a feeling that at times can be silenced
but never eradicated by absorbing intellectual occupa-
tions, and which certainly has a sound dasis, no matter

" to what religious absurdities it may have given rise.

9. The French encyclopzdists of the eighteenth
century imagined they were not far from a final ex-
planation of the world by physical and mechanical prin-
ciples ; Laplace even conceived a mind competent to
foretell the progress of nature for all eternity, if but the
masses, their positions, and initial velocities were given.
In the eighteenth century, this joyful overestimation of
the scope of the new physico-mechanical ideas is par-

Animistic
notions in
science.
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Sf-ﬁi‘fiﬁ.ff donable. Indeed, it is a refreshing, noble, and ele-
the me vating spectacle ; and we can deeply sympathise with
view. this expression of intellectual joy, so unique in history.
But now, after a century has elapsed, after our judg-
ment has grown more sober, the world-conception of the
encyclopadists appears to us as a mechanical mythology
in contrast to the animistic of the old religions. Both
views contain undue and fantastical exaggerations of
an incomplete perception. Careful physical research
will lead, however, to an analysis of our sensations.
We shall then discover that our hunger is not so essen-
tially different from the tendency of sulphuric acid for
zine, and our will not so greatly different from the
pressure of a stone, as now appears. We shall again
feel ourselves nearer nature, without its being neces-
sary that we should resolve ourselves into a nebulous
and mystical mass of molecules, or make nature a
haunt of hobgoblins. The direction in which this en-
lightenment is to be looked for, as the result of long
and painstaking research, can of course only be sur-
mised. To anticipate the result, or even to attempt to
introduce it into any scientific investigation of to-day,
would be mythology, not science.
Pretensions Physical science does not pretend to be a complete
tude of  view of the world ; it simply claims that it is working
physical z 5 5 &
s toward such a complete view in the future. The high-
est philosophy of the scientific investigator is precisely
this foleration of an incomplete conception of the world
and the preference for it rather than an apparently per-
fect, but inadequate conception. Our religious opin-
jons are always our own private affair, as long as we do
not obtrude them upon others and do not apply them
to things which come under the jurisdiction of a differ-

ent tribunal. Physical inquirers themselves entertain
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the most diverse opinions on this subject, according to

the range of their intellects and their estimation of the
consequences.

Physical science makes no investigation at all into

things that are absolutely inaccessible to exact investi-
gation, or as yet inaccessible to it. But should prov-

inces ever be thrown open to exact research which are

now closed to it, no well-organised man, no one who
cherishes honest intentions towards himself and others

will any longer then hesitate to countenance inquir_';r

with a view to exchanging his spinion regarding such
provinces for positive #nowledge of them.

: When, to-day, we see society waver, see it change Results of
its views on the same question according to its mood and S
the events of the week, like the register of an organ, when tho woR
we behold the profound mental anguish which is thus
produced, we should know that this is the natural and
necessary outcome of the incompleteness and transi-

tional character of our philosophy. A competent view

of the world can never be got as a gift; we must ac-

quire it by hard work. And only by granting free sway
toreason and experience in the provinces in which they

al_one are determinative, shall we, to the weal of man-

'klnd, approach, slowly, gradually, but surely, to that
ideal of a menistic view of the world which is alone
compatible with the economy of a sound mind.

I,

ANALYTICAL MECHANICS.

b 1. The mechanics of Newton are purely geometrical. The geo-
e 3 S 4 trical
; deduces his theorems from his initial assumptions mechanics
entirely by means of geometrical constructions. His® o "

procedure is frequently so artificial that, as Laplace



Analytic
mechanics.

Euler and
Maclau-

rin’s con-
tributions.

Lagrange's
perfection
of the
science.

466 THE SCIENCE OF MECHANICS,

remarked, it is unlikely that the propositions were dis-
covered in that way. We notice, moreover, that the
expositions of Newton are not as candid as those of
Galileo and Huygens. Newton’s is the so-called syn-
thetic method of the ancient geometers.

When we deduce results from given suppositions,
the procedure is called syntietic. When we seek the
conditions of a proposition or of the properties of a fig-
ure, the procedure is analytic. The practice of the latter
method became usual largely in consequence of the
It has become
customary, therefore, to call the algebraical method
generally, the analytical.

application of algebra to geometry.

The term ¢ analytical me-
chanics,” which is contrasted with the synthetical, or
geometrical, mechanics of Newton, is the exact equiva-
lent of the phrase ‘¢algebraical mechanics.”

2. The foundations of analytical mechanics were
laid by BEuLer (Mechanica, sive Motus Scientia Analytice
Lxposita, St. Petersburg, 1736). But while Euler’s
method, in its resolution of curvilinear forces into tan-
gential and normal components, still bears a trace of
the old geometrical modes, the procedure of MACLAURIN
(A Complete System of Fluxions, Edinburgh, 1742) marks
a very important advance. This author resolves all
forces in three fixed directions, and thus invests the
computations of this subject with a high degree of
symmetry and perspicuity.

3. Analytical mechanics, however, was brought to
its highest degree of perfection by Lacrance. La-
grange’s aim is (Mécanique analytigue, Paris, 1788) to
dispose once for all of the reasoning necessary to resolve
mechanical problems, by embodying as much as pos-
sible of it in a single formula. This he did. Every case
that presents itself can now be dealt with by a very
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simple, highly symmetrical and perspicuous schema ;
and whatever reasoning is left is performed by purely
mechanical methods. The mechanics of Lagrange
is a stupendous contribution to the economy of
thought. :

In statics, Lagrange starts from the principle of Statics

« e i
virtual velocities.

TRy, g definitely connected with one another, :
are impressed the forces P,, P,, P,. ... If these

points receive any infinitely small displacements p ,

Ps» Py - - - compatible with the connections of the sys-

tem, then for equilibrium = Pp = 0; where the well-

known exception in which the equality passes into an

inequality is left out of account.

Now refer the whole system to a set of rectangular
codrdinates. Let the codrdinates of the material points
lDefe Ay 5, X, Ve, %, .. .« Resolve the forces into
the components X,, V,, Z,, X,, ¥,, Z,. . . . parallel
to the axes of codrdinates, and the displacements into
the displacements dx,, 6y,, 62, 8x,, 8y,, 05, .. .,
also paralle] to the axes. In the determination of the
work done only the displacements of the point of appli-
cation in the direction of each force-component need
be considered for that component, and the expression
of the principle accordingly is

S X% L VO 288 =0 . n s e (1)

where the appropriate indices are to be inserted for
the points, and the final expressions summed.

ounded on

On a number of material points the prinei-
ples of vir-

ual veloci-
ies,

The fundamental formula of dynamics is derived Dynamics

on the prin-

ert.

from D’Alembert’s principle. On the material points ol
. - ¥ em-

Mys My, My . . .., having the codrdinates x,, v, 2, £,, P

Y25 %y . . .. the force-components X,, V,, Z,, X,, V,,

Zy....act. But, owing to the connections of the
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that is to say, if X, ¥, 7 are the partial differential co-
efficients of one and the same function of the cogrdi-
nates of position, the whole expression under the -sign
of summation is the total vatiation, & 7, of . If the
latteris = 0, /7 is in general a maximum or a minimum,.

5. We will now illustrate the use of equation (1) by Indication
a simple example. If all the points of application of the gltﬂtlhsetﬁf):
forces are independent of each other, no problem is {Fr;ﬁ“ﬁiﬂfﬁ

. . - sqay . ical b-
presented. Each point is then in equilibrium onlylemsr.n"0

system’s parts, the masses undergo accelerations, which
are those of the forces.

d2og a2y, 2%z,
My—rr M1 an

L 722
These are called the effeciive forces. But the dmpressed
forces, that is, the forces which exist by virtue of the
laws of physics, X, ¥, Z. . .. and the negative of these
effective forces are, owing to the connections of the

Discussion
of La-
grange’s
method.

system, in equilibrium. Applying, accordingly, the
principle of virtual velocities, we get

.ﬂs ‘ asx ? ( , a2y
22 X—m ¥I0) Sx- | ¥V—m = dy -+
d%z l
7 — T e et 1 T SRR L A LRl e
(/ m )6 s (2)

4. Thus, Lagrange conforms to tradition in making
statics precede dynamics. He was by no means com-
pelled to do so. On the contrary, he might, with equal
propriety, have started from the proposition that the
connections, neglecting their straining, perform no
work, or that all the possible work of the system is due
to the impressed forces. In the latter case he would
have begun with equation (2), which expresses this
fact, and which, for equilibrium (or non-accelerated
motion) reduces itself to (1) as a particular case. This
would have made analytical mechanics, as a system,
even more logical.

Equation (1), which for the case of equilibrium
makes the element of the work corresponding to the
assumed displacement —= 0, gives readily the results
discussed in page 6g. If

dV e T
— N e
e dx dy,/ dz’

when the forces impressed on it, and consequently
their components, are = 0. All the displacements & x,
6y, 6z. ... are then wholly arbitrary, and equation
(1) can subsist only provided the coefficients of all the
displacements dx, dy, dz. ... are equal to zero.
But if equations obtain between the cobrdinates of
the several points, that is to say, if the points are sub-
ject to mutual constraints, the equations so obtaining
R Bbe ofitheiform Bz, v, 210 B0y V55 Bgeo .« )=,
or, more briefly, of the form #=10. Then equations
also obtain between the displacements, of the form

dF
}lxl

dF e aF
é\xl '!‘Ey‘l’d\;"l -5’;2’—621 _" (/x— é‘xz —f—-...:os
1 [ Xy

which we shall briefly designate as D/7=0. If the
system consist of # points, we shall have 32 codrdi-
nates, and equation (1) will contain 3z magnitudes
(Y 75, o R | further, between the coérdinates
7 equations of the form #— 0 subsist, then  equa-
tions of the form D% = 0 will be simultaneously given
bEtWe‘EH the variations 6x, 6p, 65.... By these
equat.zons 2 variations can be expressed in terms of the
témainder, and so inserted in equation (1). In (1),
therefore, there are left 37— arbitrary displa\ce-
ments, whose coefficients are put — 0. There are thus
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obtained between the forces and the codrdinates 37—
equations, to which the = equations (/= () must be
added. We have, accordingly, in all, 32 equations,
which are sufficient to determine the 37 codrdinates of
the position of equilibrium, provided the forces are
given and only the form of the system’s equilibrium is
sought.

But if the form of the system is given and the forces
are sought that maintain equilibrium, the question is
indeterminate. We have then, to determine 32 force-

components, only 32— = equa-
tions; the = equations (& =0)
not containing the force-compo-

4 nents.
3 o As an example of this man-
X ner of treatment we shall select
e a lever OM = a, free to rotate

about the origin of codrdinates
in the plane X¥, and having at its end a second, simi-
lar lever AN = &. At A and &, the coordinates of
which we shall call x, yand x,, y,, the forces X, Y and

X, ¥, are applied. Equation (1), then, has the form

Xox 4 X, 0x, + Y0y + Wiy =08 S 3)
Of the form /= 0 two equations here exist ; namely,
x2 4 9% — a? = i
(B, — ) + (yy—2)2 — 8 =0 Hartig s

The equations DF =10, accordingly, are
x6x4-yS6y=20
(2, — x) 0z, — (%, — %) x4+ (9, — 0y, — } (B
(gl=0) 0 ==t
Here, two of the variations in (5) can be expressed
in terms of the others and introduced in (3). Also for

. be pursued quite mechanically, without reflection. We
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purposes of elimination Lagrange employed a Per- Lagrange's

fectly unif 1 - indetermi-
y orm and systematic procedure, which may nate coefé-

cients,
shall use it here. It consists in multiplying each of .the
equ.anons (5) by an indeterminate coefficient A, y, and
adding each in this form to (3). So doing, we obtain

[X4Ax —pu(x,—x)]6x +[X, +pe (o, — )] Sx, ,
[Y4Ay—p (r—0)18y <+ L2 = i, '1)] 4y, } AT

The coefficients of the four displacements may now
be put directly = 0. For two displacements are ar-
bitrary, and the two remaining coefficients may be
made equal to zero by the appropriate choice of A and
s—which is tantamount to an elimination of the two
remaining displacements. '

We have, therefore, the four equations

X+Ae —p(x;—a)=0 ]

XA plx, —x) =0 l

T e el e R )

Yit p—p=0 ‘
We shall first assume that the codrdinates are given,
and seek the forces that maintain equilibrium. The
values of A and u are each determined by equating to

zero two coefficients. We get from the second and
fourth equations,

X A
M= ek I"'; and M= — —ﬁyl_ 5
Xy — X J—
whence
= g .
Y, Jh e R R (0

that is to say, the total compaonent force impressed at

N ha"s the direction #7#. From the first and third
€quations we get
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ety G e B oL ke L ) G
- x ? i )' 1
and from these by simple reduction
X X 54
e e el e ey A e & e B se va del 8 @ S
= ()

that is to say, the resultant of the forces applied at M
and A acts in the direction OM.*

The frur force-components are accordingly subject
to only #we conditions, (7) and (8). The problem, con-
sequently, is an indeterminate one ; as it must be from
the nature of the case; for equilibrium does not depend
upon the absolute magnitudes of the forces, but upon
their directions and relations.

If we assume that the forces are given and seek the
four codrdinates, we treat equations (6) in exactly the
same manner, Only, we can now make use, in addi-
tion, of equations (4). Accordingly, we have, upon the
elimination of A and u, equations (7) and (8) and two
equations (4). Lrom these the following, which fully
solve the problem, are readily deduced -

s 0 R i
T X R Ve
s il

IS e ATEN o S ATy

#The mechanical interpretation of the indeterminate coefficients }, fL may
be shown as follows, Equations (6) express the equilibrium of two /ee points
on which in addition ta X, ¥, X, ¥ other forces act which answer to the re-
maining expressions and just destroy X, ¥, Xy, ¥y. The point N, for example,
is in equilibrium if .Yy is destroyed by a force pi [y — =), undetermined as yet
in magnitnde, and 17 by a force £ (3 —»). This supplementary force is due
to the constraints. Tts direction is determined; though its magnitude is not.
If we call the angle which it makes with the axis of abscissas @, we shall have

A= (Fe=p) _ S1i=F
plry —a) T —2x

that is to say, the force due to the connections acts in the direction of £,
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X - X
AR s A
PP e e S e T
(Ve 3%
y, = =N b + 1

VXL X )2+ (Y+ 1) VXi+73

Simple as this example is, it is yet sufficient to give
us a distinct idea of the character and significance of
Lagrange’s method. The mechanism of this method is
excogitated once for all, and in its application to par-
ticular cases scarcely any additional thinking is re-
quired. The simplicity of the example here selected
being such that it can be solved by a mere glance at
the figure, we have, in our study of the method, the
advantage of a ready verification at every step.

6. We will now illustrate the application of equa-
tion (2), which is Lagrange’'s form of statement of
D’Alembert’s principle. There is no problem when
the masses move quite independently of one another.
Each mass yields to the forces applied to it ; the va-
riations §x, &y, §z. ... are wholly arbitrary, and each
coefficient may be singly put —= 0. For the motion of
s masses we thus obtain 3z simul-
taneous differential equations. ¥

But if equations of condition
(&= 10) obtain between the codrdi-
nates, these equations will lead to
others (/)= () between the dis- @
placements or variations. With the
latter we proceed exactly as in the
Only it must be noted
here that the equations /= 0 must eventually be em-
ployed in their undifferentiated as well as in their dif-
ferentiated form, as will best be seen from the follow-
ing example.

Fig. 233.

application of equation (1).

Character
of the pres-
ent prob-
lem.

General
steps for
the solution
of dynam-
ical prob-
lems,
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A heavy material point lying in a vertical p‘lane
XY, is free to move on a straight line, y = ax, inclined
at an angle to the horizon. (Fig. 233.) Here equa-
tion.(2) becomes

72 PR
(X— n ({—Hz) Sx (Vf— m—rs ) gy =1,

and, since X =0, and V-—=-—mg, also
’i{;" 8 + ( :’;}lJ Bl o5 o S0 A
The place of #= 0 is taken by
= UG R L Rt (10
and for D/ — 0 we have
§y=adx.

Equation (9), accordingly, since &y drops out and
& x is arbitrary, passes into the form

dx a2y
sl — 1),
ez + (‘5 ; rl’ﬂ) “
By the differentiation of (10), or (F=1{), we have
42y  dix
T
and, consequently,
B o TR R S 11
-{ll‘i—‘rd(‘\'#wa rz’t'—*)i (D

Then, by the integration of (11), we obtain

g
r= gy e

}— a2 2
and i L
M e -
J‘—_—:_.]. _I” [22’(\)‘ B —‘--G’Zﬂl‘—’—ﬁ[[,

where & and ¢ are constants of integration, determined
by the initial position and velocity of m. This result
can also be easily found by the direct method.
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Some care is necessary 1n the application of equa- A wodifica-
2 5 ‘ . = . tion of this
tion (1) if #'=— 0 contains the time. The procedure in example.
such cases may be illustrated by the following example.
Imagine in the preceding case the straight line on
which 7 descends to move vertically upwards with the
acceleration . We start again from equation (g)
&2 d2y
dx ¢4 —= |6y =10

£ =015 here replaced by
72
y:(m“—ky? ....... s o (12

To form DF =10, we vary (12) only with respect to «x
and y, for we are concerned here only with the possidle
displacement of the system in its position af any given
instant, and not with the displacement that acfwally
takes place in time. We put, therefore, as in the pre-
vious case,

§y—adx,
and obtain, as before,
a2 x a2y .
b -+ ((g -+ dz‘?)a — (RS s Cay

But to get an equation in x alone, we have, since &
and y are connected in (13) by the acfwa/ motion, to

differentiate (12) with respect to 7 and employ the re-
sulting equation

d2y  d%x

7 ¢ e
Ziz = gm T
for substitution in (13). In this way the equation
2 5 0. zrizx\ 0
diz 8 il d1? / =

is obtained, which, integrated, gives
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— 72
e e D 0

2

a? ) i
y=|y— i 'Jrﬂa'“’_ e+ 9 +abtl 4 ac.
If a weightless body m lie on the moving straight
line, we obtain these equations

_ 22
?/‘)—]-/)Z'«&—(‘

o st i
—ig

SR A SERY .
J_17+722+a) + ac,

— results which are readily understood, when we re-
flect that, on a straight line moving upwards with the
acceleration y, m behaves as if it were affected with a
downward acceleration ) on the straight line at rest.
Discussion 7. The procedure with equation (12) in the preced-
E’ée‘é"é;‘;;‘?‘ ing example may be rendered somewhat clearer by the
Ke following consideration. Equation (2), D’Alembert’s
principle, asserts, that all the work
that caz be done in the displacement
of a system is done by the impressed
forces and not by the connections. This
is evident, since the rigidity of the con-
nections allows no changes in the rela-

Fig. 234.

tive positions which would be neces-
sary for any alteration in the potentials of the clastic
forces. But this ceases to be true when the connec-
tions undergo changes in Zme. In this case, the changes
of the connections perform work, and we can then ap-
ply equation (2) to the displacements that acfually take
place only provided we add to the impressed forces the
forces that produce the changes of the connections.
A heavy mass m is free to move on a straight line
parallel to OV (Fig. 234.) Let this line be subject to
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a forced acceleration in the direction of a, such that Hlustration

the equation &= 0 becomes iy
5 ple.
3
X = T e R e S s
Y 5 - (14)

D’Alembert’s principle again gives equation (g).
But since from D/= 0 it follows here that da =0,
this equation reduces itself to

2 1)
(.f 'f 0 oy—20

e+t o) TR, - (15)
in which &y is wholly arbitrary. Wherefore,
(-[2-’].
£+ drz f
and
—_y 72
y=-—o—-—+at-+5

to which must be supplied (14) or
o — tg
= o
Tt is patent that (15) does not assign the total work
of the displacement that acfzally takes place, but only
that of some possible displacement on the straight line
conceived, for the moment, as fixed.
If we imagine the straight line massless, and cause
it to travel parallel to itself in some guiding mechan-

ism moved by a force my, equation (2) will be re-
placed by

) a2 a\ g2y
(m;/ — Ti_ﬂ) da -+ (—— nE— M — )6‘)} =0,

and since dx, &y are wholly arbitrary here, we obtain
the two equations
A3

i
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& Aif {:;f; = O;

which give the same results as before. The apparently
different mode of treatment of these cases is simply the
result of a slight inconsistency, springing from the fact
that a// the forces involved are, for reasons facilitating
calculation, not included in the consideration at the
outset, but a portion is left to be dealt with subse-
quently.

Deduction 8. As the different mechanical principles only ex-

[ . :
glplée()?l;}:press different aspects of the same fact, any one of

# . ; .
izfgmﬁ?;?s them is easily deducible from any other ; as we shall

fundamen- ; - R A
tal dynnm. now illustrate by developing the principle of o viva

ALeAn from equation (2) of page 468. Equation (2) refers to
instantaneously possible displacements, that is, to ““vir-
tual 7 displacements. But when the connections of a
system are independent of the time, the motions #kat
actually take place are <“virtual ” displacements. Conse-
quently the principle may be applied to actual motions.
For 6x, 8y, 63, we may, accordingly, write dx, &y,
dz, the displacements which take place in time, and
put

B(Xdx+ Ydy + Zds) —

a2y a2
Em( 7 " dx Jr(il" dy + by (i,)

The expression to the right may, by introducing for
dx, (dx/dt)d? and so forth, and by denoting the velo-
city by z, also be written

d2x dx d2y dy 2z 0z
= (dz‘~’ Wt a5 5" T an o W) =

[dx\2 dy\2  [dz
%a’fﬂ.’“!ﬁ) +((it> _’_(”) ] ded Z 2.

-
7
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Also in the expression to the left, (dx Jdfydt may be Force-
written for 4x.  But this gives function,

fE(Xd:t + Ydy 4 Zds) = Zim (92 — v2),

where z, denotes the velocity at the beginning and »
the velocity at the end of the motion. The integralto the
left can always be found if we can reduce it to a single
variable, that is to say, if we know the course of the
motion in time or the paths which the movable points
describe. If, however, X, V, Z are the partial differ-
ential coefficients of the same function ¢/ of codrdinates,
if, that is to say,

dU au

G P i O G
dx dy a3

if

as is always the case when only central forces are in-
volved, this reduction is unnecessary. The entire ex-
pression to the left 1s then a complete differential. And
we have

S(U—U)=Z1im(v* —v2),

0

which is to say, the difference of the force-functions
(or work) at the beginning and the end of the motion
is equal to the difference of the wires z/n@ at the be-
ginning and the end of the motion. The zires vive are
in such case also functions of the coérdinates.

In the case of a body movable in the plane of X
and ¥ suppose, for example, X —
then have

J'(—ydx—xri :—frf(a))ﬁ

xy=tm (2 — 03).

S Fo—e s we

b

00

But if X—=—a, Y= x, the integral to the left is

k.j‘([z dx 4 x dy). This integral can be assigned the
moment we know the path the body has traversed, that
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1s, if y is determined a function of x.  If, for example,
y = px2, the integral would become

bl A A
—-J‘((z + 2payda —=a(x, — x)+ 2 *(‘A'“.;‘—A)—s.

The difference of these two cases is, that in the first
the work is simply a function of codrdinates, that a
force-function exists, that the element of the work is a
complete differential, and the work consequently is de-
termined by the initial and final values of the codrdi-
nates, while in the second case it is dependent on the
entire path described.

g. These simple examples, in themselves present-
ing no difficulties, will doubtless suffice to illustrate the
general nature of the operations of analytical mechan-
ics. No fundamental light can be expected from this
branch of mechanics. On the contrary, the discovery
of matters of principle must be substantially completed
before we can think of framing analytical mechanics ;
the sole aim of which is a perfect practical mastery of
problems. Whosoever mistakes this situation, will
nevercomprehend Lagrange’s great performance, which
here too is essentially of an cconomical character. Poin-
sot did not altogether escape this error.

It remains to be mentioned that as the result of the
labors of M* »ius, Hamilton, Grassmann, and others, a
new transformation of mechanics is preparing. These
inquirers have developed mathematical conceptions
that conform more exactly and directly to our geomet-
rical ideas than do the conceptions of common analyt-
ical geometry ; and the advantages of analytical gene-
rality and direct geometrical insight are thus united.
But this transformation, of course, lies, as yet, beyond
the limits of an historical exposition.
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Iv.
THE ECONOMY OF SCIENCE.

1. It is the object of science to replace, or szoe, ex- The basis
periences, by the reproduction and anticipation of facts sconomy of
in thought. Memory is handier than experience, and
often answers the same purpose. This economical
office of science, which fills its whole life, is apparent
at first glance ; and with its full recognition all mys-
ticism in science disappears.

Science 1s communicated by instruction, in order
that one man may profit by the experience of another
and be spared the trouble of accumulating it for him-
self ; and thus, to spare posterity, the experiences of
whole generations are stored up in libraries.

Language, the instrument of this communication, The cco-
is itself an economical contrivance. Experiences are 2ﬁ:;l;$1tler
analysed, or broken up, into simpler and more familiar Eﬁi’;’é
experiences, and then symbolised at some sacrifice of
precision. The symbols of speech are as yet restricted
in their use within national boundaries, and doubtless
will long remain so. But written language is gradually
being metamorphosed into an ideal universal character.

It is certainly no longer a mere transcript of speech.
Numerals, algebraic signs, chemical symbols, musical
notes, phonetic alphabets, may be regarded as parts
already formed of this universal character of the fu-
ture ; they are, to some extent, decidedly conceptual,
and of almost general international use. The analysis
of colors, physical and physiological, is already far
enough advanced to render an international system of
color-signs perfectly practical. In Chinese writing,
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we have an actual example of a true ideographic lan-
guage, pronounced diversely in different provinces, yet
everywhere carrying the same meaning. Were the
system and its signs only of a simpler character, the
use of Chinese writing might become universal. The
dropping of unmeaning and needless accidents of gram-
mar, as English mostly drops them, would be quite
requisite to the adoption of such a system. But uni-
versality would not be the sole merit of such a char-
acter ; since to read it would be to understand it. Our
children often read what they do not understand ; but
that which a Chinaman cannot understand, he is pre-
cluded from reading.

2. In the reproduction of facts in thought, we
never reproduce the facts in full, but only that side of
them which is important to us, moved to this directly
or indirectly by a practical interest. Our reproductions
are invariably abstractions. Here again i1s an econom-
ical tendency.

Nature is composed of sensations as its elements.
Primitive man, however, first picks out certain com-
pounds of these elements—those namely that are re-
latively permanent and of greater importance to him.
The first and oldest words are names of ‘¢ things.”
Even here, there is an abstractive process, an abstrac-
tion from the surroundings of the things, and from the
continual small changes which these compound sensa-
tions undergo, which being practically unimportant are
not noticed. No inalterable thing exists. The thing
is an abstraction, the name a symbol, for a compound
of elements from whose changes we abstract. The
reason we assign a single word to a whole compound is
that we need to suggest all the constituent sensations
at once. When, later, we come to remark the change-
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ableness, we cannot at the same time hold fast to the
1dea of the thing’s permanence, unless we have recourse
to the conception of a thing-in-itself, or other such like
absurdity. Sensations are not signs of things; but, on
the contrary, a thing is a thought-symbol for a com-
pound sensation of relative fixedness. Properly speak-
ing the world is not composed of ““things” as its ele-
ments, but of colors, tones, pressures, spaces, times,
in short what we ordinarily call individual sensations.

The whole operation is a mere affair of economy.
In the reproduction of facts, we begin with the more
durable and familiar compounds, and supplement these
later with the unusual by way of corrections. Thus,
we speak of a perforated cylinder, of a cube with bev-
eled edges, expressions involving contradictions, un-
less we accept the view here taken. All judgments are
such amplifications and corrections of ideas already
admitted.

3. In speaking of cause and effect we arbitrarily The ideas
cause and

give relief to those elements to whose connection we e
have to attend in the reproduction of a fact in the re-
spect in which it 1s important to us. There is no cause
nor effect in nature ; nature has but an individual exis-
tence ; nature simply 7. Recurrences of like cases in
which 4 is always connected with B, that is, like results
underlike circumstances, thatis again, the essence of the
connection of cause and effect, exist but in the abstrac-
tion which we perform for the purpose of mentally re-
producing the facts. Let a fact become familiar, and
we no longer require this putting into relief of its con-
necting marks, our attention is no longer attracted to
the new and surprising, and we cease to speak of cause
and effect. Heat is said to be the cause of the tension
of steam ; but when the phenomenon becomes familiar

tfect.
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we think of the stecam at once with the tension proper
to its temperature. Acid is said to be the cause of the
reddening of tincture of litmus ; but later we think of
the reddening as a property of the acid.
;\K:\r!;;eand Hume first propounded the question, How can a
Sl thing A4 act on another thing 5? Hume, in fact, re-
ot jects causality and recognises only a wonted succes-
and effcct. sion in time. Kant correctly remarked that a necessary
connection between 4 and B could not be disclosed by
simple observation. e assumes an innate idea or
category of the mind, a Verstandesbegriff, under which
the cases of experience are subsumed. Schopenhauer,
who adopts substantially the same position, distin-
guishes four forms of the «principle of sufficient rea-
son”—the logical, physical, and mathematical form,
and the law of motivation. But these forms differ only
as regards the matter to which they are applied, which
may belong either to outward or inward experience.
Cause and The natural and common-sense explanation is ap-
gggﬁé:fféﬁ parently this. The ideas of cause and effect originally
;‘I“i’ﬁi‘fﬁ:{fﬁb sprang {rom an endeavor to reproduce facts in thought.
At first, the connection of 4 and 5, of Cand D, of E
and 7, and so forth, is regarded as familiar. But after
a greater rangr >f experience is acquired and a con-
nection between A and AV is observed, it often turns
out that we recognise M as made up of 4, C, £, and IV
of B, D, F, the connection of which was before a fa-

miliar fact and accordingly possesses with us a higher

authority. This explains why a person of experience

regards a new event with different eyes than the nov-
ice. The new experience is illuminated by the mass
of old experience. As a fact, then, there really does
exist in the mind an ““idea” under which fresh experi-
ences are subsumed ; but that idea has itself been de-
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v;aloped from experience. The notion of the necessily
of the causal connection is probably created by our
Vc;l_untary movements in the world and by the changes
which these indirectly produce, as Hume supposed but

Schopenhauer contested. Much of the authority of

the ideas of cause and effect is due to the fact that th

are developed /nstinctively and involuntarily antd thi{
we are distinctly sensible of having perso’nall g CO;l
tributed nothing to their formation, We may ir}xdeed-
say, that our sense of causality is not acquireél b th;
individual, but has been perfected in the dev}:ﬂo -
ment of the race. Cause and effect, therefore, al;e

things of thought, having an economical office. Tt can-
not be sfalid why they arise.  For it is precisely by the
abstraction of uniformities that we know the question
“why.” (Sce Appendix, V.

4 In the details of science, its economical character Econom.
is still more apparent. The so-called descriptive sci- e
ences must chiefly remain content with reconstructing e

individual facts. Where it is possible, the common fea- icir
_tures_ of many facts are once for all placed in relief. But
in sciences that are more highly developed, rules f;)r the
?ec?nstruction of great numbers of facts may be embod-
1e_d ma single expression. Thus, instead of noting indi-
vidual cases of light-refraction, we can mentally recon-
f;tl‘l;lct all present and future cases, if we know that the
1%1c1_dent ray, the refracted ray, and the perpendicular
?18 in the same plane and that sin a/sin Be=u HerCe
mstea‘d of the numberless cases of réfraction in'diffcren;
conllbmations of matter and under all different ancles
of incidence, we have simply to note the rule él;;ve
stated a.nd the values of #z,—which is much easier. The
economlcal purpose is here unmistakable. In nature
there is no /aw of refraction, only different cases of re-
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fraction. The law of refraction is a concise compen-
dious rule, devised by us for the mental reconstruction
of a fact, and only for its reconstruction in part, that
is, on its geometrical side.

5. The sciences most highly developed economically
are those whose facts are reducible to a few numerable
elements of like nature. Such is the science of mechan-
ics, in which we deal exclusively with spaces, times,
and masses. The whole previocusly established econ-
omy of mathematics stands these sciences in stead.
Mathematics may be defined as the economy of count-
ing. Numbers are arrangement-signs which, for the
sake of perspicuity and economy, are themselves ar-
ranged in a simple system. Numerical operations, it
is found, areindependent of the kind of objects operated
on, and are consequently mastered once for all. When,
for the first time, I have occasion to add five objects to
seven others, I count the whole collection through, at
once ; but when I afterwards discover that I can start
counting from 5, I save myself part of the trouble;
and still later, remembering that 5 and 7 always count
up to 12, I dispense with the numeration entirely.

The object of all arithmetical operations is to save
direct numeration, by utilising the results of our old
operations of counting. Our endeavor is, having done
a sum once, to preserve the answer for future use. The
first four rules of arithmetic well illustrate this view.
Such, too, is the purpose of algebra, which, substitut-
ing relations for values, symbolises and definitively
fixes all numerical operations that follow the same rule.
For example, we learn from the equation

=X — Y,
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that the more complicated numerical operation at the
l?ft may always be replaced by the simpler one at the
right, whatever numbers a and J stand for.  We thus
save ourselves the labor of performing in future cases
the more complicated operation. Mathematics is the
method of replacing in the most comprehensive and
economical manner possible, zew numerical oberations
by old ones done already with known results. It may
happen in this procedure that the results of operations
are employed which were originally performed centu-
ries ago.

Often operations involving intense mental effort The theory
may be replaced by the action of semi-mechanical minsne,
rogtme, with great saving of time and avoidance of
fat1gu.e. I_?or example, the theory of determinants
Owes 1ts origin to the remark, that it is not necessary
to solve each time anew equations of the form

Gt R S
@y X+ by y4 o, =0,
from which result

e 517/)2_—52 4, P
t'll /jz T /11 7—17'\/'
J,::_”H b2 =8¢y Q
ay by, —a,d, it

but th'at the solution may be effected by means of the
coefficients, by writing down the coefficients according

to a : prescribed scheme and operating with them me-
chanically. Thus,

la, &,
‘ =a, b, —a, b — N
a, b, | 2 3 ¥y
and similarly
\
b | |
1 e
11— P and!“1

i |
|€2 /)2 et

2 2
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Even a 772/ disburdening of the mind can be ef-
fected in mathematical operations. This happens where
operations of counting hitherto performed are symbol- {
ised by mechanical operations with signs, and our brain

Calculating

It only places at our disposal, energy within our present
machines,

or future possession, which the circumstance of 1gno-
rance prevented us from availing ourselves of. This
1s precisely the case with the application of scientific

energy, instead of being wasted on the repetition of ideas.

old operations, is spared for more important tasks. The mathematician who pursues his studies with- Necessity
i ] i : of clear

The merchant pursues a like economy, when, instead out clear views of this matter, must often have the views on

: : . this sub-
uncomfortable feeling that his paper and pencil sur- ject.

pass him in intelligence. Mathematics, thus pursued
as an object of instruction, is scarcely of more educa-
tional value than busying oneself with the Cabala. On
the contrary, it induces a tendency toward mystery,
which is pretty sure to bear its fruits. '
6. The science of physics also furnishes examples Examples

of this economy of thought, altogether similar to those Sﬁ}yh?,?““‘

of directly handling his bales of goods, he operates
with bills of lading or assignments of them. The
drudgery of computation may even be relegated to a
machine. Several different types of calculating ma-
chines are actually in practical use. The earliest of
these (of any complexity) was the difference-engine of
Babbage, who was familiar with the ideas here pre-
sented.

i i ] i ; . thought i
Other ab- A numerical result is not always reached by the we have just examined. A brief reference here will suf- hysicak
methode of actual solution of the problem ; it may also be reached fice. The moment of inertia saves us the separate con-
e indirectly. It is easy to ascertain, for example, that a sideration of the individual particles of masses. By

curve whose quadrature for the abscissa « has the value
&, gives an increment mx” ~'dx of the quadrature for
the increment &x of the abscissa. But we then also know
that [max”~r*dx — x”; that 1s, we recognise the quan-
tity & from tF: increment ma ™~ "dx as unmistakably
as we recogmise a fruit by its rind. Results of this
kind, accidentally found by simple inversion, or by
processes more or less analogous, are very extensively
employed in mathematics.

That scientific work should be more useful the more
it has been used, while mechanical work is expended in
use, may seem strange to us. When a person who
daily takes the same walk accidentally finds a shorter
cut, and thereafter, remembering that it is shorter, al-
ways goes that way, he undoubtedly saves himself the
difference of the work. But memory is really not work.

the force-function we dispense with the separate in-
vestigation of individual force-components. The sim-
plicity of reasonings involving force-functions Springs
from the fact that a great amount of mental work had
to be performed before the discovery of the properties
of the force-functions was possible. Gauss’s dioptrics
dispenses us from the Separate consideration of the
single refracting surfaces of a dioptrical system and
substitutes for it the principal and nodal points. But
a careful consideration of the single surfaces had to
precede the discovery of the principal and nodal points.
Gauss’s dioptrics simply sazes us the necessity of often
repeating this consideration.

We must admit, therefore, that there is no result of
science which in point of principle could not have been
arrived at wholly without methods, But, as a matter
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seiencea of fact, within the short span of a human life and with

;}glk;lilclﬂ man’s limited powers of memory, any stock of knowl-
edge worthy of the name is unattainable except by the
greatest mental economy. Science itself, therefore,
may be regarded as a minimal problem, consisting of
the completest possible presentment of facts with the
least possible expenditure of thought.

7. The function of science, as we take.it, is to re-
place experience. Thus, on the one hand, science
must remain in the province of experience, but, on the
other, must hasten beyond it, constantly expecting con-
firmation, constantly expecting the reverse. Where
neither confirmation nor refutation is possible, science
is not concerned. Science acts and only acts in the
domain of uncompleted experience. Exemplars of such
branches of science are the theories of elasticity and
of the conduction of heat, both of which ascribe to the
smallest particles of matter only such properties as ob-
servation supplies in the study of the larger portions.
The comparison of theory and experience may be far-
ther and farther extended, as our means of observation
increase in refinement.

The princi- Experierice alone, without the ideas that are asso-

le of con- . : . .
Hinmity, the ciated with it, would forever remain strange to us.

normofsel- /iy yse ideas t1. . hold good throughout the widest do-

method. ains of research and that supplement the greatest

amount of experience, are the most scientific. The prin-

ciple of continuity, the use of which everywhere per-

vades modern inquiry, simply prescribes a mode of

conception which conduces in the highest degree to the
economy of thought.

8. If a long elastic rod be fastened in a vise, the

rod may be made to execute slow vibrations. These

are directly observable, can be seen, touched, and
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graphically recorded. If the rod be shortened, the

‘vibrations will increase in rapidity and cannot be di-
rectly seen; the rod will present to the sight a blurred
image. This is a new phenomenon. But the sensa-
tion of touch is still like that of the previous case; we
can still make the rod record its movements ; and if
we mentally retain the conception of vibrations, we can
still anticipate the results of experiments. On further
shortening the rod the sensation of touch is altered ;
the rod begins to sound ; again a new phenomenon is
presented. But the phenomena do not all change at
once ; only this or that phenomenon changes; conse-
quently the accompanying notion of vibration, which
is not confined to any single one, is still serviceable,
still economical. Even when the sound has reached
so high a pitch and the vibrations have become so
small that the previous means of observation are not
of avail, we still advantageously imagine the sounding
rod to perform vibrations, and can predict the vibra-
tions of the dark lines in the spectrum of the polarised
light of a rod of glass. If on the rod being further
shortened a// the phenomena suddenly passed into zeaw
phenomena, the conception of vibration would no
longer be serviceable because it would no longer afford
us a means of supplementing the new experiences by
the previous ones.

When we mentally add to those actions of a human
being which we can perceive, sensations and ideas like
our own which we cannot perceive, the object of the
idea we so form is economical. The idea makes ex-
perience intelligible to us; it supplements and sup-
plants experience. This idea is not regarded as a great
scientific discovery, only because its formation is so
natural that every child conceives it. Now, this is

Example il-

Instrative
of the

method of

science,
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exactly what we do when we imagine a moving body
which has just disappeared behind a pillar, or a comet
at the moment invisible, as continuing its motion and
retaining its previously observed properties. We do
this that we may not be surprised by its reappearance.
We fill out the gaps in experience by the ideas that
experience suggests. i

9. Yet not all the prevalent scientific theories origi-
nated so naturally and artlessly. Thus, chemical, elec-
trical, and optical phenomena are explained by atoms.
But the mental artifice atom was not formed by the
principle of continuity; on the contrary, it is a pro-
duct especially devised for the purpose in view. Atoms
cannot be perceived by the senses ; like all substances,
they are things of thought. Furthermore, the atoms
are invested with properties that absolutely contradict
the attributes hitherto observed in bodies. However
well fitted atomic theories may be to reproduce certain
groups of facts, the physical inquirer who has laid to
heart Newton’s rules will only admit those theories as
provisional helps, and will strive to attain, 1n some more
natural way, a satisfactory substitute.

The atomic theory plays a part in physics similar

other 1% to that of certa.. auxiliary concepts in mathematics;

it is a mathematical model for facilitating the mental
reproduction of facts. Although we represent vibra-
tions by the harmonic formula, the phenomena of cool-
ing by exponentials, falls by squares of times, etc., no
one will fancy that vibrations iz fhemselves have any-
thing to do with the circular functions, or the motion
of falling bodies with squares. It has simply been ob-
served that the relations between the quantities inves-
tigated were similar to certain relations obtaining be-
tween familiar mathematical functions, and these more
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Samiliar ideas are employed as an easy means of sup-
plementing experience. Natural phenomena whose re-
lations are not similar to those of functions with which
we are familiar, are at present very difficult to recon-
struct. But the progress of mathematics may facilitate
the matter.

As mathematical helps of this kind, spaces of more
than three dimensions may be used, as T have else-
where shown. But it is not necessary to regard these,

on this account, as anything more than mental arti-
fices. *

*As the outcome of the labors of Lobatschewsky, Bolyai, Gauss, and Rie-
mann, the view has gradually obtained currency in the mathematical world,
that that which we call space is a particular, actual case of a more general,
conceivable case of multiple quantitative manifoldness. The space of sight
and touch is a threefold manifoldness; it possesses three dimensions; and
every point in it can be defined by three distinct and independent data, But
it is possible to conceive of a quadruple or even multiple space-like manifold-
ness.  And the character of the manifoldness may also be differently concerzed
from the manifoldness of actual space. We regard this discovery, which is
chicfly due to the labors of Riemann, as a very important one. The properties
of actual space are here directly exhibited as objects of experience, and the
pseudo-theories of geometry that seek to excogitate these properties by meta-
physical arguments are overthrown.

A thinking being is supposed to live in the surface of a sphere, with no
other kind of space to institute comparisons with. His space will appear to
him similarly constituted throughout. He might regard [it as infinite, and
could only be convinced of the contrary by experience. Starting from any two
points of a great circle of the sphere and proceeding at right angles thereto on
other great circles, he could hardly expect that the circles last mentioned
would intersect. So, also, with respect to the space in which we live, only ex-
perience can decide whether it is finite, whether parallel lines intersect in it,
or the like. The significance of this elucidation can scarcely be overrated.
An enlightenment similar to that which Riemann inaugurated in science was
produced in the mind of humanity at large, as regards the surface of the earth,
by the discoveries of the first circumnavigators.

The theoretical investigation of the mathematical possibilities above re-
ferred to, has, primarily, nothing to do with the question whether things really
exist which correspond to these possibilities; and we must not hold mathe-
maticians responsible for the popular absurdities which their investigations
have given rise to. The space of sight and touch is ##7ee-dimensional ; that,
no one ever yet doubted. If, now, it should be found that bodies vanish from
this space, or new bodies get into it, the question might scientifically be dis-
cussed whether it would facilitate and promote our insight into things to con-
ceive experiential space as part of a four-dimensional or multi-dimensional

Multi-
dimen-
sioned
spaces.
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This is the case, too, with @// hypothesis formed

for the explanation of new phenomena. Our concep-

tions of electricity fit in at once with the electrical phe-
nomena, and take almost spontaneously the familiar
course, the moment we note that things take place as
if attracting and repelling fluids moved on the surface
of the conductors. DBut these mental expedients have
nothing whatever to do with the phenomenon ##se/f.

space. Yet in such a case, this feurth dimension would, none the less, remain
a pure thing of thought, a mental fiction.

But this is not the way matters stand. The phenomena mentioned were
not forthcoming until afZe» the new views were published, and were then ex-
hibited in the presence of certain persons at spiritualistic séances. The fourth
dimension was a very opportune discover for the spiritualists and for theo-
logians who were in a quandary about the location of hell. The use the spiri-
tualist makes of the fourth dimension is this. It is possible to move out of a
finite straight line, without passing the extremities, through the second dimen-
sion; out of a finite closed surface through the third; and, analogously, out
of a finite closed space, without passing through the enclosing boundaries,
through the fourth dimension. Even the tricks that prestidigitateurs, in the
old days, harmlessly executed in three dimensions, are now invested with a
new halo by the fourth, But the tricks of the spiritualists, the tying or untying
of knots in endless strings, the removing of bodies from closed spaces, are all
performed in cases where there is absolutely nothing at stake, All is purpose-
less jugglery. We have not yet found an accoxckenr who has accomplished
parturition through the fourth dimension. If we should, the question would
at once becoine a serious one.  Professor Simony’s beautiful tricks in rope-
tying, which, as the performance of a prestidigitateur, are very admirable,
speak against, not for, the spiritualists.

Everyone is free to set up an opinion and to adduce proofs in support of
it. Whether, though, cientist shall find it worth his while to enter into
serious investigations of opinions so advanced, is a question which his reason
and instinet alone can decide. If these things, in the end, should turn out to
be true, I shall not be ashamed of being thelast to believe them. What I have
seen of them was not calculated to make me less sceptical.

I myself regarded multi-dimensioned space as a mathematico-physical
help even prior to the appearance of Riemann's memoir. But I trust that
no one will empley what I have thought, said, and written on this subject as a
basis for the fabrication of ghost stories. (Compare Mach, Die Geschichie und
die Wurzel des Satzes von dev Evkaltung der Arbeit,)

CLIARTER 'V

THE RELATIONS OF MECHANICS TO OTHER DE-
PARTMENTS OF KNOWLEDGE.

I.

THE RELATIONS OF MECHANICS TO PHYSICS

1. Purely mechanical phenomena do not exist. The The events

production of mutual accelerations in masses 1s, to all
appearances, a purely dynamical phcnomenonj But
with these dynamical results are always
thermal, magnetic, electrical, and chemical phenom-
ena, and the former are always modified in proportion.
as the l.atter are asserted. On the other hand, thermal
magnetic, electrical, and chemical conditions also car;
produce motions. Purely mechanical phenomena, ac-
cordingly, are abstractions, made, :
or from necessity,
things.

either intentionally
for facilitating our comprehension of
' The same thing is true of the other classes of
physical phenomena. Every event belongs, in a strict
sense, to all the departments of physics, th,e latter be-
ng separated only by an artificial classification, which
1s partly conventional, partly ’

A
o physiological, and partly

2. The view that makes mechanics the basis of the
remaining branches of physics, and explains all physical
phe‘nor.nena by mechanical ideas, is in our judgment a
prejudice. Knowledge which is historically Dﬁrst, is

hot necessarily the foundation of all that is subsequently

of nature

do not ex-
clusively

belong to

any sci-

assoclated ence.
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Theme- gained. As more and more facts are discovered and

chanical i £ .
Sosieot classified, entirely new ideas of general scope can be

nature not . -
oeescarily formed. We have no means of knowing, as yet, which

gmt_icé‘tl;llda- of the physical phenomena go decpest, whether the

8PeC!% echanical phenomena are perhaps not the most super-
ficial of all, or whether all do not go equally decp. Even
‘n mechanics we no longer regard the oldest law, the
law of the lever, as the foundation of all the other
principles.

arifeialiy  The mechanical theory of nature, is, undoubtedly,

of the me- 5 i : = 3otz
Ol M in an historical view, both intelligible and pardonable;

conception 5 i

?jo:'}lm. and it may also, for a time, have been of much value,
But, upon the whole, it is an artificial conception.
Faithful adherence to the method that led the greatest
investigators of nature, Galileo, Newton, Sadi Carnot,
Faraday, and ]. R. Mayer, to their great results, re-
stricts physics to the expression of actual facts, and
forbids the construction of hypotheses behind the facts,
where nothing tangible and verifiable is found. If this
is done, only the simple connection of the motions of
masses, of changes of temperature, of changes in the
values of the potential function, of chemical changes,
and so forth is to be ascertained, and nothing is to be
imagined along with these elements except the physical
attributes or characteristics directly or indirectly given
by observation.

This idea was elsewhere * developed by the author
with respect to the phenomena of heat, and indicated,
in the same place, with respect to electricity. All hy-
potheses of fluids or media are eliminated from the
theory of electricity as entirely superfluous, when we
reflect that electrical conditions are all given by the

* Mach, Die Geschichte und die Wurzel des Sataes von der Evhaltung der
Arbeit, :

I7S RELATIONS TO OTHER SCIENCES 497

values of the potential function 7 and the dielectric science
i ; cience

constants. If we assume the differences of the values shonid be

based
Ofé/m be measured (on the electrometer) by the forces f;lcgs :;1{1
» s ypoth-
3}111 re.gard Van.d not the quantity of electricity Gl ias g
the primary notion, or measurable physical attribute
&

we shall have, for anv si i
; y simple insulator
tity of electricity AR

e R e s e e
Q"MJ(?‘@“ o o
| dx dy? adz2 i
(where x, 5, 5 denote the cobrdinates and 47 the ele-
ment of volume,) and for our potential *

W:TJIV(“@V a3 grp
87 H5+@§'+7z?)‘{f"
Here Q_and W appear as derived notions, in which
conception of fluid or medium is conta’ined If .
work- over in a similar manner the entire dc;mai w?‘
p.hys.lcs, we shall restrict ourselves wholly to the ey
titative conceptual expression of actual facts A?Iuan_
Perﬂl}ous ‘and futile notions are eliminated,- and ;1‘;
im i
Sta;geliary problems to which they have given rise fore-
'The removal of notions whose foundations are hj
torical, conventional, or accidental, can bes‘;: be fls-
’_thered by a comparison of the conceptions obtai i
in the <_iifferent departments, and by findin f?m;g
concept'lons of every department the corre% cmrd't ;
conceptions of others. We discover, thus, ;}l:at telr?qg

peratures and potential functions correspond to the

velociti i i
locities of mass-motions. A single velocity-value, a
: )

;;mglt? temperature-value, or a single value of potential
1fmct10n', never changes @/one. But whilst in the case
of velocities and potential functions, so far as we yet

* Using the terminology of Clausius,
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Desirabil- know, only differences come into Consideration,. tbe

ic‘c{n?éaﬂra- significance of temperature is not only contained in its

™ difference with respect to other temperatures. Thermal
capacities correspond to masses, the pote'ntial of an
electric charge to quantity of heat, quan.tlty of elec-
tricity to entropy, and so on. The pursuit of _such re-
semblances and differences lays the foundation of a
comparative physics, which shall ultimately render pos-
sible the concise expression of extensive groups of facts,
without eréitrary additions. We shall then possess a
homogeneous physics, unmingled with artificial atomic
theories. ) :

It will also be perceived, that a real economy of
scientific thought cannot be attained by mechanical
hypotheses. Even if an hypothesis were fully com-
petent to reproduce a given department of natural phe-
nomena, say, the phenomena of heat, we shctuld, by
accepting it, only substitute for the actual relations be-
‘tween the mechanical and thermal processes, the hy-
pothesis. The real fundamental facts are re.plac.:ed by
an equally large number of hypothe_ses, ‘Vthl’]: is cer-
tainly no gain. Once an hypothesis has fa(nhtat_ed,
as best it can, our view of new facts, by the substitu-
tion of more familiar ideas, its powers are exhausted.
We err when we expect more enlightenment from an
hypothesis than from the facts themselvc.as. .

Cirona: 3. The development of the mechanical view was
stances favored by many circumstances. In the first place, a

which fa-

vored the  connection of all natural events with mechanical pro-
evelop-

ment o h¢ cesses is unmistakable, and it is natural, therefore, that
view. we should be led to explain less known phenomena by
better known mechanical events. Then again, it was
first in the department of mechanics that laws of gen-

.
3 Tce f
eral and extensive scope were discovered. A law of
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this kind is the principle of wis viva 20U, —U)=
24m (23 — o3), which states that the increase of the
vss viva of a-system in its passage from one position to
another is equal to the increment of the force-function,
or work, which is expressed as a function of the final
and initial positions. If we fix our attention on the
work a system can perform and call it with Helmholtz
the Spannkraft, S,* then the work actually performed,
U, will appear as a diminution of the Spannkraft, K,
initially present ; accordingly, S= A — ¢, and the
principle of ##s 270a takes the form

24S - T}Em‘ Tha— PR

that is to say, every diminution of the Spannkraft, is The Cota il
compensated for by an increase of the /s ipa. In this Energy.
form the principle is also called the law of the Conser-
vation of Energy, in that the sum of the Spannkraft (the
potential energy) and the s vina (the kinetic energy)
remains constant in the system. But since, in nature,
it is possible that nez only vis viva should appear as the
consequence of work performed, but also quantities of
heat, or the potential of an electric charge, and so farth,
scientists saw in this law the expression of a mechanical
action as the basis of all natural actions. However,
nothing is contained in the expression but the fact of
an invariable quantitative comnection between mechani-
cal and other kinds of phenomena.

4. It would be a mistake to suppose that a wide
and extensive view of things was first introduced into
physical science by mechanics. On the contrary, this

* Helmholtz used this term in 1847; but it is not found ir
papers; and in 188z (Wissenschafiliche Ablandiungen, 11,
discards it in favor of the English “ potential energy.”” He even (p. g68) pre-
fers Clausius’s ward Lrgal to Spannkraf?, which is quite out of agreement
with modern terminology.— Zrans,

1 his subsequent
965) he expressly
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insight was possessed at all times by the foremost
inquirers and even entered into the construction of
mechanics itself, and was, accordingly, not first created
by the latter. Galileo and Huygens constantly alter-
nated the consideration of particular details with the
consideration of universal aspects, and reached their
results only by a persistent effort after a simple and
consistent view. The fact that the velocities of indi-
vidual bodies and systems are dependent on the spaces
descended through, was perceived by Galileo and
Huygens only by a very detailed investigation of the
motion of descent in particular cases, combined with
the consideration of the circumstance that bodies gen-
erally, of their own accord, only sink. Huygens
especially speaks, on the occasion of this inquiry, of
the impossibility of a mechanical perpetual motion ;
he possessed, therefore, the modern point of view. He
felt the incompatibility of the idea of a perpetual motion
with the notions of the natural mechanical processes
with which he was familiar.

Take the fictions of Stevinus—say, that of the end-
less chain on the prism. Here, too, a deep, broad
insight is displayed. We have here a mind, disciplined
by a multitude of experiences, brought to bear on an
individual case. The moving endless chain is to Ste-
vinus a motion of descent that is not a descent, a mo-
tion without a purpose, an intentional act that does
not answer to the intention, an endeavor for a change
which does not produce the change. If motion, gener-
ally, is the result of descent, then in the particular case
descent is the result of motion. It is a sense of the
mutual interdependence of # and /% in the equation
2 =1"2g/ that is here displayed, though of course in
not so definite a form. A contradiction exists in this
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fiction for Stevinus’s exquisite investigative sense that
would escape less profound thinkers.

This same breadth of view, which alternates the also, in the

individual with the universal, is also displayed, only in
this instance not restricted to mechanics, in the per-a
formances of Sadi Carnot. When Carnot finds that
the quantity of heat @ which, for a given amount of
work Z, has flowed from a higher temperature #to a
lower temperature 7/, can only depend on the tempera-
tures and not on the material constitution of the bodies,
he reasons in exact conformity with the method of
Galileo. Similarly does ]J. R. Mayer proceed in the
enunciation of the principle of the equivalence of heat
and work. In this achievement the mechanical view
was quite remote from Mayer’s mind ; nor had he need
of it. They who require the crutch of the mechanical
philosophy to understand the doctrine of the equiva-
lence of heat and work, have only half comprehended
the progress which it signalises. Yet, high as we may
place Mayer’s original achievement, it is not on that
account necessary to depreciate the merits of the pro-
fessional physicists Joule, Helmholtz, Clausius, and
Thomson, who have done very much, perhaps all, to-
wards the detailed establishment and perfection of the
new view. The assumption of a plagiarism of Mayer’s
ideas is in our opinion gratuitous. They who advance
it, are under the obligation to prore it. The repeated
appearance of the same idea is not new in history. We
shall not take up here the discussion of. purely personal
questions, which thirty years from now will no longer
interest students. But it is unfair, from a pretense of
justice, to insult men, who if they had accomplished
but a third of their actual services to science, would
have lived highly honored and unmolested lives.
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5. We shall now attempt to show that the broad
view expressed in the principle of the conservation
of energy, is not peculiar to mechanics, but is a condi-
tion of logical and sound scientific thought generally.
The business of physical science is the reconstruction
of facts in thought, or the abstract quantitative expres-
sion of facts. The rules which we form for these recon-
structions are the laws of nature. In the conviction that
such rules are possible lies the law of causality. The
law of causality simply asserts that the phenomena of
nature are dependent on one another. The special em-
phasis put on space and time in the expression of the
law of causality is unnecessary, since the relations of
space and time themselves implicitly express that phe-
nomena are dependent on one another.

The laws of nature are equations between the meas-
urable elements &« Sy . ... wof phenomena. As na-
ture is variable, the number of these equations is al-
ways less than the number of the elements.

If we know «// the values of @ 8y 6. . ., by which,
for example, the values of A u» . .. are given, we may
call the group afyd ... the cause and the group
Auv. .. the effect. In this sense we may say that the
effect is uniguely determined by the cause. The prin-
ciple of sufficient reason, in the form, for instance, in
which Archimedes employed it in the development of
the laws of the lever, consequently asserts nothing
more than that the effect cannot by any given set of
circumstances be at once determined and undetermined.

If two circumstances & and A are connected, then,
supposing all others are constant, a change of A will
be accompanied by a change of «, and as a general
rule a change of a by a change of A. The constant
observance of this mw#ual/ interdependence is met with
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in Stevinus, Galileo, Huygens, and other great inquir- Sense of
. ’ < 5 4 this inter-

ers. The idea is also at the basis of the discovery of depend-
. ence at the
counter-phenomena.  Thus, a change in the volume of basis of all

a gas due to a change of temperature is supplemented S
by the counter-phenomenon of a change of tempera-
ture on an alteration of volume ; Seebeck’s phenome-
non by Peltier’s effect, and so forth. :
Care must, of course, be exercised, in
such inversions, respecting the form
of the dependence. Tigure 235 will 0
render clear how a perceptible altera-
tion of @ may always be produced by
an alteration of A, but a change of A
not necessarily by a change of «. The relations be-
tween electromagnetic and induction phenomena, dis-
covered by Faraday, are a good instance of this truth.
If a set of circumstances afy 6. .., by which 3 CATlna
orms of ex
second set Auw... is determined, be made to pass HEessioi of
from its initial values to the terminal values a'f'y
6 .., then Auv. .. also will pass into A" "+’ . .
If the first set be brought back to its initial state, also
the second set will be brought back to its initial state.
This is the meaning of the ‘“equivalence of cause and
effect,” which Mayer again and again emphasizes.
If the first group suffer only periodical changes, the
second group also can suffer only periodical changes,
not continuous pesmanent ones. The fertile methods
of thought of Galileo, Huygens, S. Carnot, Mayer,
and their peers, are all reducible to the simple but sig-
nificant perception, that purely periodical alterations of
one sct of circumstances can only constitute the source of
stmilarly periodical alterations of a second set of civcum-
stances, not of continuouns and permanent alferations. Such
maxims, as ‘‘the effect is equivalent to the cause,”

Fig. 235.

’
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s‘work cannot be created out of nothing,” ““a per- 1
petual motion is impossible,” are particularl, less dt_aﬁ» 1
e o Percept}llon,' Whé)d; ' inquirers to limited provinces, the investigation of :)rfe‘-ﬁ]ea and
- ;t?:(jflgirtlj;ftsiicsl;lcg;gicfggiglxltg};rrlneizll;r.ncs\,&’i?h | those provinces as a life-work, are the fundamental sconce
is

its true maturity, and be insured against lop-sided and
monstrous growths.

The division of labor, the restriction of individual Confusion

science,

the perception of this truth, any metaphysical mystic-
ism that may still adhere to the principle of t}?e con-
servation of energy* is dissipated. (See Appendix, VI.)

those who foster it, each branch can attain its full and
best development only by a living connection with Zie

whole. Through such a union alone can it approach

# When we reflect that the principles of science are al l. abstractions tha;
presuppose repelitions of sémilar cases, the absurd applications of the law o
the conservation of forces to the universe as a whole fall to the ground.

._.-mﬂ"”ﬁ n

conditions of a fruitful development of science. Only
by such specialisation and restriction of work can the
cconomical instruments of thought requisite for the

Purpose of All ideas of conservation, like the notion of sub- n.lastery of a special field be perfected. _ BuF just ht?re
élz;;égff:ﬁ stance, have a solid foundation in the economy of lies a danger-the flanger of our overestimating the in-
tion, thought. A mere unrelated change, without fixed point struments, W’ltl’% wh_1ch we are so constzimtl'y empl.oyed,
of support, or reference, is not comprehe.nsible, not gustven of regarding them as the objective point of
mentally reconstructible. We always inqmre:, z.tccord- SCIEHC(; : ks e o
ingly, what idea can be retained amid all variations as 2. ] ow, suc ;\ statebo’ la P RO el glt]g\i;j;
permanent, what law prevails, what eguation remains actually been prod uc(?d y the dlsp'l”ol?ort1onate forntlal Eﬂ}lfélfle
fulfilled, what quantitative wa/zes remain constant.? deYEJOPmCU.t of PhyfflCS- The 1?13}01"”3’ of Hatural'm'physiolcgy-
When we say the refractive-index remains constant in quirers ascribe to the intellectual implements of physics,
all cases of refraction, g remains — g-810 in all cases to the conce'pts mass, force, aton.l, and so forth, whose
of the motion of heavy bodies, the energy remains con- SleE: office is 'to revive econ(.)mlcally arranged expe-
stant in every isolated system, all our assertions have riences, a reahty‘ beyond and independent of thought.
one and the same economical function, namely that of Not only so, but it has e been h‘_ﬂd t}_lat these‘ forces
ilitati ental reconstruction of facts. and masses are the real objects of inquiry, and, if once
it Gl they were fully explored, all the rest would follow from
2 the equilibrium and motion of these masses. A person
1 : : who knew the world only through the theatre, if brought
PRERELALIONSORMESE SR s i ; behind the scenes and permitted to view the mechan-
* Conditions 1. All science has its origin il_l _the needs Df_ life. ism of the stage’s action, might possibly believe that
32:,‘5;;,“ However minutely it may be subdivided by par_tllcuilalf' the real world also was in need of a machine-room, and
ment of  vocations or by the restricted tempers and capacities o

that if this were once thoroughly explored, we should
know all. Similarly, we, too, should beware lest the
infelfectual machinery, employed in the representation
of the world on tke stage of thought, be regarded as the
basis of the real world.

3. A philosophy is involved in any correct view of
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Theat-  the relations of special knowledge to the great body of

e knowledge at large,—a philosophy that must be de-

e manded of every special investigator. The lack of it
is asserted in the formulation of imaginary problems,
in the very enunciation of which, whether regarded as
soluble or insoluble, flagrant absurdity is involved.
Such an overestimation of physics, in contrast to physi-
ology, such a mistaken conception of the true relations
of the two sciences, 1s displayed in the inquiry whether
it is possible to explain feelings by the motions of
atoms?

Explication Let us seek the conditions that could have impelled

g;éﬂ:zw the mind to formulate so curious a question.  We find
in the first place that greater confidence is placed in our
experiences concerning relations of time and space;
that we attribute to them a more objective, a more 7ea/
character than to our experiences of colors, sounds,
temperatures, and so forth.  Yet, if we investigate the
matter accurately, we must surely admit that our sen-
sations of time and space are just as much semsations
as are our seénsations of colors, sounds, and odors, only
that in our knowledge of the former we are surer and
clearer than in that of the latter., Space and time are
well-ordered systems of sets of sensations. The quan-
tities stated in mechanical equations are simply ordinal
symbols, representing those members of these sets
that are to be mentally isolated and emphasised. The
equations express the form of interdependence of these
ordinal symbols.

A body is a relatively constant sum of touch and
sight sensations associated with the same space and
time sensations. Mechanical principles, like that, for
instance, of the mutually induced accelerations of two
masses, give, either directly or indirectly, only some

-
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combination of touch, sight, light, and time sensations,
They possess intelligible meaning only by virtue of
the sensations they involve, the contents of which may
of course be very complicated.

It would be equivalent, accordingly, to explaining Mode of
the more simple and immediate by the more compli- i
cated and remote, if we were to attempt to derive sen-
sations from the motions of masses, wholly aside from
the consideration that the notions of mechanics are
economical implements or expedients perfected to
represent mechanical and not physiological or psycho-
logical facts. If the means and aims of research were
properly distinguished, and our expositions were re-
stricted to the presentation of actua/ Jacts, false prob-
lems of this kind could not arise.

4. All physical knowledge can only mentally repre- The prinei-

.. les of me-
sent and anticipate compounds of those elements we B,

call sensations. It is concerned with the connection of Eiﬁ-ﬁtgﬂld&
these elements. Such an element, say the heat of a body 32353%’ of
A, is connected, not only with other elements, say with b
such whose aggregate makes up the flame A, but also

with the aggregate of certain clements of our body, say

with the aggregate of the elements of a nerve &, As

simple object and element AV is not essentially, but only
conventionally, different from 4 and . The connection

of 4 and 2 is a problem of physics, that of 4 and ¥ a
problem of physielegy. Neither is alone existent; both

cxist at once. Only provisionally can we neglect

either. Processes, thus, that in appearance are purely
mechanical, are, in addition to their evident mechani-

cal features, always physiological, and, consequently,

also electrical, chemical, and so forth. The science of
mechanics does not comprise the foundations, no, nor

even a part of the world, but only an aspect of it.



APPENDIX.

I
(See page 140.)

In an exhaustive study in the Zeitschrift fuir Volker-
psyehologie, 1884, Vol. X1V, pp. 365—410, and Vol. XV,
pp. 70-135, 337-387, entitled Die Entdeckung des Be-
harrungsgesetzes, BE. Wohlwill has shown that the prede-
cessors and contemporaries of Galileo, nay, even Gali-
leo himself, only very gradualiy abandoned the Aristo-
telian conceptions for the acceptance of the law of in-
ertia. Even in Galileo’s mind uniform circular motion
and uniform horizontal motion occupy distinct places.
Wohlwill’s researches are very acceptable and show
that Galileo had not attained perfect clearness in his
own new ideas and was liable to frequent reversion to
the old views, as might have been expected.

Indeed, from my own exposition the reader will
have inferred that the law of inertia did not possess
in Galileo’s mind the degree of clearness and univer-
sality that it subsequently acquired. (See pp. 140
and 143.) With regard to my exposition at pages
140-141, however, I still believe, in spite of the opin-
ions of Wohliwill and Poske, that T have indicated the
point which both for Galileo and his successors must
have placed in the most favorable light the fransition
from the old conception to the new.
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II.
(See page 218.) :

. H. Streintz’s objection (Die physikalischen Grund-
lagen der Mechanik, Leipsic, 1883, p. 117), that a com-
parison of masses satisfying my definition can be ef-
fected only by astronomical means, I am unable to ad-
mit. The expositions on pages 202, 218—221 amply
refute this. Masses mutually produce in each other
accelerations in impact, when subject to electric and
magnetic forces, and when connected by a string on
Atwood’s machine.

My definition is the outcome of an endeavor to
establish #he nterdependence of phenomena and to re-
move all metaphysical obscurity, without accomplish-
ing on this account less than other definitions have
done. T have pursued exactly the same course with
respect to ideas ¢“quantity of electricity” (Ueber dic
Grundbegriffe der Elekirostatik, Vortrag gehalten auf der
internationalen elekirischen Ausstcllung, Vienna, Septem-
ber 4, 1883), ‘‘ temperature,” ¢‘ quantity of heat” (Zei/-
schrift fiir den physikalischen und chemischen Unterricht,
Berlin, 1888, No. 1), and so forth.

III.
(See page 226.)

My views concerning physiological time, the sensa-
tion of time, and partly also concerning physical time,
I have expressed elsewhere (see Beitrdge sur Analyse
der Empfindungen, Jena, Fischer, 1886, pp. 103-1171,
166-168). As in the study of thermal phenomena we
select as our measure of temperature an arbitrarily
chosen volume, which varies in almost parallel correspon-
dence with our sensation of heat, and which is not liable
to the uncontrollable disturbances of our organs of sen-
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sation, so, for similar reasons, we select, in this instance,
as our measure of time, an arbitrarily chosen motion, (the
angle of the earth’s rotation, or path of a free body,)
which proceeds in almost parallel correspondence with
our sensation of time. Once we have made clear to our-
selves that we are concerned only with the ascertain-
ment of the duterdependence of phenomena, as 1 pointed
outas carly as 1865 ( Ueber den Zeitsinn des Olres, Sitzungs-
berichie der Wiener Akademie) and 1866 (Fichte’s Zest-
schrift fiir Philosophic), all metaphysical obscurities dis-
appear. (Compare |. Epstein, Die logischen Principien
der Zettmessung, Berlin, 1887.)

v,
(See page 238.)

Of the treatises which have appeared since 1883 on
the law of inertia, all of which furnish welcome evidence
of a heightened interest in this question, I can here
only briefly mention that of Streintz (Physikalische
Grundlagen der Mechanik, Leipsic, 1883) and that of L.
Lange (Die geschichtliche Lntwicklung des Bewegungs-
begriffes, Leipsic, 1886).

The expression ‘“absolute motion of translation ”
Streintz correctly pronounces as devoid of meaning and
consequently declares certain analytical deductions,
to which he refers, superfluous. On the other hand,
with respect to refation, Streintz accepts Newton’s po-
sition, that absolute rotation can be distinguished from
relative rotation. In this point of view, therefore, one
can select every body not affected with absolute rota-
tion as a body of reference for the expression of the
law of inertia.

I cannot share this view. TFor me, only relative
motions exist (Erkaltung der Arbeit, p. 48 ; Sewence of
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Mechanics, p. 229), and 1 can see, in this regard, no
distinction between rotation and translation. When a
body moves relatively to the fixed stars, centrifugal
forces are produced ; when it moves relatively to some
different body, and not relatively.to the fixed stars, no
centrifugal forces are produced. I have no objection
to calling the first rotation ‘‘absolute” rotation, if it
be remembered that nothing is meant by such a desig-
nation except relative rotation with respect to the fixed
stars. Can we fix Newton’s bucket of water, rotate the
fixed stars, and #4en prove the absence of centrifugal
forces ? :

The experiment is impossible, the idea is meaning-
less, for the two cases are not, in sense-perception,
distinguishable from each other. I accordingly regard
these two cases as the same case and Newton's dis-
tinction as an illusion (Science of Mechanics, p. 232).

But the statement is correct that it is possible to
find one’s bearings in a balloon shrouded in fog, by
means of a body which does not rotate with respect to
the fixed stars. But this is nothing more than an zn-
direct orientation with respect to the fixed stars; it is
a mechanical, substituted for an optical, orientation.

I wish to add the following remarks in answer to
Streintz’s criticism of my view. My opinion is not to
be confounded with that of Euler (Streintz, pp. 7, 50),
who, as Lange has clearly shown, never arrived at
any settled and intelligible opinion on the subject.
Again, I never assumed that remote masses o7/, and not
near ones, determine the velocity of a body (Streintz, p.
73; 1 simply spoke of an influence independent of dis-
tance. In the light of my expositions at pages 222—
245, the unprejudiced and careful reader will scarcely
maintain with Streintz (p. 50), that after so long a pe-
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riod of time, without a knowledge of Newton and
Euler, T have only been led to views which these in-
quirers long ago held, but were afterwards, partly by
them and partly by others, rejected. Even my re-
marks of 1872, which were all that Streintz knew, can-
not justify this criticism. These were, for good rea-
sons, concisely stated, but they are by no means so
meagre as they must appear to one who knows them
enly from Streintz’s criticism. The point of view
which Streintz occupies, I at that time expressly re-
jected.

Lange’s treatise is, in my opinion, one of the best
that have been written on this subject, Its methodical
movement wins at once the reader’s sympathy. Its
careful analysis, and study, from historical and critical
points of view, of the concept of motion, have pro-
duced, it seems to me, results of permanent value. I
also regard its clear emphasis and apt designation of
the principle of ¢ particular determination " as a point
of much merit, although the principle itself, as well as
its application, is not new. The principle is really at
the basis of all measurement. The choice of the unijt
of measurement is convention ; the number of measure-
ment 1s a result of inquiry. Every natural inquirer who
1s clearly conscious that his business is simply the in-
vestigation of the interdependence of phenomena, as I
formulated the point at issue a long time ago (1865-
1866), employs this principle. When, for example,
(Mechanics, p. 218 et seqq.), the negative inverse ratio
of the mutually induced accelerations of two bodies is
c;.llled the mass-ratio of these bodies, this is a conven-
feon, expressly acknowledged as arbitrary ; but that
these ratios are independent of the kind and of the
order of combination of the bodies is aresull of inguiry.
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[ might adduce numerous similar instances from the
theories of heat and electricity as well as from other
provinces. Compare Appendix, II.

Taking it in its simplest and most perspicuous form,
the law of inertia, in Lange’s view, would read as fol-
lows:

““ Three material points LR T Py, are simulta-
‘‘neously hurled from the same point in space and
‘‘then left to themselves. The moment We are certain
‘“that the points are not situated in the same straight
““line, we join each separately with azy fourth point in
‘“space, . These lines of junction, which we may
“respe.ctively call ¢,, &G,, G, form, at their point of
‘“ meeting, a three-faced solid angle. If now we make
‘“this solid angle preserve, with unaltered rigidity,
¢its form, and constantly determine in such a manner
‘“its position, that £, shall always move on the line
“G,, £, on the line G,, £, on the line Gy, these lines
““may be regarded as the axis of a codrdinate or iner-
““tial system, with respect to which every other ma-
“terial point, left to itself, will move in a straight line,
‘‘The spaces described by the free points in the paths
‘“so determined will be proportional to one another.”

A system of codrdinates with respect to which three
material points move in a straight line is, according to
Lange, under the assumed limitations, a simple con-
vention. That with respect to such a system also a

fourth or other free material point will move in a
straight line, and that the paths of the different points
will all be proportional to one another, are resuits of
inguiry.

In the first place, we shall not dispute the fact that
the law of inertia can be referred to such a system of
time and space coérdinates and expressed in this form.
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Such an expression is less fit than Streintz’s for prac-
tical purposes, but on the other hand, is, for its method-
ical advantages, more attractive. It especially appeals
to my mind, as a number of years ago I was engaged
with similar attempts, of which not the beginnings but
only a few remnants (Mechanics, pp. 234-235) are left.
I abandoned these attempts because I was convinced
that we only apparent/y evade by such expressions ref-
erences to the fixed stars and the angular rotation of
the earth. This, in my opinion, is also true of the
forms in which Streintz and Lange express the law.
In point of fact, it was precisely by the considera-
tion of the fixed stars and the rotation of the earth
that we arrived at a knowledge of the law of inertia as
it at present stands, and without these foundations we
should never have thought of the explanations here
discussed (Mecianics, 232-233). The consideration of
a small number of isolated points, to the exclusion of
the rest of the world, is in my judgment inadmissible

“(Mechanics, pp. 229-235).

It is quite questionable, whether a fsur#k material
point, left to itself, would, with respect to Lange's
¢“inertial system,” uniformly describe a straight line, if
the fixed stars were absent, or not invariable, or could
not be regarded with sufficient approximation as in-
variable.

The most natural point of view for the candid in-
quirer must still be, to regard the law of inertia pri-
marily as a tolerably accurate approximation, to refer
it, with respect to space, to the fixed stars, and, with
respect to time, to the rotation of the earth, and to
await the correction, or more precise definition, of our
knowledge from future experience, as I have explained
on page 237 of this book.
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Upon the whole, the treatises that have appeared
since 1883 convince me that my expositions have not
yet been fully considered, and I have therefore left the
text of this subject unaltered.

¥
(See page 48s5.)

In the text I have employed the term ‘‘cause’ in
the sense in which it is ordinarily used. I may add
that with Dr. Carus,* following the practice of the
German philosophers, 1 distinguisi <¢cause,” or Real-
grund, from Krkenntnissgrund. 1 also agree with Dr.
Carus in the statement that ¢ the signification of cause
and effect is to a great extent arbitrary and depends
much upon the proper tact of the observer.” ¥

The notion of cause possesses significance only as
a means of provisional knowledge or orientation. In
any exact and profound investigation of an event the
inquirer must regard the phenomena as dependent on
one another 1n the same way that the geometer regards
the sides and angles of a triangle as dependent on one
another. He will constantly keep before his mind, in
this way, all the conditions of fact.

VI.
(See page 504.)

The principle of energy is only briefly treated in
the text, and T should like to add here a few remarks
on the following four treatises, discussing this subject,
which have appeared since 1883 : Dije physikalischen
Grundsétze dev eleklrischen Kraftibertragung, by J. Pop-

* See his Grund, Ursache wnd Zweck, R. v. Grumbkow, Dresden, 1881,

and his Fundamental Problems, pp. 79-91, Chicago: The Open Court Publish-

ing Co., 1891,
1 Fundamental Problems, p. 84,
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per, Vienna, 1883; D Lehre von der Energie, by G.
Helm, Leipsic, 1887; Das Princip der Erhaltuny der
Linergie, by M. Planck, Leipsic, 1887 ; and Das Fro-
blem der Continuitdt in der Mathematil und Mechanik,
by F. A. Miller, Marburg, 1886.

The independent works of Popper and Helm are,
in the aim they pursue, in perfect accord, and they
quite agree 1n this respect with my own researches, so
much so in fact that T have seldom read anything that,
without the obliteration of individual differences, ap-
pealed in an equal degree to my mind. These two
authors especially meet in their attempt to enunciate
a general science of energetics ; and a suggestion of this
kind is also found in a note to my treatise, Ueber die
FErhaltung der Arbett, page 54.

In 1872, in this same treatise (pp. 42 et seqq.), I
showed that our belief in the principle of excluded per-
petual motion is founded on a more general belief in
the #nigue determination of one group of (mechanical)
elements, afy .. ., by a group of different elements,
xyz. .. Planck’s remarks at pages gy, 133, and 139
of his treatise, essentially agree with this; they are
different only in form. Again, I have repeatedly re-
marked that all forms of the law of causality spring
from subjective impulses, which nature is by no means
compelled to satisfy. In this respect my conception is
allied to that of Popper and Helm.

Planck (pp. 21 et seqq., 135) and Helm (p. 25 et
seqq.) mention the ¢“metaphysical” points of view by
which Mayer was controlled, and both remark (Planck,
p- 25 et seqq., and Helm, p. 28) that also Joule, though
there are no direct expressions to justify the conclusion,
must have been guided by similar ideas. To this last
I fully assent.
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With respect to the so-called ¢ metaphysical”’
points of view of Mayer, which, according to Helm-
holtz, are extolled by the devotees of metaphysical
speculation as Mayer’s highest achievement, but which
appear to Helmholtz as the weakest feature of his ex-
positions, I have the following remarks to make. With
maxims, such as ¢ Qut of nothing, nothing comes,”
¢“The effect is equivalent to the cause,” and so forth,
one can never convince anotier of anything. How little
such empty maxims, which until recently were admit-
ted in science, can accomplish, I have illustrated by
examples in my treatise Die Lrialtung der Arbeid. But
in Mayer’s case these maxims are, in my judgment,
not weaknesses. On the contrary, they are with him
the expression of a pozeer /i instinctive yearning, as yet
unsettled and unclarified, after a sound, substantial
conception of what is now called energy. This desire I
should not exactly call metaphysical. We now know
that Mayer was not wanting in the conceptual power
to give to this desire clearness. Mayer’s attitude in
this point was in no respect different from that of Gali-
leo, Black, Faraday, and other great inquirers, although
perhaps many were more taciturn and cautious than he.

I have touched upon this point before in the Bei-
trédge zur Analyse der Empfindungen, Jena, 1886, p. 161
et seqq. Aside from the fact that I do not share the
Kantian point of view, in fact, occupy s metaphysical
point of view, not even that of Berkeley, as hasty
readers of my last-mentioned treatise have assumed,
I agree with F. A. Miller's remarks on this question
(p. 104 et seqq).
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INDEX.

Absolute, space, time, etc,
nouns,)

Absolute units, 278, 284,

Abstractions, economical character
of, 482.

Acceleration, Galileo on, 131,et seqq.;
Newton on, 238; also 218, 230, 236,
243, 245-

Action and reaction, Newton on, 18-
201, 242,

Action, least, principle of, 364380,
454 ; sphere of, 385.

Adaptation,in nature,452; of thoughts
to facts, 6.

Adhesion plates, 115,

Aerostatics, (See air.)

Affined, 166.

Air, expansive force of isolated por-
tions of, 127; guantitative data'of,
124; weight of, 113; pressure of,
114 et seqq.

Air-pump, experiments, 122 et seqq.;
the mercurial, 125.

Alcohol and water, mixture of, 384 ct
seq.

Algebra, economy of, 486.

Algebraical mechanics, 466.

All, The, necessity of its considera-
tion in research, 235, 461.

Analytical mechanies, ¢465-480.

Analytic method, 466.

Animal free in space, 290.

Animistic points of view in mechan-
ics, 461 et seq.

Archimedes, on the lever and the
centre of gravity, 8-11; critique of
his deduction, 13-14; illustration
of its value, 10; on hydrostatics,
86-88; various modes of deduction

(See the

of his hydrostatic principle, 104;
illustration of his principle, 106.
Areas, the law of the conservation of,

293-305.
Areometer, effect of particles sus-
pended in liquids on, zo8.
Artifices, mental, 492 et seqq.
Assyrian monuments, I.
Atmosphere. (See Air.)
Atoms, mental artifices, 492.
Attraction, 246.
Atwood’s machine, 149.
Avenarius, R., ix.

Babbage, on calculating machines,
488. :

Babo, von, apparatus of, 150.

Ballistic pendulum, 328.

Balls, elastic, symbolising pressures
in liquids, 419.

Bandbox, rotation of, jor.

Barometer, height of mountains de-
termined by, 113, 117,

Base, pressure of liquids on, go, 99.

Belanger, on impulse, z71.

Berkeley, 518

Bernoulli, Daniel, his geometrical
demonstration of the parallelo-
gram of forces, 40-42; criticism of
Bernoulli’'s demonstration, 42-46;
on the law of areas, 203; on the
principle of wis wiva, 343, 348; on
the velocity of liquid efflux, 403 ; his
hydrodynamic principle,408; onthe
parallelism of strata, 409; his dis-
tinction of hydrostatic and hydro-
dynamic pressure, 413.

Bernoulli, James, on the catenary,
74; on the centre of oscillation, 331
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et seq.; on the brachistochrone,
426; on the isoperiinetrica] prob-
lems, 428 et seq.; his character, 428
his quarrel with John, 431; his Pro-
grauma, 430,

Bernoulli, John, his generalisation of
the principle of virtual velocities,
56; on the catenary, 74; on centre
of oscillation, 333 335; on the prin-
ciple of #7s véwa, 343; on the anal-
ogies between motions of masses
and light,372; his liguid pendulum,
410; on the brachistochrone, 425 et
seqq.; his character, 427; his guar-
rel with James, 431; his solution of
the isoperimetrical problem, 431.

Black, his discovery of carbonic acid
gas, 124. :

Boat in motion, Huygens's fiction of
a, 315, 325.

Body, definition of, 506.

Bolyai, 493.

Bomb, a bursting, 293.

Bouguer, on the figure of the earth,
395.

Boyle, his law, 125 et seq.; his inves-
tigations in aérostatics, 123.

Brachistochrone, problem of the, 425
et seqq.

Brahe, Tycho, on planetary motion,
187.

Bruno,Giordano, his martyrdom, 446.

Bubbles, 392.

Bucket of water, Newton’s rotating,
227, 232, 512.

Cabala, ¢89.

Calculating machines, 488.

Calculus, differential, 424; of varia-
tions, 436 et seqq.

Canal, fluid, equilibrium of, 396 ct
seqq.

Cannon and projectile, motion of,291.

Canton,on compressibility of liquids,
92.

Carnot, his performances, 5o1; his
formula, 327.

Carus, P., on cause, 516.

Catenary, The, 74, 379, 425.

Cauchy, 47.

Causality, 483 et seqq.; 502.

Cause and effect, economical char-
acter of the ideas, 485; equivalence
of, 502, 503; Mach on, 516; Carus
on, 516.

Causes, efficient and final, 368,

Cavendish, his discovery of hydro-
gen, 124.

Cells of the honeycomb, 453.

Centimetre-gramme-second system,
285.

Central, centrifugal, and centripetal
force. (Sece Force.)

Centre of gravity, 14 et seqq.; descent
of, 52; descent and ascent of, 174
et seqq., 408; the law of the con-
servation of the, 287-305.

Centre of gyration, 334.

Centre of oscillation, 173 et seqq., 331
-335; Mersenne, Descartes, and
Huygens on, 174 et seqq.; relations
of, to centre of gravity, 180-185;
convertibility of, with point of sus-
pension, 186.

Centre of percussion, 327.

Chain, Stevin’s endless, 25 et seqq.,
s00; motion of, on inclined plane,
347.

Change, unrelated, 504.

Character, an ideal universal, 481.

Chinese language, 482.

Church, conflict of science and, 446.

Circular motion, law of, 160, 161.

Clairaut, on wis viva, work, etc., 348;
on the figure of the earth, 3g95; on
liquid equilibrium, 396 et seq.; on
level surfaces, etc., 3g8.

Classes and trades, the function of in
the development of science, 4.

Clausius, 497, 499, 501.

Coefficients, indeterminate, La-
grange's, 471 et seq.

Collision of bodies, (See Impact

Colors, analysis of, 481.

Column, rest of a heavy, 258.

Commandinus, 87.

Communication, the economy of, 78.

Comparative physics, necessity of,
498,

Component of force, 34.

Composition of forces, see Forces;
Gauss's principle and the, 3064,

INDEX.

Compression of liquids and gases, 4o7.

Conradus, Balthasar, 308,

Conservation, of encrgy, 499 et seq.,
516 et seqq.; of quantity of motion,
Descartes and Leibnitz on, 272, 274;
purpose of the ideas of, 504,

Conservation of momentum, of the
centre of gravity, and of areas,laws
of the, 287-305; these laws, the ex-
pression of the laws of action and
reaction and inertia, 303.

Conservation of momentum and wis

vive interpreted, 326 et seq,

Constancy of quantity of matter, mo-
tion, and energy, theological basis
of, 456.

Constraint, 335, 352; least, principle
of, 350-364.

Continuity, the principle of, 140, 490
et seqq.

Continuum, physico-mechanical, 109.

Coérdinates, forces a function of, 397
see Force-function.

Copernicus, 457, 232.

Coriolis, on #s wize and work, 272.

Counter-phenomena, 503,

Counter-work, 363, 366,

Counting, economy of, 486.

Courtivron, his law of equilibrium,
73

Ctesibius, his air-gun, 110,

Currents. oceanic, 3oz,

Curtius Rufus, 210.

Curve-elements, variation of, 432.

Curves, maxima and minima of, 429.

Cycloids, 143, 186, 379, 427.

Cylinder, double, on a horizontal sur-
face, 60; rolling on an inclined
plane, 345.

Cylinders, axal, symbolising the rela-
tions of the centres of gravity and
oscillation, 183.

D’Alembert, his settlement of the
dispute concerning the measure of
force, 149, 276; his principle, 331-
343.

D' Arcy, on the law of areas, 293,

Darwin, his theories, 452, 450.

Declination from free motion, 352-
356.
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Deductive development of science,
421,

Demonstration, the mania for, 18, 82;
artificial, 82.

Departure from free motion, 3s5.

Derived units, 278.

Descartes, on the measure of force,
148, 250, 270, 272-276; on quantity of
motion, conservation of momen-
tum, etc., 272 et seqq.; character of
his physical inquiries, 273 ; his me-
chanical ideas, 250,

Descent, on inclined planes, 134 et
seqq., law of, 137 ; in chords of cir-
cles,138; vertical, motion of, treated
by Hamilton’s principle,383; quick-
est, curve of, 426; of centre of grav-
ity, 52, 174 et seqq., 408,

Description,a fundamental feature of
science, 5.

Design evidences of, in nature, 452.

Determinants economy of, 487,

Determinative factore of physical
processes 76.

Difterences, of quantities their role
in nature, 236; of velocities, 325.

Difterential calculus, 424.

Difterential laws, 255, 461.

Dimensions, theory of, 279,

Dioptrics, Gauss's, economy of, 489.

Disillusionment, due to insight, 7.

Diihring, ix, 352.

Dynamics, the development of the
principles of, 128-255 ; retrospect of
the development of, 245-255; found-
ed by Galileo, 128; proposed new
foundations for, 243; chief results

of the development of, 243, 246
analytical, founded by Lagrange on
the principle of virtual velocities,
467.

Earth, figure of, 305 et seqq.

Economical character of analytical
mechanics, 480.

Economy of description, ;5.

Economy in nature, 459,

Economy of science, 481-404.

Economy of thought, the basis and
essence of science, viii, 6, 481; of
language, 481; of all ideas, 482; of
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the ideas cause and eftect, 485 ; of ‘

the laws of nature, 485; of the law ‘

of refraction, 485; of mathematics,

486; of determinants, 487; of cal-

culating machines, 488; of Gauss’s

dioptrics, moment of inertia, force-

function, 489.

Effiux, velocity of liquid, 402 et seq.
Epgyptian monuments, 1.
Eighteenth century, character of,

458.

Elastic bodies, 315, 317, 320.

Elastic rad, vibrations of. 4go.
Elasticity, theory of, 258, 259, 490.
Electricity, revision of the theory of,

496. .

Electromotor, Page's, 292 ; motion of

a free, 296 et seq.

Elementary laws, see Difterential
laws,

Ellipsoid, triaxal, 73; of inertia, 186;
central, 1806.

Encyclopadists, French, 463.

Energetics, the science of, 517.

Energy, Galileo’s use of the word,
271 ',' conservation of, 499 et seq.,
potential and kinetic, 272, 499; prin-
ciple of, 516 et seqq.

Enlightenment, the age of, 458.

Epstein, 511,

Equations, of motion, 342; of me-
chanics, fundamental, 2yo.

Equilibrium, the decisive conditions
of, 53; dependence of, on a maxi-
mum vr minimum of work, 69; sta-
ble, unstable, mixed, and neutral
equilibrium, 7o-7rj treated by
Gauss’s principle, 335; figures of,
393; liquid, conditions of, 386 et
seqq.

Equipotential surfaces, see Level
surfaces.

Ergal, 499.

Error, our liability tc in the recon-
struction of facts, 79.

Euler, on the ‘*loi de repos,’’ 68; on
moment of inertia, 179, 182, 186; on
the law of areas, 203; his form of
1>’ Alembert’s principle, 337; on @/s
wiva, 348; on the principle of least
action, 368; on the isoperimetrical

|
|

problems and the calculus of varia-
tions, 433 et seqq.; his theological
proclivities, 449, 455; his contribu-
tions to analytical mechanics, 466.
Exchange of velocities in impact, 315.
Experience, 1 et seq., 481, 490,
Explanation, 6.
Extravagance in nature, 459.

Facts and hypotheses, 404, 496, 498.
Fall of bodies, early views of, 128;
investigation of the laws of, 130 et
seq.; sce Descent.
Falling, sensation of, zob.
TFalling bodies, laws of, accident of
their form, 247 et seq ; see Descent.
Faraday, 503 ; his lecture-experiment
On gases, 124.
Feelings, the attempt to explain them
by motions, 506.
Fermat, on the method of tangents,
423.
Fetishism, in modern ideas, 463.
Fiction of a boat in motion, Huy-
gens's, 315, 325.
Figure of the earth, 395 et seqq.
Films, liquid, 386, 392 et seq.
Flow, lines of, 4u0; of liquids, 416 et
seq.
Fluids, the principles of statics ap-
plied to, 86-110; see Liguids,
Fluid hypotheses, 496. ¥
Force, moment of, 37; the experien-
tial nature of, 42-44; conception of,
in statics, 84 ; general attributes of,
85; the Galilean notion of, 142; dis-
pute concerning the measure of,
148, 250, 270, 274-276; centrifugal
and centripetal, 158 et seqq.; New-
ton on, 192, 197, 238, 239; moving,
203, 243} resident, impressed, cen-
tripetal, accelerative, moving, 238,
239 ; the Newtonian measure of, 203,
219, 270 ; lines of, 4o0.
Force-function, 398 et seqq., 479, 489;
Hamilton on, 350.
Force-relations, character of, 237.
Forces, the parallelogram of 52, 33-48,
243 principle of the composition

and resolution of, 3348, 197 etseq ;
triangle of, 108; mutual independ-
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ence of, 154 living, see Fis wviza;
Newton on the parallelogram of,
192, 197; impressed, equilibrated, ef-
fective, gained and lost, 336; mole-
cular, 384 et seqq.; functions of co-
ordinates, 397, 4c2; central, 397.

Formal development of science, 421.

Formul®, mechanical, 269-286.

Foucaunlt and Toepler,optical method
of, 125,

Foucanlt’s pendulun, 30z.

Fourier, on dimensions, 279.

Free rigid bedy, rotation of, zg5.

Free systems, mutual action of, 287.

Friction, of minute bodies in liquids,
208 ; motion of liguids under, 416 et
seq.

Functions, mathematical, their office
in science, 49z,

Fundamental equations of mechan-
ics, 270,

Funicular machine, 3z.

Funnel, plunged in water, 412 ; Totat-
ing liquid in, 303.

*Galileo,”’ name for unit of accel-
ération, 28s.

Galileo, his dynamical achievements,
128-155; his deduction of the law
of the lever, 12; his explanation of
the inclined plane by the lever, 23 ;
his recognition of the principle of
virtual velocities, §1; hisresearches
in hydrostatics, go; his theory of
the vacuum, 11z et seq.; his discov-
ery of the laws of falling bodies,
130 et seqq.; his clock, 133; char-
acter of his inquiries, 140; his foun-
dation of the law of inertia, 143;
on the notion of acceleration, 145;
tabular presentment of his discov-
eries, 147 ; onthe pendulum and the
motion of projectiles, 152 et seqq.;
founds dynamics, 128; his pendun-
lum, 162 ; his reasoning on the laws
of falling bodies, 130, 131, 247; his
favorite concepts, 250; on impact,
308-312; his struggle with the
church, 446; on the strength of ma-
terials, 451; does not mingle science
with theology, 457; on inertia, 509,

Gaseous bodies, the principles of
statics applied to, 1ro-127.

Gases, flow of, 405; compression of,
407.

Gauss, his view of the principle of
virtual velocities, #6; on absolute
units, 278; his principle of least
constraint, 350-364; on the statics
of liguids, 3g0; his dioptrics, 48¢.

Gilbert, 46z.

Grassi, 94.

Grassmann, 480.

Gravitation, universal, 1g0.

Gravitational system of measures,
284286,

Gravity, centre of. See Centre of
gravity.

Green's Theorem, 109,

Guericke, his theological specula-
tions, 448 ; his experiments in aéro-
statics, 117 et seqq.; his notion of
air, 118; his air-pump, 120; his air-
gun, 123.

Gyratian, centre of, 334.

Halley, 448.

Hamilton, on force-function, 350.

Hamilton’s principle, 380-384, 480,

Heat, revision of the theory of, 496,

Helin, 517.

Helmholtz, viii; on the conservation
of energy, 499, 501, 518,

Hemispheres, the Magdeburg, 122.

Hermann, employs a formof D’ Alem-
bert's principle, 337; on motion in
a resisting medium, 433.

Here, his fountain, 411; on the mo-
tion of light, 422; on maxima and
minima, 451.

Hiero, 86.

Hipp, chronoscope of, 151,

Hollow space, liquids enclosing, 392.

Homogenous, 279.

Hopital, L', on the centre of oscilla-
tion, 331; on the brachistochrone,
426,

Horvor vacud, 112,

Hume, on causality, 484.

Huygens,dynamical achievements of,
155-187; his deduction of the law
of the lever, 15-16; criticism of his
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deduction, 17-18; his rank as an
inquirer, 155; character of his re-
searches, 156 et seq.; on centrifugal
and centripetal force, 158 et seqq.;
his experiment with light balls in
rotating fluids, 16z; on the pendu-
lum and oscillatory motion, 162 et
seqq.; on the centre of oscillation,
173 et seq.; his principle of the de-
scent and rise of the centre of grav-
ity, 174; his lesser investigations,
1865 his crowning achievement, 187;
his favorite concepts, 251; on im-
pact, 313-327; on the principle of
vis viva, 343, 348; on the figure of
the earth, 395; his optical re-
searches, 425; does not mingle sci-
ence and theology, 457.

Hydraulic ram, Montgolfier’s, 411.

Hydrodynamic pressure, 413.

Hydrodynamics, 402-420.

Hydrostatic pressure, 413.

Hydrostatics, 384-402.

Hypotheses and facts, 494.

Inclined plane, the principle of the,
24-33; Galileo's deduction of its
laws, 151 ; descent on, 354 ; movable
on rollers, 357 et seq.

Indeterminate coefficients, La-
grange’s, 471 et seq.

Inelastic bodies, 317, 318.

Inertia, history of the law of, 141, 143,
509, 511 et seqq.; moment of, 179,
182, 186, 489; bodies with wvariable
moments of, 30z; law of, critically
elucidated, 232, 238; Newton on,
238, 243, ?

Inertial system, 515.

Impact, the laws of, 305-330; force of,
compared with pressure, 312; in
the Newtonian view, 317 et seqq.;
oblique, 327; Maupertuis’'s treat-
ment of, 36s.

Impetus, 275.

Impulse, 271.

Inquirers, the great, character and
value of their performances, 7;
their different tasks, 76; their atti-
tude towards religion, 457.

Inquiry, typical modes of, 317,

Instinct, mechanical, importance of,
304.

Instinctive knowledge, its cogency,
origin, and character, 1, 20-28, 83.

Instinets, our animal, 463.

Instruction, various methods of, 5.

Integral laws, 255, 461, :

Intelligence, conception of,in nature,
461,

Interdependence of the facts of na-
ture, soz et passim.

Internal forces, action of, on free sys-
tems, 289, 295.

International language, 481.

Isoperimetrical problems, 421-446;
Euler's classification of, 433.

Isothermal surfaces, 4c0.

Jacobi, #6, 381, 450; on principle of
least action, 371.

Jellett, on the calculus of variations,
437 et seq. ‘

Jolly, ix.

Joule, sor1,

Judgments, economical character of
all, 483.

Kgnt, on causality, 484.

Kater, 186.

Kepler, his laws of planetary motion,
187 ; possibility of his discovery of
the laws of falling bodies, 248; on
maxima and minima, 423 ; on astrol-
ogy, 463.

Kilogramme, 281.

Kilogramme-metre, 2y2.

Kinetic energy, 272, 499.

Kirchhoft, viii, 381.

Knowledge, instinctive, 1, 26-28, 833
the communication of, the founda-
tion of science, 4; the nature of, 5;
the necessary and sufficient condi-
tions of, 10.

Kénig, on the cells of the honeycomb,
453.

Laborde, apparatus of, 150.

Lagrange, his deduction of the law of
the lever, 13; his deduction of the
principle of virtual velocities, 65~
67; criticism of this last deduction,
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67-68; his form of D’Alembert's
principle, 357; on wis wiva, 349; on
the principle of least action, 371;
on the calculus of variations, 436 et
seq.; emancipates physics from the-
olngy, 457; his analytical mechan-
ics, ix, 466; his indeterminate co-
efficients, 471 et seq.

Lami, on the composition of farces,
36.

Lange. 511 et seq.

Language, economical character of,
481 ; possibility of a universal, 482;
the Chinese, 482.

Laplace, 463.

Lateral pressure, 103.

Laws of nature, 502.

Laws, rules for the mental recon-
struction of facts, 83-84, 485.

Least action, principle of, 364-380;
its theological kernel, 434.

Least constraint, principle of, 350-
364.

Leibnitz, on the measure of force,
148, 250, 270, 274-276; on quantity of
motion, 274 ; on the motion of light,
425, 454; on the brachistochrone,
426 as a theologian, 449.

Level surfaces, 98, 398 et seqq.

Lever, the principle of the, 8-25; ¢ po-
tential, ’ 20; application of its prin-
ciples to the explanation of the
other machines, 22; its law deduced
by Newton's principles, 263-267;
conditions of its rigidity, 96; Mau-
pertuis’s treatment of, 366.

Libraries, stored up experience, 481.

Light, motion of, 422, 424, 426; Mau-
pertuis on motion of, 367 ; motion
of, in refracting media, 574-376, 377-
379; its minimal action explained,
459.

Lindelot, 437.

Lippich, apparatus of, 150.

Liquid efflux, velocity of, 402.

Liquid-head, 403, 416. :

Liquid, retating in a funnel, 303.

Liquids, the statics of, 86-110; the
dynamics of, 4oz—20; fundamental
properties of, g1; compressibility
of, 92; equilibrium of, subjected to

gravity, g6; immersed in liguids,
pressure of, 105; lateral pressure of,
103 ; weightless, 384 et seqq,; com-
pression of, qo7; soniferous, vibra-
tions of, 407; mobile, 407; motion
of viscous, 416.

Living power, 272.

Lobatschewsky, 193.

Locomotive, oscillations of the body
of, 292.

Luther, 463.

Machines. the simple, 8 et seqq.

Maclaurin on the cells of the honey-
comb, 453; his contributions to ana-
Iytical mechanics, 466.

Magnus, Valerianus, 117.

Manometer, statical, 123.

Maraldi, on the honeycomb, 453.

Marci, Marcus, 305-308.

Mariotte, his law, 125 ; his apparatus
and experiments, 126 et seq.; on im-
pact, 313.

Mass-areas, 263.

Mass, criticism of the concept of, 216
—222; Newton on, 192, 194, 217, 238,
251; John Bernoulli en, 251; asa
physical property, 194; distin-
guished from weight, 195; measura-
ble by weight, 193, 220; scientific
definition of, 218 et seq., 243, 510;
involves principle of reaction, 2zo0.

Mass, motion of a, in principle of
least action, 372.

Mathematics, function of, 77.

Matter, quantity of, 216, 238.

Maupertuis, his o7 de 7epos, 68 et
seq.; on the principle of least ac-
tion, 364, 368; his theological pro-
clivities, 454.

Maxima and minima, 368 et seqq.
problems of, 422 et seqq.

Maximal and minimal effects, ex
planation of, 460.

Maxims, scholastic, 143.

Maxwell, 271,

Mayer, J. R., on work, 249, 503, 518;
his physical achievements, 501.,

Measures, see Units.

Mechanical, experiences, 1; knowl-
edge of antiquity, 1-3; phenomena,
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"purely, 495 et seq.; theory of na-
tare, its untenability, 495 et seq.;
phenomena not fundamental, 4506 ;
conception of the world, artificiality
of, 496.

Mechanics, the science of, 1;_earliest
researches in, 85 extended applica-
tion of the principles of, and de-
ductivedevelopment of the scienee,
255—420; the formula and units of,

260-286; character of the principles -

of, 237; form of its principle;
mainly of historical and aceidental
arigin, 247 et seq.; theological, ani-
mistic, and mystical points of view
in, 446-465; fundamental equations
of, 270-276; new transformation of,
48%0; relations of, to other depart-
ments of knowledge, 495-507; rela-
tions of, to physics, 495-504; rela-
tions of, to physiology, 504-507; an
aspect, not the foundation of the
world, 496, 577; analytical, 465-480;
Newton’s geometrical, 465,

Medium, motion-determinative, hy-
pothesisof, in space, 230; resisting,
maotion i1, 435.

Memory, 481, 488.

Mensbrugghe, Van der, on liquid
films, 386.

Mental artifices, 492 et seqq.

Mercurial air-pump, 125.

Mersenne, 114, 174,

Method of tangents, 423.

Metre, 280,

Mimicking, of facts in thought, see
Reproduction.

Minima, see Maxima.

Minimum of superficial area, 387.

Mixed equilibrium, 7o-71.

Mobile liquids, 4o07.

Mobius, 372, 480.

Models, mental, 402,

Moelecular forees, 384 et seqq.

Moment, statical, 14; of force, 37; of
inertia, 179, 182, 184,

Moments, virtual, 57.

Momentum, 241, 244, 271; law of the
conservation of, 288; conservation
of, interpreted, 326,

Manistic philosophy, the, 465.

OF MECHANICS.

L]

Montgolfier's hydraulic ram, 411.

Moon, its acceleration towards the
earth, 1go; length of its day in-
creased to a month, 299,

Morin, apparatus of, 150.

Motion, Newton's laws o‘f, 227, 241;
quantity of, 238, 271 et seqq.; cqua-
tions of, 342, 371 ; circular, laws af,
158 et seqq.; uniformly accelerated,
132; relative and absolute, z27 et
seqq., 51I et seq.

Motivation, law of, 484.

Miller, F. A., 517,

Mystical points of view in mechanics,
450

Mpysticism in science, 481,

Mythology, mechanical, 464,

Napier, his theological inclinations,
447

Nature, laws of, s02.

Necessity, 484, 485.

Neumann, C., 255.

Neutral equilibrium, 7o-7r1.

Newton,his dynamical achievements,
187-201; his views of time, space,
and motion, 222-238; synoptical
critique of his enunciations, 238 -
245; scope of his principles, 256-260;
enunciates the principle of the p:
allelogram of forces, 56 his prin-
ciple of similitude, 165 et seq.; his
discovery of universal gravitation,
its character, and its law, 188 et
seqq.; effect of this discovery on
mechanics, 191; his mechanical
discoveries, 192; his wegule phlilo-
sepirandi, 195; his idea of force,
193; his concept of mass, 194 et
seqq.; on the composition of forces,
197; on action and reaction, 198;
defects and merits of his doctrines,
201, 244; on ibe tides, zog et seq.;
his definitions, laws, and corolla-
ries, 238-242; his water-pendulum,
409; his theological speculations,
448; the economy and wealth of his
ideas, 269 ; his laws and definitions,
proposed substitutes for, 2¢43; his
favorite concepts, 251 ; on the figure
of the earth, 305; does not mingleg

e —————— e et
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theology with science, 457; on the
brachistochrone, 426.
Numbers, 486.

Observation, 8z.

Occasionalism, the doctrine of, 449.

Oersted, 93.

Qil, use of, in Plateau’s experiments,
384 ct seq.

Oscillation, centre of, 331-335.
Oscillatory motion, 162 et seqq.

Pagan ideas in modern life, 462.

Page's electromotor, 292

Pappus, 422; on maxima ard min-
ima 451,

Parallelism of strata, 409.

Parallelogram of forces, see Forces.

Particular determination, principle
of, 513,

Pascal, his application of the prin-
ciple of virtual velocities to the
statics of liquids, 54, 91, 96 ; his ex-
periments 1n liquid pressure, gg;
his paradox, ro1-10z; his great pi-
ety, 447; criticism of his deduction
of the hydrostatic principle, 95-96;
his experiments in atmospheric
pressure, 114 et seqq.

Peltier's effect, 503.

Pendulum, motion of, 152, 163, 168;
law of motion of, 168 ; experiments
illustrative of motion of, 168 et
seqq.; conical, 171; determination
of g by, 172 ; simple and compound,
173, 177; cycloidal, 186; a falling,
205; ballistic, 528; liquid, 409,

Percussion, see Impact; centre of,
327.

Percussion-machine, 3r13.

Perier, 115.

Perpetual motion, 25, 8g, 500,

Philosophy of the specialist, the, 506.

Phoronomic similarity, 166.

Physics and theclogy, separation of,
436.
hysics, artificial division of, 495
necessity of a comparative, 498 ; re-
lations of mechanics to, 495-504
disproportionate formal develop-
ment of, 505.

Physiology, relations of mechanics

to, 504-507; distinguished from
physics, s07.

Pila Heronis, 118, 412.

Place, 222, 226.

Planck, s517.

Planets, motion of, 187 et seq.

Plateau, on the statics of liquids, 384
-394 ; Plateau's problem, 393.

Poggendort’s apparatus, 206 et seq.

Poinsot, 186, 251, 269, 480,

Poisson, 42, 46,

Polar and parallel codrdinates, 304.

Poneelet, 251, 272,

Popper, J., 516.

Porta, 462.

Poske, on the law of inertia, 509.

Potential, 110, 368 et seqq.; potential
function, 197 ; potential energy, 499.

Pound, Imperial, Troy, Avoirdupois,
283.

Pre-established harmony, 449.

Pressure, origin of the notion of, 84
liquid, go,q99 et seqq.; of falling bod-
ies, 205; hydrodynamic and hydre-
static, 413; of liquids in motion,
414,

Pressure-head, 403, 416.

Principles, their general character
and accidental form, 79, 83, 421 ; see
Laws.

Projectiles, motion of, 152 et seqq.;
treated by the principle of least ac-
tion, 369.

Projection, oblique, 153; range of,
I54.

Preof, the natural methods of, So.

Ptolemy, 232,

Pulleys, 21, 46-51,

Pump, 112.

Pythagoras, 422.

Quantity, of matter, 216, 238; of mo-
tion, 238, 271 et seqq.
Quickest descent, curve of, 426.

Radii vectores, 284.

Rationalism, 458.

Reaction, discussion and illustration
of the principle of, 201-216; criti-
cism of the principle of, 216-222;
Newton on, 198, zo1, 242.

Reaction-tubes, 3o1.
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Reaction-wheels, 299 et seqq.

Réaumur, 453.

Reason, sufficient, principle of, g, 484,
502.

Reconstruction of facts, mental, sce
Reproduction.

Refiguring of facts in thought, sce
Reproduction.

Refraction, economical character of
law of, 485.

Regule Philosophandi, Newton's, 193.

Regularity, 395-

Religious opinions, Our, 464.

Repos, lof de, 68,

Representation, see Reproduction of
facts in thought.

Reproduction of facts in thought, 5,
84, 421, 481-494.

Research, means and aims of, distin-

guished, 507.

Resistance head, 417.

Rest, Maupertuis's law of, 68, 259.

Resultant of force, 34.

Richer, 161, 251,

Riemanmn, 493.

Roberval, his balance, 60; his method
of maxima and minima. 423; on
momenta, 305; on the composition
of forces, 197.

Robins, 330.

Routh, 352.

Routine methods, 181, 268, 287, 341.

Rules, 83, 485; the testing of, 81.

Sail filled with wind, curve of, 431.

Scheffler, 353, 304.

Schopenhauer, on causality, 484.

Science, the nature and development
of, 1-7; the origin of, 4, 8, 78; de-
ductive and formal development of,
421 ; physical, its pretensions and
attitude. 464 ct seq.; the economy
of, 481-494; a minimal problem,
490; the object of, 496, 497, 502, 507;
means and aims of, should be dis-
tinguished, 504, 505; condition of
the true development of, 5043 divi-
sion of labor in, 505; tools and in-
struments of, 505.

OF MECHANICS.

Scientists, struggle of, with their own
preconceived ideas, 447.

Seebeck’s phenomenon, 503.

Segner, 185; Segner's wheel, 309.

Sensations, analysis of, 464 ; the ele-
ments of nature, 482 ; their relative
realness, 506.

Shortest line, 369, 371.

Similarity, phoronomic, 166.

Similitude, the principle of, 166, 177.

Siphon, 114 et seqq.

Space, Newton on, 226; absolute and
relative, 226, 232; a set of sensa-
tions, 500; multi-dimensioned, an
artifice of thought, 493.

Spannkraft, 499.

Specific gravity, 87-88.

Sphere, rolling on inclined plane,
346. .

Spiritism, or spiritualism, 49

Stable equilibrium, 7o-71.

Stage of thought, the, 505.

Statical manometer, 123.

Statical moment, 14 ; possible origin
of the idea, 21.

Statics, deduction of its principles
from hydrostatics, 107 et seqq.; the

8-127; retrospect of the develop-
ment of, 77-85; the principles of,
applied to fluids, 86-110; the prin-
ciples of,applied to gascous bodies.
110-127; Varignon's dynamical, 38,
268 ; analytical, founded by La-
grange on the principle of virtual
velocities, 467.

Stevinus, his deduction of the law of
the inclined plane, 23-31; his ex-
planation of the other machines by
the inclined plane, 31-33; the par-
allelogram of forces derived from
his principle, 32-35; his discovery
of the germ of the principle of vir-
tual velocities, 49-51; his researches
in hydrostatics, 88-g9o; his broad
view of nature, 500.

Strata, parallelism of, 409.

Streintz, 510 et seqq.

String, equilibrium of a, 372 ¢t seqq-i
see Catenary.

Seience and theology, conflict of, 446;
their points of identity, 460.

Strings, equilibrium of three-knot*

development of the principles of,

INDEX,

ted, 61; equilibrinm of ramifying,
33.

Suction, 1r2.

Sufficient reason, the principle of, 9,
484, 502,

Surface ofliquids, connection of,with
equilibrium, 386-390.

Surfaces, isothermal, 4oo0; level, g8,
398 et seqq.

Syﬁ%metry of liquid films explained,
394.

Synoptical critique of the Newtonian
cnunciations, 238-245.

Synthetic method, 466,

Tangents, method of, 423.

Taylor, Brook, on the centre of os-
cillation, 333.

Telegology, or evidences of design in
nature. 452.

Theological points of view in me-
chanics, 446 et seqq.; inclinations
of great physicists, 450.

Theology and science, conflict of, 446;
their points of identity, 460,

Theorems, 421.

Theories, 491 et seqq.

Thermometers, their construction,
282.

Things, their nature, 482 ; things of
thought, 492 et seqq.

Thomson and Tait, their opinion of
Newton's laws, 245,

Thought, instruments of, 505; things
of, 492 et seqq.; economy of, see
Economy.

Tides, Newton on, 209 et seq.; their
eftect on the army of Alexander the
Great, 209; explanation of, =213 et
seq.; their action illustrated by an
experiment, 21s.

Time, 5115 a set of sensations, 500 ;
Newton's view of, 222-238; abso-
lute and relative, 222; nature of,
223-226, 234.

Toeppler and
method of, 125,

Torricelli, his modification of Gali-
leo’s deduction of the law of the
inclined plane, s52; his measure-

Foucault, optical
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phere, 113; founds dynamics, s0z2;
his vacuum experiment, 113; founds
hydrodynamics, 402; on the velo-
city of liquid efflux, 4oz,

Trade winds, 302.

Trades and clas

s, function of, in the
development of science, 4.

Tubes, motion of liguids in, 416 et
seqq.

Tylor, 462, 463.

Ubaldi, Guido, his statical re-
searches, 2r1.

Uniquely determined, 1o, 502

Unitary conception of nature, 5.

Units, 269-286.

Unstable equilibrium, yo-yr.

ment of the weight of the atmos-

Vacuum, 112 et seqq.

Variation, of curve-elements, 432 et
seqq.

Variations, calculus of, 436 &t seqq.

Varignon, enunciates the principle of
the parallelogram of forces, 36; on
the simple machines, 37; his staties
a dynamical statics, 38; on velocity
of liquid efflux, 403,

Vas superficiarium of Stevinus, 8g,

Vehicle on wheels, 291,

V(.3|Ucit}‘, 144; angular, 296; a phys-
ical level, 3z5.

Velocity-head, 417.

Vibration, see Oscillation.

View, breadth of, possessed by all
great inquirers, soo et seq.

Vinci, Leonardo Da, on the law of
the lever, 20. 5

Virtual displacements, definition of,
575 see also Virtual velocities,

Virtual moments, 57.

Virtual velocities, origin and mean-
ing of the term, 49; the principle
of, 49-77.

Viscosity of liquids, 416.

Vis moriua, 272, 278,

Fis wiva, 272 et seqq., 315; conserva-
tion of, 317, interpreted, 326; in im-
pact, 322 et seqq.; principle of, 343-
350: connection of Huygens's prin-
ciple with, 178; prirciple of, de-
duced from Lagrange's fundamen-
tal equations, 478, 499.



534 TIHE SCIENCE OF MECHANICS.

Vitruvius, on the nature of sound, 3;
his accouut of Archimedes's dis-
covery, 86; on ancient air-instru-
ments, 110,

Viviani, 113.

Voltaire, 449, 454.

Volume of liquids, connection of
with equilibrium, 387-390.

‘Wallis, on impact, 313; on the centre
of percussion, 327.

Water, compressibility of, g3.

Weightless liquids, 384 et seqq.

Weights and measures, see Units.

‘Weston, differential pulley of, sg.

Wheatstone, chronoscope of, 151,

Wheel and axle, with non-circular
wheel, 72; motion of, 2z et seq., 6o,
337, 344, 354, 381.

‘Will, conception of, in nature, 461.

Wire frames, Plateau's, 393.

‘Wohlwill, on the law of inertia, 308,
500.

Wood, on the cells of the honeycomb,
453.

Woodhouse, on isoperimetrical prob-
lems, 430.

Work, 54, 67 et seq., 248 et seq., 363;
definition of, 272 ; determinative of
wis viva, 178 ; accidentally not the
original concept of mechanics,f;ﬁ;
J. R. Mayer's views of, 249; I
gens's appreciation of, 232, 272; in
impact, 322 et seqq.; of molecular
forces in liquids, 385 et seqq.; posi-
tive and negative, 386; of liquid
forces of pressure, 415; of com-
pression, 4o7.

‘Wren, on impact, 313,

Wright, Chauncey, 453.

uy-

Yard, Imperial, 281; American, 283.
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