






























































































































































90 . PHYSICAL MEASUREMENT

distances along the circumference, and cutting from
these points along radii to the centre of the circle.
These may then be placed together so as to form a
surface of the shape shown in Fig. 44.

The area of this figure may be found approximately
by treating it as a rectangle. The smaller the sectors
the more closely will it approximate to a rectangle.
The area, as measured in this way, will be found to be
3:14 % » » 7, where 7= the length of the radius.

Tt is clear that the side 4B =one-half the circum-
ference, and since the circumference is 314 times the
diameter, then 4B =314 times the radius or 3-14 x 7.
Hence approximately 4B x AC'= 31dxrxmr

PRACTICAL ILLUSTRATIONS OF THE MEANING OF
STRAIGHT LINES AND PLANES.

70. We may now extend still more widely our know-
ledge of straight lines and plane surfaces, by dealing
practically with objects which ave supposed to exhibit
them.

A straight-edge, for example, is a rod or bar of wood
or metal with an edge which presents a straight line.
It is used for testing other straight surfaces, or to
enable a straight line to be drawn.

We may rapidly test in a rough fashion whether the
edge is straight, by drawing a line from it on paper.
The straight-edge is then reversed, and a line drawn
from it to face the first line. If the straight-edge be
really straight, the lines may be seen to be parallel, and
might be made to coincide ; but if it be not straight, the
two lines will probably take one of the appearances
shown in Fig. 45 in an exaggerated form.
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An ordi%mry metre scale or yard scale is very liable
to be wanting in accuracy at the edges; and frequently
the want of straightness is easily observable when you
lock along the edge with one eye. )
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F1a. 45.—Appearances presented by 1§
2 ¥ lines drawn from i i
has not a straight edge. B

The method just carried out will only detect a fault
irg thg straightness of the edge when used in one
divection. The edge may be straight in this direction
and crooked in a direction at right angles, as Fig. 46;
shows. The edge looked at from above may be str:iOht
bus not when it is looked at sideways. ht-
ness from this side may also be tested.
A .sumlar test, by means of lines drawn from that
fadge in reversed positions, will afford an indication of
its straightuness.  This should be practically eariied out,

The straight-

F16. 46.—An edge which is strai
. alght when regarded fr i
curved when regarded from a side at viglﬁ: anglcslt(?%l?: ?oiﬁ?:}but

4 71. Tl.le eyesight is often a sufficient test, not only of
¢ straightness of edges, but also of the flatness of

surfaces, and whether two surfaces are at richt ancles
o one another. But the test hecomes moreb certai; if
We are able to magnify the errors in any way.

In the case of a bar 4B (Fig. 47), if it it uncertain

Whether the whole of the upper surface is in the same

.- Plane, we may ascertain it with fair certainty by
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placing two laths, ¢ and 1), each having quite straight
and parallel edges, on the bar as shown. (The steel
scales used in measurement will serve this purpose

Fio. 47.—A method of testing ;"Z};ng’or the surface of a bar is a plane
very well when propped up.) By placing the eyes on
a level with the edge of C, and looking along the
length of 4B towards D, it will be easy to see whether
the edges of ¢ and D may be made to coincide by
altering the level of the eyes. Any variation of the
surface from a true plane will be rendered much more
apparent by these means.

A similar method may be followed in testing if two
surfaces are at right angles to one another. It is only
necessary to extend those surfaces, by using straight-
edges, for any deviation from a right angle to become

c B
Fro. 48.—A method of testing whether two surfaces are at right ¢
angles to one another.

apparent. The object 4 may be placed on a known
straight-edge or plane BC, and another straight-edge DC'
brought in contact with the other face. Tt will be easy

to see if the line BCD forms a right angle (Fig. 48).
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72, But these experiments introduce us to more
systematic operations. The straightness of an edge or
the trueness of a plane surface may be tested with still
greater accuracy ; and in making the tests we shall
learn in a practical manner the meaning of a straight
line and a plane surface, so far as it is connected v.;ith
the material work of the world.

There are certain descriptions of lines and surfaces
with which you are concerned in learning Euclid and
Geometry. DBut the ways in which you will regard
such matters in those studies need not interfere with
your practical investigations ; though Geometry is hased
upon practical experience.

But it seems more natural that you should learn in
the laboratory ideas about lines and surfaces, which
not only are true in themselves, but are also derived
from those methods of preparing plane surfaces and
stmig.ht edges which are adopted in every workshop.
And it may be added that these methods are adopted
from necessity.

There is no other method of testing straight edges
(except by using a standard, that is, @ known straight-

; edge), but by selecting any three of them, and ﬁnEing
out if any pair, made up from those three, he able to
fit together without leaving a space. The sawme state-
ament meay be made about planes.

. 73. This practical manner of regarding straight

%mes and surfaces will be illustrated in greater detail,

if we attempt to follow, as closely as is possible in a

laboratory, the methods of obtaining them in the
workshop. :

Three rods of wood, 4, B, and ¢, are obtained. They

‘ are roughly straight and square, and about 8 inches
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in length, not more than a quarter of an inch in
thickness, and of sufficient breadth to be fairly rigid.
It will be sufficient to render ome of the narrower
faces of each rod perfectly plane. To do this the
three faces are indicated by a mark. A is placed on
¢, and inequalities of surface will be seen on holding
up before the light. These must be gradually removed
by using emery paper wrapped over a stick. When
the edges of 4 and (' have been made to fit after
repeated trials, the edge of (' is placed in contact
with B, and the same process is carried on till
likewise fits B.

We have now reached the stage that both 4 and B
fit ¢, but we cannot yet say that they are all straight.
They may fit in the manner represented in an exag-
gerated form in Fig. 49,

F1a. 40.—Two surfaces 4 and B both fitting a third, ¢, although they
are not plane surfaces.

Then comes the next stage of the process. 4 must
be made to fit with B.  So far as we know, an appear-
ance shown in Fig. 50 might follow. Any irregularity
must be corrected in each, so that they fit one another.

But how do we know now that B and 4 may not be
Jitting in the same irregular menaer as shown in Fiy, 49 7
We can only ascertain this by constant reference to ¢/
and as B and A are each being rubbed down to fit one
another, O must also be altered to fit them.

Thus we have a succession of cautious trials and
constant reference of A4, B, and ¢ to one another.
Care and patience must be exercised over this im-
portant experiment until all three fit one another.
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Then, and not till then,

will they be straight-
presenting straight lines, ight-edges

W

[5
NN

T
L e

FiG. 50.—The effect of placing two surfac

plane ; yet each of them fitsa third & e e e e

urface, as shown in Fig. 49.

74. On reference to the description of
line in section 56, we find that we h
obtained that which was there said to be the essential
property of a straight line, namely, that it should
divide the surface containing it into parts possessing
edges, which fit and are alike at all points.

a straight
ave practically

Fic, 51.—Two surfaces which an 10t plane slidi v h
. 81, hich are no pla: idi one another
4 2 ng over a o
on account of Possessing the same curvature. &

Now it is quite true

; that two edg

B o e o ey Bt

e g. B, and yet it is only necessary to
sude” the one over the other to show that they do

not {it at all positions.?

R 1By s?iding is meant the motion of on

M any direction, without the are

~ *The method of testing
- safe in

. e body over another
2 M contact diminishing,

_ planeness by sliding, although fairly
Ty 51§1'a£tlce, 1s subject to error. When two bodies, 31 and 1%’
- 9Ly have a surface of the same curvature, they will slide

Ver o1 i i
- e another without showing vacant spaces. But these
aces are not planes. '



96 PHYSICAL MEASUREMENT

much more complete when we use
thiree separate edges, for if they all fit one another, we
may say that a swface represented by the faces of
two bodies (as shown in any of the three cases in
Fig. 52) has been divided by the line DE in such a
manner that the two edges of the surface fit and are

alike in every way.

(3)
et

But the test is

*

) 5 iy
(a)

Fic. 52— Diagram illustrating three plane gurfaces 4, B, and €,
fitting one another.

By what reasoning may we assume this to be true ?
The steps in the argument are as follows :-—B is shown
to fit 4, and C is shown to fit A, Likewise B is
shown to fit C. ’

We have shown, therefore, that the place of B in
(«) can be taken by C, and we obtain (). We learn

that the same side of the line DE is fitted equally

well by B and C.
But if we now place B and ' together as in (¢), we

come to the decisive test. If B and ¢ now fit, we
have shown that both sides of the line DX are alike,
for ¢ will fit equally well on either side of the
line DE. :

¢ has been placed below the line in (b) and above
it in (¢), while the line has been maintained in the
first case by 4 and in the second case by B, and that
this 15 the same line is proved by 4 and B fitting, a8

shown in ().
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75,. The sawme reasoning and a  similar practical
operation may be carried on in preparing plane su;
Jaces. ?n the workshop this is a long and laboriov :
process in the first instance, when there is no standquz;
plane for reference, and especially so, as they ; 1‘
be made of metal. : o
' Wh(‘an an accurate plane is already in existence. it
is a‘falrly simple matter to prepare another to fit Jit-
buF in order t‘o obtain a true plane when no stand‘u‘(f
exists, t_he series olf' operations above described needlc t
be carried out, with such modifications as are néceo
saryd to.produce 8 plane instead of an edge. TIn othzfr-
words, instead of preparing three thin edees to fit

- one another, three surfaces have to be re o ld
at all points. e
T
3 ;;lf glates are prepared as accurately as possible
e first Place by the use of a planing i
or file. Their fitting i sl
ing is then tested by coveri
surface of one with ix ; e
il 1th - a mixture of fine ochre and
Wa, C.lsm careft}lly pI—chmg another upon it face down
rds. 01.1 lifting it up again blank spaces will b
: tI})ﬁermalved In the covering of paint on the face i‘
~ the sec i ;
g - t}cl):dim? scrafpmg tool must now be used to
g o rtions of th icl
e e surfaces which are covered
* The plate is agai
1 ‘ gam tested, finally n
| the third plate is made, b L
o o ; y}means of the same opera-
E ) 1 2 i
o [ exh ¢ others. Repeated trials and
: rk are needed to produce this result

76, imi i

_ amtiDIn order to imitate in the laboratory the pre

roducen of a plane surface, remembering 1;hai:p to
one such surface, it is necessary to produce two

Others i
‘ at the same time, some soft material should
G
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be used. Cubes of chalk® or of dried modelling clay
serve the purpose well, and three plane surfaces may
readily be prepared by rubbing two 1N suceession
against the third.

The practical tes
material are in contact
make, but by carefully sli
and at the same time watcl
and the surface of the other, any want

may be seew.
Tn the operations above described, it must not. be

forgotten that although the methods themselves are
perfect, yet the results are only approximately
perfect in the most carefully prepared plates. In

t that the surfaces of such a
at all points is mob easy to
ding one over the other,

iing the edge of the one
of contact

1 The pieces of chalk which are used at billiards give an

excellent illustration of the process, but modelling clay, which
has been roughly made into cubes and then dried in an ovemn,
gerves the purpose very well, Ome edge of each face which is
to be made plane must be made approximately straight by a

Straight _,{3;“”‘:
Lidge i

Straight[--- -
Ldzes A==

Fra. 53.—An illustration of three plane surfaces prepared by rubbing
each in turn against the other two.

preliminary grinding.
is not easy to perceive whether the surfaces fit when slid over

one another.
In spite of the inconvenience of the dust produced during

this experiment, the lesson conveyed 15 50 valuable that ¢t showld
be carefully carried out without Ffail by the whole class,

Tor without this edge being straight, it
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the models prepared in class, the results are far
from perfect on account of the material which cis
used.  Nevertheless, by similar methods, the best
planes are prepared, and when prepared they exhibit
very characteristic properties. i

B Whe.n one such plate is placed on another it is
some time before they actually touch, as a layer of
air becomes imprisoned between them, and when this
has been gradually excluded they stick together 3;1
much that it is difficult to separate them. g ‘

= EXAMP)LE OF MEASUREMENT OF VOLUME. TO
COMPARE THE CAPACITIES OF TWO VESSELS

7.7. I_n comparing the capacities of two vessels we
aoain give an illustration of that Important principlt;
(?f measurement, that in order to compare we must
in the first place measure. At the same time‘
standard quantity must be selected before w .
proceed to 1neasure. e
’Ehe same m:der is maintained in measuring volumes
as in measuring other quantities. SomZthinrf to
measure by is selected, and by its use a num:rical
Vajlue is obtained. One quantity may be compared
» Wl'th another, by means of the numbers obtain 1 i
usn%g the same standard. i
B e s et
- Now the first standard tl _l‘le e
e d that will naturally suggest
e ;f city of the smaller beaker, and we
: apacity of the larger i '
‘Smaller, by filling the small el i etk
‘.?,_ng oy ; il una, er with .-Water and emptby-
arger, doing this over and over

'

oal -
‘again until the larger beaker is full. But it is very
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probable that when the larger beaker has heen

filled some water will remain in the smaller beaker.
This shows that the capacity of the smaller beaker
is too large a standard to s for the comparison.

A R D
T
2
e E Standavd
R wused

Vessels to be
compared

Fio. 54— Two vessels, A and B, of which the capacities are to be
compared. B is the standard. first tried. The volume of the test tube
up to the mark D is the standard which successfully measures both

vesgels.

The next best standard to use will be the
volume of water Temaining in the small beaker,
hecause we shall then be making a practical use
of the arithmetical rule for the Greatest Common
Measure, just as we did in comparing two lengths
(Fig. 3)-

This standard can be fixed by pouring the water
left over into a small test tube, and marking the
height of the liquid in the tube with a piece of
gummed paper or a small elastic band.

We have now to compare the capacity of the
smaller beaker with that of the fest tube up to the
mark. We do so by filling it up to the mark with
water and emptying the water into the small beaker,
and repeating the process until the small beaker is
full. If any water now remains over in the test
tube, we can estimate fairly accurately what fraction
of the volume of the marked portion of the tube
it occupies, or, if we like, measure the actual
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fraction by a process identical with that already
described.  Enfter thus:

Targe beaker filled nearly 4 times from smaller.

TRemainder in small beaker (=volume of marked test tube) is
poured into small beaker 5 times in succession. The re-
mainder left in test tube was L of volume of marked
portion of test tube.

Volume of large beaker=volume of small x 3+ (vol. of small
—vol. of test tube).

Volume of small beaker=vol. of test tube x 44-(vol. of test
tube—1 vol. of test tube).

Tszin_g 1 of vol. of test tube as the standard, then we have

Volume of test tube=3 times the standard.

Volume of small beaker =12 4(3 —1)=14 times the standard.

Volume of large beaker = 14 x 3+4(14 — 3) = 53 times the
standard.

This result may also be expressed as follows :

Volume of large beaker 53
Volume of small beaker 14 i

(Compare this operation with that of comparing two
lengths shown in Fig. 3, and note that we find the G.C.M.
of two volumes.)

78. In this experiment we have found the reative
eapacitics of the two wessdls, that is, we have found
the volume which each contains in terms of the same
standard. This standard is contained 53 times in
- the large vessel and 14 times in the smaller. These
1 numbers indicate the relation existing between the
. volumes.  Lines of corresponding length would
- equally well indicate this relation. g
-f If the standard used were the unit agreed upon
-:t‘})llzmgil}l]&;ralll“iﬁﬁzsurellljlegt, ?1a111ely & culbic cmz{ajzmtwe,
- rs obtained would notf only give the
o value as between the two objects measured,
but we should know the relation existing between these

1l
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and all other guantities which have been measured in
terms of a cubic centimetre. It is clear that our know-
ledge becomes much wider and more uscful by using
the same unit on all occasions.

TABLES RELATING TO AREAS AND VOLUMES.

T9. English Areas.
1 square mile contains 640 acres.
1 acre contains 10 square chains. (1 chain contains 100 links
or 66 feet.)
1 acre contains 4840 square yards.
1 square yard contains 9 square feet.
1 square foot contains 144 square inches.
Metric Areas.
1 sguare metre contains 100 square decimetres.
1 square decimetre contains 100 square centimetres.
1 sguare centimetre contains 100 square millimetres.
English Volumes.
1 gallon contains 4 quarts.
1 quart contains 2 pints.
1 pint contains 34659 cubic inches.

Metric Volumes. )
1 litre is equal to 1 cubic decimetre.
1 cubic decimetre contains 1000 cubic centimetres.
1 cubic centimetre contains 1000 cubic millimetres.

COMPARATIVE TABLE OF LENGTHS, AREAS, AND
VOLUMES.
80. English.
1 mile = 1760 yards = 5280 feet = 63,360 inches.
1 square mile=3,097,600 square yards = 27,878,400 square feet.
1 cubic yard = 27 cubic feet = 46,656 cubic inches.
Metric.
1 metre = 10 decimetres = 100 centimetres = 1000 millimetres.
1 square metre = 100 square decimetres = 10,000 square centi-
metres = 1,000,000 square millimetres,
1 cubic metre = 1000 cubic decimetres = 1,000,000 cubic centi-
metres = 1,000,000,000 cubic millimetres.
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COMPARATIVE TABLE OF ENGLISH AND METRIC

MEASURES.
1 metre = 39°37 inches.
1 square metre = 1196 square yard.
1 litre =176 pint.

GENERAL TABLE, SHOWING RELATION BETWEEN
LENGTHS, AREAS, AND VOLUMES,

81. Lengths and Areas.

A square, the side of which has o units of length, contains
«* units of area.

A rectangle, the sides of which have « and b units of length,
contains ab units of area.

A triangle, of which the base is @ and the vertical height & units
of length, contains fab units of area,

A circle, the radius of which has » units of length, contains
72 units of area.!

An ellipse, the axes of which contain @ and & units of length,

; i :
containg 11-‘1_’ units of area.>

A cube, the edge of which has a units of length, is enclosed
by 6c® units of area.

A sphere, the radius of which has » units of length, is enclosed
by 4wr* units of area.

Lengths and Volumes.

A cube, the edge of which has « units of length, contains
o X o % ¢ units of volume.

A rectangular bar, of which the edges are respectively a, b, and ¢
units of length, contains a x b x ¢ units of volume.

A circular cylinder, the height and radius of which have A and r
units of length respectively, contains 7%k units of volume.

I The value of 7 is about 3'1416. It does not vary, as it expresses
always the number of times the circumference of any cirele is longer
than its diameter. The radius is usually denoted by ».

3 . I : : a
#The correspondence with the circle is seen if we remember that 3

D .
and 5 will take the place of ». Hence instead of mxrx» we have

‘ll'xg’xb ab

2 2

& Oor m—,
4
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A sphere, the radius of which has » units of length, contains
4mr? units of volume.
(It may be noticed that a circular cylinder into which a
sphere will just fit is just half as big again as the sphere.
Take h=2r, then cylinder is 2777 and 2 is half as big
again as §.)

Nore.—TIt is strongly-recommended that a number of exercises
should be worked out with a view to making the quantities in the
above tables as real as possible. It is one thing to know a table of
measures by heart ; it is quite another thing to understand them,
and to be able to form.a mental picture, such as will exhibit re-
lationships between the quantities themselves and familiar objects
around us. In order to gain this real knowledge of standards of
measurement, efforts must be made to reproduce them as frequently
as possible, and one convenient mode of so doing is to draw lines
and areas to scale corresponding with real lengths, areas, and
volumes. Examples follow :

1. Draw lines corresponding with a mile and a kilometre. Use

any scale. .

2, Cut out in paper any two areas which are related in the same
way as an acre and a square mile.

3. Draw lines showing the relation between a cubic metre and a
cubic decimetre, and between a cubic millimetre and a cubic
centimetre, ete.

SUMMARY OF ARGUMENT IN MEASUREMENT OF
SPACE.

82. In the preceding section measurements have
grown more complex than those which were made at
the beginning of our course. QOur first exercises in
measurement were of the simplest class, namely, of
length and mass.

Now it is quite clear that measurement of length
or of mass may become, under some cireumstances, far
from easy. There may be special difficulties in indi-
vidual cases. - But the reasoning required, and the
methods employed, are, in their nature, very simple.
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The methods employed in the measurement of
area and of volume do not differ in anything
essential from those by which length and mass are
measured.  In the first place, it is necessary to select
a standard by which to measure, and without which
measurement can never he made. There are various
standards in existence, but the units which form part
of the general and scientific system of measurement
are the square centimetre for area, and the cubic
centimetre for volume.

By the comparison of these units with the quanti-
ties of area or volume to be measured, we obtain
numerical values just as in the case of length and
mass.  We learn again the same lesson, that quantity,
of whatever kind, wmust be estimated by means of
another quantity of the swme kind. An area is so
many times another area; a volume is so many times
another volume. Further, areas may be added to-
gether or subtracted from one another, and the same
operations may be carried on in the case of volumes
by means of their numerical values. Nothing more

7 than this can be said with regard to their quantity or
magnitude,

83. But there is a difference in the nature of the
- quantities {hemselves, and it is. that difference which
rt?nders their measurement more complex than pre-
Vious measurements. An area is more complex than
a le_ngth, and a volume is more complex than an area.
It is possible to regard an area as constituted of or
eontaining two or more lengths. Tt is also possible to
regard a volume as constituted of or containing at least
three longths, g
We regard area or surface as having two dimensions
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(length and Dbreadth), and volume or space as having
three dimensions (length, breadth, and thickness).

Area and volume are forms or portions of space,
and on this ground the chapter has the heading of
Measurement of Space. The dimensions mentioned
need to be measured af right angles to one another.!

In order to acquire anything like accurate know-
ledge of space under the form of area or surface, it is
necessary to understand what is the nature of & plane
surface. In learning about a plane surface, we have
also learnt what is a straight line.

84. The meaning of a plane surface is best learng
by practical experience. Plane surfaces are the only
surfaces known to us of which any #wo fit, or come in
contact at all points. Two surfaces fittifg may be of
any shape.  We learn very little from finding out that
one surface fits another, but when we can procure
three surfaces any pair of which will fit, then these
surfaces must be of a certain kind, and they are
said to be plane. Nome but plane suifuces obey ihis
condition.

Straight lines resemble planes in this respect, that
straight lines alone can be made to coincide at all
points throughout their common length. The deriva-
tion of our knowledge of a straight line from that
of a plane explains this matter.

The practical employment of these views of planes and
straight lines surrounds them with great importance.

A test of a similar kind may be applied to deter-
mine the nature of certain angles. Right angles are
those angles which are able to form a straight line

1 This statement must be accepted as the most suitable one

for the beginner. .
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with two of their sides, when two of them are placed
back to back in the same plane: or which entivel

oceupy the surface around a given point, when four ol)f"
thfem are placed in the same plane to coincide with
this point.

89. Both area and volume may possess an attri-
bute fmlled shape.  Shape is 1'11de§éndeut of quantity
that 1s, the knowledge of the shape of an area or OE'
a volume does not imply a knowledge of its magnitude.
An area .or_ a volume may be changed in shape withont
altering in numerical value, Shape is not a quantity.

EXPLANATION OF SOME OF THE TERMS USED IN THE
PRECEDING SECTION, ‘

86, Srace.—Space, as well as matter, is made known to us by
tl'.le senses of touch and sight. By these senses we le;u:n t‘z)
d:s:tmguish between matter and the space in which matier
erists. Matter is said to occupy space.  When we observe
])f)l‘tl(.)ll.“i of matter as distinet bodies, we must neec%‘arilL
pereeive that something in which they exist, and hx‘vhici):
forms a sepamtion between them. That somcz’/a:'ﬂg in which
all the objects we can perceive, including the earth, sun
stars, etc., exist and move, is called space. Since w,e ru',
unable to perceive material ohjects without being aware( . ;
that which is not material —namely, space—we m:’w ri rhtlU .
say that we learn about matter and space through ?;hetmn)
sources.  The two ideas enter the mind uf the samce {ime. ; EVVI?
way measure lengths, areas, and volumes in space, Timt isL
:&/’e may measure lengths in one, two, or three divections cu;

e same time. Yet | ; ays ] e
rone of these ﬂwaszt'e;te;;;]&ctw::l;)\e&}c:tr?fecil ‘;ﬂ“ﬂ‘}lbered, -
. : i i the absence

4 of matter to mark the beginning and end of each GPEraALIon.
OLUME.ﬁS'IICh 4 portion of space as exhibits length, breadth
mlfi .thl(;kue'ss. Any portion of matler mubst Joccupy ai
certain portion of space, and when we speak of the- mag-
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nitude of this portion, we call it the wolume of the body.
The same idea is conveyed by the words size and bulk. In
describing the internal volume of a hollow body or vessel,
the word egpacity is used. Bodies of different shapes may
have the same volume, and vessels of different shapes may
have the same capacity.

Soare.—The arrangement, relative position, or disposition of
the parts of a body, constitutes its shape.

Surrack.—Bodies are separated from one another or from space
by one or more surfaces. For example, a sphere 15 separated
from space by one continuous surface. A cube s sepa rated
from space by six distinet surfaces. A surface is an exten-
sion of space, over which one body ends while mm_ther body
or space begins to exist. A surface cannot from its nature
possess thickness, but it must possess length mld. breadth ;
that is, it has two dimensions only. The nla,gnltude of a
surface is called its area.

Lixe.—The boundaries or edges of surfaces are lines. 01‘,.the
separation of one surface from another, or of twg I?O-I‘UOHS
of the same surface, is effected by a line. The division of
any two plane surfaces from one another is effected by a
straight line. A line whether straight or not has o-nly
length. Tt cannot of necessity have either breadth or thick-
ness by its definition.

RenamioN.—This word is frequently used with a special meaning
to denote comparative magnitude. The relation between
quantities is found out by comparing them by means of a
standard. Hence, relation is indicated by numbers or
numerical values, and it will he perceived that relation
in this sense can only exist between quantities of the same
kind. When we speak of relative magnitude or velative
quantity, the same idea of comparison is couve_yedl.' Th'e
relation existing between two numbers or quantities is
called their ratio. Tt is known that different numbers may
denote the same guantities, according to the standards which
have been used to compare them, but these numbers must
be always In the same ratio.
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EXERCISES IN MEASURING AREA AND VOLUME,

N.B.—dn account of each experiment must be carefully written out in «
note-book.  Wherever possible, drawings must be introduced.

L. Draw a square with each side 10 cm. in length, and after
caleulating the number of squares with sides of 1 em. which
it will contain, proceed to draw these.

2. As an exercise in neatness, divide a square centiretre into
square millimetres.

3. Draw any figure, not a square, which has an area of one
square centimetre,

4. How many square millimetres ave there in a rectangular
surface which is 3 by 2 em. (3 em. long and 2 ci. broad) ?

5. Prove by the use of paper and scissors that a rectangle
3 by 2 em. has the same area as a parallelogram 3 cm. long
and 2 cm. in vertical height.

6. Cut out of cardboard a square having a side of 4 em., after
drawing it carefully, and find its mass ; then find the mass of a
circular piece of cardboard having a radius of 3 cm. The result
will enable you to caleulate the number of square centimetres
in the circular surface of the cardboard, provided the mass of
the cardboard is evenly distributed. (The number found should
be 3 x3x 31416, or m sq. cm.)

7. Measure the total area of a hox (use a box of weights) in

square centimetres. How many square millimetres of surface
would there be ?

8. Measure the volume of the same box in cubic centimetres,
How many cubic millimetres of space does the box fill ?

9. Cut out pieces of paper to completely cover the box of
weights, and rule upon each surface lines to represent the
number of square centimetres of surface. (Neglect any fraction
of a centimetre in the linear dimensions.) Or, tie pieces of
White thread in each direction across it at intervals of 1 cm.
You will then be able to realize the number of cubic centimetres
contained, and you will see that the value for the ‘area of any

object is always different from that expressing the volume,
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The same result-may be obtained by drawing surfaces, equal to
those of the box, upon squared paper.!

10. Measure the area of the floor in square feet, and then
ealeulate from your result the cost of whitewashing the ceiling
at 2d. the square foot.  What length of paper 1 foot wide would
ontirely cover the ceiling? (It may be reckoned that a length
is wsed if it has to be cut narrower to fit.)

11. What fraction of an acre is the arvea of the floor? An
acre i 4840 square yards. (That is, how many times is the
area of the floor contained in an acre ?)

12, Draw a square which is 8 em. in the side. Draw lines
to represent the number of square centimetres contained. Then
ingeribe a cirele of 4 cm. radius, and sum up the number of
square centimetres in the circle approximately, calculating the
fractions of square centimetres as accurately as possible,
Compare the result with that obtained by adding together the
number of square centimetres not enclosed by the circle, and
subtracting them from the whole number within the square.
Compare both results with that obtained from the statement-
area of circle=mri :

13. Measure the total surface of a rectangular block with a
rectangular opening in the centre. If such a Dblock is not to
hand, measure the total surface of a drawer. Measure also the
total volume of the wood in a drawer.

14. Ascertain the arvea of an irregular piece of paper by
tracing its outline upon a piece of “squared” paper (i.e., paper
ruled into sgquares for seientific purposes), or upon a piece of
paper which you have yourself divided into square centimetres.
It will be necessary to add together the squares and the frac-
tions of squares as correctly as possible. Note the advantage
of thickening every fifth line each way, and so obtaining large
squares holding 25 small ones. The calculation becomes simpler
and less liable to error.

1Paper ruled into square centimetres, and also into square millimetres,
will often be required in the Laboratory, and is purchased from the
ordinary sources, but in an observation of this clementary character it is
recommended that paper should be ruled into square centimetres by
the observer himself,
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15. How many square centimetres of paper are there in the
given book ?  How many square centimetres of swrface does
this paper possess ?

16. Measure the volume of the interior of a drawer,

- ; f
17. Find the capacity {or internal volume) of the bottle, by
filling it with water, and pouring the water it contains inta a
graduated vessel, snch as a graduated glass cylinder. Make
several observations and take the mean resnlt as correc.

18. The litre (a measure of volume which abroad takes the
place of our pint or quart, heing equal to 1'76 pint), is equal to
1000 c.e.  How many litres would there be in a cubic metre ¢

19. Find'out the volume of a body by displacement of water
' SE L Ty . - =
in the following ways .'—(l) Take a plain glass tube which has
a varrow end, fitted with an india-ruliber tube and a clip, as
on a burette, to allow water to run out when required. Pour
in water to fill about half way, then mark the lovel with paper

sl i B) P I =

or thread. Place the body in the water, and run outb the water
mto & measuring vessel until it sinks to the original level. We
now have run out water equal to the volumme of the body
immersed. (2) Perform the same experiment, but use a gradu-
ated tube (a burette) iustead of a plain one, and notice the firss
level, and the level of the waler after the body is immersed.
The change of level denotes the volume of the object, for the
tube has been graduated so that a certain volume corresponds
with a given length along the tube.

20. Run out 10 c.c. of water from a burette into a weighed
beaker, then on weighing again, the mass of the water may he
found, and that of 1 c.c. may be calenlated.  And make another
measurement by running 1 c.e. into a counterpoised watch-alass
m order to confirm your result. Then assuming that ?Llf the
water you use has ite mass quite eveuly distributed, or, in
oth-er words, that every e.c. of water has the same mass’ as t’hat
which you have just measured, you may find out the volume
'Uf & given quantity of water by ascertaining its mass. (The
assumption made is a very necessary one, for we have o far no

oy o alc1
_grounds for taking so much for granted.) You may then find

o .
fftdt'hel?;olu:'ne of a body by finding the mass of the water which
¢ displaces.  Tnstead of learning its volume directly from
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graduated vessels, we can learn indirectly by the use of the
balance.

91. The converse of the
Find the mass of 1 c.c. of water

water displaced by a body of known volume. £
By a similar process measuve the mass of a volume of water

equal to five times the volume of the solid provided. (Note the
level of water in a burette, immerse the solid, ron out liquid
until the previous level is Teached, and repeat the operation

four times.)
99, Counterpoise a heaker on the balance, and then weigh a
er, delivered

aiven body by finding out the volume of the wat
from a burette into the Dbealer, which will courtterpoise it.

93. Find the volume of several small flasks up to a certain
These flasks may

mark by weighing the water they contain.
be marked and set aside for future use, if the value can be

relied on.

24, Find out the volumes of water required to rai
the levels of water contained in 2 large beaker and in the narrow
neck of a flask. Also measure the volume corresponding with a
difference of level of 1 cm. in a large graduated cylinder, and in

above exercise may be performed.
by measuring the mass of the

se by 1 cm.

a fine burette.
Trom each of these observations you may calculate the

velative areas of the surfaces of water. You will also learn
that the smaller the surface from which measurement is made,
the greater the chance of accuracy in the result. You will learn
in addition that the calibration marks o vessels which measure
although the wvolwne may be

volume are ot linear MEASUTES
and so to a linear distunce.

proportional to the change of level,
25. Measure the volume of air in a flask standing over water.
The flask should be about half full. First measure by marking
the level of the water by means of gummed paper together
with a pencil mark, and then filling the emptied flask with
water to the same mark. This water may be poured into &
graduated cylinder. In the next place, take another measure-
ment by placing the thumb under the mouth of the flask, and
then inverting it. The volume of water now required to fill up
the flask, to the place occupied by the thumb, may be ascertained
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by graduated vessels 1 wi i
gradua ssels, and will give a meas i
‘Which is likely to be the more accl;mte met;l‘::f";m ke

26. Compar
e pare the volumes of the two given bodies by findi
the change of level produced by each when it i Whide -
¢ S is immersed i
t\alf;e . ;u,lm,d in a tube or vessel of even bore (that is W':’,ﬁ
S le & v ~ v 1 : ;
2 lameter or cross-section). The lengths whi ,
gths which denote

the change of level will e
e, & ill be proportional to the volumes of the

27. A pipe has : i
: a cross-section of 9
; 8q. cm. ; how 0
e iy ; how many grams
w&twer T Ilthue 1;(—, n a metre length, assuming iyfc of
i gram ? It 8 ; it
g ¢ must be rememb
. } ered that uni
e - s unit o
e t of length =unit of volume, or, in other Word@sf
S measure
e I(ja,%ul;d b;y the area of a cross-section multiplieci '
A ber of units of length through which that
ction 1s maintained without change.l o
ge.

5 ¥ e tlle & 11 e g
28, By meas 1 hme 1810118 (dl'}.n
pu 1151 ameter . d l 11 t}l (}f
Hld ated pUl tion of t]le (Dl‘ €11 1)11[ ette, a lld thell alcul t) o
e OF L(].u b [ 3 calculatiy g

the voiume rtain i
, ascertain if the volume agrees with what i
sented on the burette, : s

29. A circ i
29, £ cular cy er 25 1 i
- lc_} 11;1(10; 21: cm, in height holds 1 litre ; what
al diameter? TFind out firs ot
rst what the er i
o ! he cross-section
e d;e f] L::'Lll,lllrlf;() from this the diameter, knowing that
=area of cir : i 0 i
T e d(if Make some practical measurements of
aht T e
veter of graduated glass cylinders, and

demonstrate the acy € 8
i e acour of ate ‘ghi X a
iy the statement that height x area

30. Draw a s a5

circle of abm?t ?Zﬁ? (ll]itjml?:r.Ofr}‘udu # Cqil nictvaleiin &
into a known numb(;r c:;"nib e i
triangle by the numb llﬂﬂ-llgles, il}lld multiply the area of one
then be nearly the s ?r pl'esent.. Th 9k ol ircls m)
be proved to be t,hea'l.u.L i l.s obtained from % (That 772 can
e e em ea, may be 'demonstmted by division of

ge number of triangles—see Fig. 44.) -

L That the i
the numeric;llu\l:ijalfv:iue etk L
B o i e jr? 5 e area of the cross-section by the numexj'riuj
realizod by huildin,g . lcﬁG&SB of a body of constant section, can only be
iy P figures by the use of little cubes. For thi
oxwood roughly filed down to 1 c.c. are &
- LCo very useful.
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31. Find the total area of a circular cylinder. Demmlstr:a.te
your method by covering the eylinder with paper, and Cﬁ.i(}ll]ﬂ.tll]éff
its area; and also by rolling the cylimlur_ along a; flat sl.leetr 0
paper so that a rectangular area is obtained. 1\cl)te th&tu?ﬁ,u.
have as a result two circles, and a rectangle of which tht-j' hl(lﬁ.,,b
are respectively the height of the cylinder and the circum-
ference of its section,

32, It is required to compare the diameters of two tubes
indirectly. Close the end of each securely by a mrk‘. Now
pour into each the same volume of*water. The he.lghts ?f
the columns will now be @nversely proportional to the diameters,
but not simply proportional. We must take the square roots
of the numbers representing the heights, and the dm‘lbl.e of the
numbers obtained will correspond to the diameters. This calcu-
lation is based upon the method of finding the vol.mnc of a
circular eylinder. To find the volume of such.a cylinder, we
multiply the area of the base, or % by the height. X Now E;hc
volumes of the two cylinders are alike ; therefore m"k:lllc—lfi
and 4 is related to H (the two heights) as II/2* is related to mr®
or as /t? is related to 7%

33. Demonstrate that a triangle has an area equal to half
that of a rectangle on the same base and of the same altitude.

B ]

Fra. 55.—Illustration of methods of measuring irregular areas.

‘This may be done by cutting out surfaces in paper as shown
in Fig. 42, and referring to Euclid. Kunowing then hov.u' to find
the area of a triangle, we may find the area of any irregular
figure, such as that ab,c.)vle, by dividing it into a nuwber of
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triangles. The same area may also be measured by taking
measurements as shown above, perpendiculars being  taken
from a diameter and a series of figures being formed, the areas
of which can be calculated.

Draw an irregular figure on paper, and calculate its areas by
both methods here given, and also by tracing the same figure
on squared paper.

34. Ascertain by immersion in water, contained in a gradu-
ated vessel, the relation between the volume of a sphere and
that of a circular cylinder, of which the diameter and height
are each equal to the diameter of the sphere. Perform a
similar experiment with a cube and a sphere, and refer to the
relations expressed in the table of section 81.

35. What will be the volume of a cube which will have the
same total surface as the top of the bench ?

36. What must be the diameter of a circular cylindrical
vessel in which 1000 c.c. of water stand at a height of 25 cm. ?

PRACTICAL DETAILS AND SUGGESTIONS IN TEACHING.

Nore. —Inasmuch as the method is more important than the
means, the instruments described in several instances are not
essential. The same lessons may be learnt equally well with the
aid of other instruments ; indeed, it is often a gain in the matter
of originality and experience, to turn aside occasionally from the
course suggested without losing sight of the end.

MEASURES.

87. There is no little advantage in starting measure-
ments with objects which are not graduated in the
ordinary sense. For example, it is better to make
the measurements of small lengths by using a strip
of paper an inch long. A number of such pieces
of paper may be cut at the same time with seissors
for the whole class. After these have been used
@ straight lath of a foot in length may be used, and
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this may be subdivided when necessary with the aid
of the inch strip of paper. The advantage of a
graduated measure is more appreciated after following
this course.

Many exercises in copying and comparing measures
which were not worth introducing into the text will
suggest themselves. Short exercises of this character
are often needed to provide occupation for the quicker
workers at the end of a lesson.

The steel measures of a foot long, which are
graduated in inches and fractions on one side and
in centimetres and millimetres on the other, are of
the greatest service. They will also stand rough
usage. Any ironmonger will provide them at about
fifteen shillings the dozen.

A few metre measures made of box.7ood will be
needed, and one good standard metre should be
available for reference.

Note that the end graduations of a scale are often
worn and not to be trusted.

It is recommended also that pieces of brass should
be let into the work-benches throughout the laboratory
to denote distances of a metre. The distances of a
metre, decimetre, and centimetre, and also of a yard,
foot, and inch, should also be conspicuously shown
in one or two places in the laboratory by thick lines
painted on the walls and plainly named. These aids
will be found very valuable in training the eye to
remember dimensions.

- To these may be added with advantage a con-
spicuous representation of a square decimetre and a
square foot.

A certain number of graduated cylindrical vessels
and flasks will be needed. A few litre flasks and
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a few litre cylinders will suffice; but a larger
number of 250 cec. cylinders will be needed, and
also a number of small graduated flasks, for example

those of 25, 50, and 100 c.c., which may be weighed
on the balance. :

Fr1a. 56.—Vessels used in measurement of volume,

Burettes with a caoutchouc tube, and either a clip
or a piece of glass rod fitted inside the tube, are to,
b(? preferred for elementary work to those provided
with a glass tap. White paper placed behind aids
the r.eading of level. But the usual precautions in
working with a burette must be pointed out, namely :
(1) The burette must be upright. (2) The measure—-
ment must be always made from the centre of the
lower line of the curve of the liquid surface. (3)
The delivery-tube must stand full of liquid during
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measurement ; and (4) the eye must be on a level
with the surface in reading. The use of floats may
be encouraged.

Plumb-line

[ a0 8 09y 7110

ﬂ
)

F1c. 57.—A burette fixed correctly to give accurate readings,

Clamps and supports -are a constant source of
trouble unless they are well made. I have found
my own models stand the test of time admirably, but
they are somewhat expensive. The basis of the
design is a patent brass rack! shown in Fig. 58.
Into this fits at any required height the end of the
burette holder, which is made of such shape as will
readily permit it to be placed in or taken from the
rack, which may be easily screwed against the wall
or an upricht where required. The other end is
constructed in the ordinary fashion to grip the -burette
by means of a serew. This portion is connected with

1 Supplied by Mr, Tonk of Birmingham,
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the other by a Dball and socket joint permitting
variation in the position of the vessel supported. A
dozen of these racks, about 8 inches in length, are
fastened against the wall above a long bench.

The same rack may be used for supporting a ring
attached to a stem provided with the same end.
These rings are very useful for supporting beakers
and flasks both in the physical and chemical labora-
tory, and the burette holder also forms a very con-
venient support for retorts and flasks.

%

Side Elevation.

o s

=

e
[E ]

——————

Tia, 58.—A form of holder for burettes, flasks, ete., in brass, 4 is a
rack ; B, the ball and socket joint (the sockets are steel) ; €, the elip.

D shows the same rack utilized for a ring support.

It is advisable to perform a large number of exer-
cises in comparing the capacities of vessels, and in
testing the graduations already marked on vessels,
not forgetting that some vessels are made to deliver
certain volumes while others are made to confain the
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volumes denoted. Burettes arc for delivering volumes
of liquid, while flasks are seldom used to deliver
required volumes.

MASSES.

88, Tor weighing by means of an indefinite standard

“wood and lead are useful, on account of the readiness

with which they can be eut with a knife.

For adjusting and making up masses, small-sized
shot may be used, but it has certain disadvantages
for junior classes. Nails, odd stoppers, etc.,, serve
for irregular masses.

The spiral which is used for measuring mass is
best made in the workshop. One end of a thin brass
or german-silver wire is fastened to a cylinder held
in the lathe. The lathe is slowly turned, and the
wire strained and guided by hand into a spiral on
the cylinder. Various thicknesses of wire will give
varying rigidity to the spring!

For standard masses, grams and multiples in brass
should Dbe used. For many purpeses, pounds and
multiples of pounds will be found useful. They ave
easily -obtained in sets from the ironmonger. The
weights in pounds with rings attached must alone be
purchased, for these weights will nearly always have
to be suspended. Tf fractions of a gram are obtained,
those made of cluminduwm are much to be preferred.
Small fractions are geldom requirved, and shonld there-
fore be seldom served out.to junior forms. Hence
it is advisable to procure separate hoxes of grams and

1Tt may be pointed out here, that well fitted metal workshops
and a skilled mechanical assizgtant constitute the necessary
foundation on which a physical laboratory should be built.
The laboratory should grow out of the workshop in many senses,
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of fractions of the gram. The purchasc of fractions
may be saved by buying alumininm foil and having
the various fractions constructed and measured by the
clagses.  Their value may be impressed on them by
number dies, and decimal values of the gram are less
likely to mislead than the value in milligrams, which
is sometimes given by the manufacturers.

Various forms of spring balances will be required,
and may be obtained through any ironmonger. Those
which are suspended when in use shonld he obtained,
as they will* be needed afterwards in various exercises
in mechanics. A set graduated in fractions of an
ounce, and a number graduated in pounds will be
regnired.  Some of the forms of letter balances will
serve to display how weighing may be performed
without the use of the ordinary beam balance. Such
a balance is shown in Fig. 13. Modifications may
easily be devised and graduated.

BALANCES.

89. The structure of balances makes it necessary that
they should be used with great care. They should
be periodieally inspected, and all dirt removed. The
knife-edges and planes, when made of steel, must be
kept free from rust.  Tor physical observations the
large open balances illustrated (Fig. 14) are very
suitable, and are readily adapted for weighing hodies
in liquids. Tf must be remembered that large masses
tend to strain the beam, and sudden or uneven move-
ments may diminish the accuracy of the suspension.
For this reason the beam should be placed in sus-
Pension with a steady movement, and it should be
Stopped from swinging when the pointer is in the
tentre of the seale, Of course, alteration of the masses
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in the pans must only take place when the balance
is at rest and supported. DBefore using a balance it
should be dusted, if necessary, and made to swing,
in order to test its accuracy of adjustment. If it
swings equally on each side of the scale, or if it
swings nearly equally, it is ready for use. Tt is better
to allow for a little inequality of swing than to con-
stantly alter the adjustment. Sometimes it is difficult
to get the balance to swing. In that case, blow one
of the pans very gently. Most substances should not
be allowed to touch the pans for fear of injury to
them. A filter paper on each pan is advisable for
direct weighing.

Finally, great care is needed in supervising the
manipulation of weights, and in seeing that they
are properly used, and properly returned to their
right position in the box after every operation. No
excuse should ever be admitted for neglect of this
important rule. In weighing, the weights should be
counted when in the pan, and also when they are
returned to their places. Before using the weights,
it is advisable for each student to add together all
the weights in the set, giving to the smaller weights
their correct decimal values. By exercises in selecting
the weights needed to make up a given mass he must
make himself familiar with their values.

tolls of wood on which ribbons have been wrapped
may be obtained from drapers and will serve for

~ various measurements, cg., measuring the relation of

the eircumference to the diameter of a circle, and for
measuring the volume of a eylinder.

A large number of small cubes are very useful in
conveying the relations which exist between cubes of
various sizes. These may be cheaply obtained of any
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size from a saw-mill, or through a toy merchant. A
certain number of cubes of hoxwood may be obtained
by filing to the required size. They are useful for
exhibiting the volume of 1 c.c.

The precautions which are needed in measuring such
dimensions as the diameter of a sphere or cylinder are
best shown practically. The right use of straight
edges, and the way to turn a scale so as to get the
graduations in touch with the point to be measured;
the need of placing the eye on the same level with,
or straight*in frout of, the object to be measured ;
and other lessons, constitute no small share of the
learner’s work.

As the error in reading the position of a ‘pointer
against a scale is less, the further the eye is from the
scale, it is often useful to observe the pointer from
a distance through a telescope. Another method
adopted in some instruments is to have a mirror
behind the scale, and place the eye so that the image
of the pointer is hidden completely by the pointer itself.

(42

Fra. 50.—A useful form of stand for various purposes,

A very useful form of stand, which is capable of
serving a great variety of purposes, is here described.
It is about 3 ft. 6 in. long, and from 18 to 20 inches
in height. -~ The cross-bar of oak (¢, Fig. 59) is
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14 % 1 in. in section, and is let into the middle of two
solid deal uprights 5 x 2 in. in section, which are sup-
ported on feet tied together by a bar (»), which should
not be placed at the centre of the feet, as it would
then Dbe in the way of objects suspended from the
oak bar. Brass hooks at intervals are screwed into
the bar, and cast-ivon knife-edges (¢)' are screwed on
the top of the uprights, two on the one side of the
bar at right angles to the bar, and two on the other
gide of the bar and parallel to it. For exercises in
weighing masses by springs, the prineiple of the lever,
for observations with an ineclined plane, for testing
strength of rods and many ofher purposes, T have
found this form of stand very useful. It has the
advantage of enabling the work-benches to be kept
clear for ordinary work, and renders permanent fittings
unnecessary.

1These are very cheaply cast, but old triangular files will
gerve when cut up.

CHAPTER VI

DIRECTION AND POSITION IN SPACE.
FURTHER MHEANING OF PLANE AND ANGLE.

90. The meaning of planes and plane ficures has
been given in a previous section. It now remains to
be proved that such ideas as these enter largely into
the practical work of the world; not only into the
construction of machinery and measurements of all
kinds, but also into "all our thoughts and knowledge
of direction and position in space. Unless we are
certain as to the meaning of a plane, not to mention
a straight line, there is little chance of our under-
standing how to describe a position, or how to fiud
a position when it is deseribed. :

Although it is not probable that many people will
trouble themselves to understand completely what
constitutes a plane, yet most people have a fairly
accurate knowledge for practical purposes. This is
perhaps all that may be demanded of them.

In the same way you may be able to dinw a cirele
with a pair of compasses without heing able to give a
definition in words of that figure. Yet the operation
you perform, if properly deseribed, does accurately
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define the result. And the method of preparing a
plane surface, as we saw (in sect. 75), is nothing but
a practical rendering of the defimition of a plane.

A circle is a figure enclosed by a line, which is
made by a point heing traced on a plane, at a fixed
and unaltered distance from another point, until it
returns to the position of starting. The compasses
enable this to be done, because the pointed ends
remain the same distance apart. The same operation
may be carried out less accurately, by using any
object such as a piece of string to keep a tracing
point, such as a pencil, at the same distance from the
stationary point.

Fie. 60.—The operation of tracing a cirele, the distance 4B remaining
constant,

In carrying out this operation we have done some-
thing more than to describe a circle. A curved line
lLas been drawn on a plane in such a way, that every
possible point, which lies in the plane at a given
distance from the given fixed point, is included within
this curved line. In fact, there is no point which is
within a certain distance from this fixed point and not
within the circle. The circle entirely covers a certain
portion of the plane.  The given fixed point is called
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the centre, and the curved line the circumference of the
circle.

91. Now it must be remembered that a plane may
be supposed to extend to any distance. The material
plane surface, which has been described in the last
section and of which you have learnt to prepare a
specimen, coincides with an imaginary plane surface
extending without limit in all direetions.  The plane
of the paper on which a figure is drawn does not end
with the paper.  The plane ttself has no bowndaries.
We may therefore draw, or imagine to be drawn,
any number of circles, with circumferences extending
further and further away from the given point. Now
any one of these concentric® circles will give us, as we
shall soon see, an opportunity of learning what is
meant by direction in the plane; although nothing
seems less likely than a circle to give information
about direction. But we shall learn at the same
time a very important lesson, that direetion cannot
be ascertained nor described, unless there be some fixed
point from which to start.

92. Let us suppose a straight line 4B to pass
through the centre of the circle which has been drawn,
and be terminated by the circumference. Such a line
is called a diameter. Of these straight lines there
may be any number; and for our purpose any one
may be selected.

It will be found, however, that in proceeding to
draw such a line, we draw it from leff to right as
below (IFig. 61). This is merely a matter of con-
venience, the words left and #»ight referring to our

1 Concentric, having the same centre.
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position with regard to the paper. 1U is the easiest
direction in which to draw, when sitting in front of
the paper. The words right and left refer to the person
drawing the line, and give no information fo any one
else, not even to his neighbour unless the paper is
undisturbed, as to which of the many lines passing
through the centre it is. And even as regards the
person drawing the line, the description of right or
left carries with it no very definite meaning.  There
is 1o exact position denoted by the word right.

A B v

Right

Fre. 61.—An illustration of the fact that the words vight and left have
no meaning in themselves, pub must be taken with regard to something
clse. The piece of paper, vn which o citele with its diameter has been
drawn, gives dilferent meanings to those words, in the two positions
represented by A and B.
3 havi sted  for rselv o of th
jut  having selected for ourselves one 0 the
diameters, we may now draw another at right angles
to it, and we shall have divided the ecircumference
into four equal parts, or quadrants.  Since these
diameters, by their intersection, make four right
angles, we learn the fraction of the eircumference
subtended ! Dy a 1right angle. The whole circumfer-
ence of any circle is by custom divided into 60
equal  divisions ov degrees, and the measure of a
right angle will always be 90 of these degrees, Or
as it is written, 90%  An angle of 1° becomes the unit
angle, the standard to measure by; and we find out

1 7 subtend is to stretch over and include.

.
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the magnitude of an angle by seeing how many times
it contains the unit angle, just as we have measured
other quantities.

o

00
180 o

270"

1. 62.—The four quadrants of the same circle, each containing 90
degrees, and fitting together.

93. Now it is clear, that if we take any four right
angles, and place them together in any way, we shall
ﬁn‘d the whole of the surface around their meeting
point completely occupied. There will be no unoccupied
surface where they meet. This follows from what has
been said, and demonsirated practically, in a previous

180° [ 80°

270

270°
Fic. G3.—Four quadrants of different circles fitting together,

section about the meaning of a right angle; and it
agrees with what we can here perceive to be the
relation between a right angle and the quadrant
of a circle.” For did not the construction of the circle

mply, that every portion of the plane within its cir-
I
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wniference had been enclosed by the ci.?'izla? Th.e tracing
»boint never left the plane, but took in succession every
_Auossible position on the plane, which was within a
certain distance of the fixed point. But we ha\fe not
yet learnt what all this has to do with direction or
position. The reply is that we are laying the fo_undan
tion of the general meaning of position, by learnlpg to
describe position within a circle. We must begin by
understanding about angles.

94. Starting with a circle of which a dian%eter has
been drawn, we can imagine @ povit trauelling from
one extremity of the digmeter, round the etrcuwmference,
wnidl it reaches the other extremity. 1t will ha\ie pass_ed
exactly midwaey the point from which a straight line

A poi avelling round the circumierence of & circ]e‘has
re;lglzl(;.-dﬁé ﬁoﬁbggifl;ttﬂv;h‘ilé% is }slhc same distance from E]th(!_'l‘. elxtl gn_l;
ity of the diameter. A line joining M with the centre of the circle, G, 1
perpendicular to the diameter.
drawn to the centre will make two right angles with
the diameter (four angles are formed if the line passc'alsz
throngh the centre). Proceeding further th{? point we
al last reburn to its starting place. That 18, we have
followed out the process of constructing a circle.
Instead of imagining o point to be travelling  over
the cireumforence, imagine the radius of the circle, that
is, a straight line with one extremity at the centre of
i

the circle and the other at the circumference, to be

o

DIRECTION AND POSITION IN SPACE 5'131

¥ oy
carried round with its central end fixed. (A Pfﬂcﬁﬁégl T
illustration of the process is displayed by the mo;‘}@-\}

ment of the string, fixed at one end and carrying d~.

pencil at the other end, by means of which it was
shown that a cirele could be described.) Then we
shall have a series of angles, growing bigger and
higger, formed between the originel position of the string
or [ine and its position ol various moments.

95. Hence it will be clearly understood that the
size of the angle depends on nothing else but the
extent of this rotation. ZThe length of the line sweep-
ang out the angle has nothing to do with 1ts size.

It is quite easy to imagine the line with which we
are dealing to be very much longer. DBut the size
of the angle made by the rotation of a longer line is

. Fria. 65.--The same angle is formed by a point B travelling on one
cirele, and a point ¢ on a larger circle, But the distances passed over
by these points are not alike.

not thereby increased. It is as well for every one at
this stage to draw on paper a series of conecentric!
circles, and it will be perceived that the same fraction

-of the circumference is subtended hy the same angle,

whether the circle he large or small.
This is shown in Fig. 65, where the point B

travels over the distance ABE in forming the angle

! Having the same centre.
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BAE, but the point € on the larger circle has to
pass over a longer distance C'0) to form precisely the
same angle,

Actual length of line gives no indication of the
value of an angle, but extent of rotation does. Hence
we always learn the size of an angle when it s seid to
be of so many degrees. The number of degrees tells us
how far the originating line has been rotated, and this
number is independent of the length of the lines en-
closing the angle.

96. It will be as well to remember that we do not
generally consider two straight lines which are in the
same straight line (that is, fwo paris of the same
straight line) as forming an angle of 180°. And we
do not generally speak of angles which are larger than
180°, as we may judge them hy what remains to com-
plete the rotation; for example, an angle 270° may
be described as an angle of 90° (for 360—-270=90).
Yet there are a number of instances in which angles

Fi¢. 66.— The angle ABC may be regarded as 60°, or as 300°, according
to circumstances.

‘must be regularly measured from 0° to 360°, and
in this case it must be remembered that an angle
of 60° may have heen traced out by a point travelling
over 300°, as well as by one travelling over 60°. This
is shown above (Fig. 66). It is usual to consider the
tracing point as always travelling in the opposile
direction to that of the hands of a watch.
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SUMMARY.

97. A cirele is a figure made by a line traced on a
plane at a constant distance from a fixed point. The
fixed point is called the centre, and the curved line
traced out is called the circummference. This curved
line encloses every point on the plane within a certain
distance from the centre. Still we have no means at
present of deseribing the position of any one of those
points, nor of distinguishing one point on the ecircum-
ference from another. Position has no meaning for
us so far® The words 2ight and left, top and Dottom
give no information, unless they are taken in con-
nection with something which is fixed. The first
step to be taken is the division of the circumference
of any circle into 260° Then it is shown that the
value or magnitude of an angle is dependent on the
distance through which the tracing /Zine has been
turned away from the line at rest, and not at all
upon the length of these lines. Ience it follows thab
the same fraction of the circumference of any circle is
subtended by the same angle. Hence, also, the mag-
nitude of an angle is always sufficiently deseribed by
the number of degrees of a circle which it subtends.
A right angle, for example, is always 90°. And we
may regard any angle as measurable by means of the
unit angle of 1°. Angles may therefore be compared
with one another, and they are quantities.

EXERCISES IN MEASUREMENT OF ANGLES.

N.B.—Fach of the following experiments should be carcfully carried out.
Some of them form valuable lessons in practical geometry.

1. Draw angles of 90°, 45°, 30°, and 15°.
2. Draw angles of 135° 150° and 165°
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3. Draw angles of 235°, 270°, and 345°.

4. Show hy construction that all the angles in an equilateral
triangle are equal. Construct an angle of 60° by the intersection
of two equal-sized filter papers, so that the circumference of each
comes in contact with the centre of the other.

5. Show also that the angle of 90° is 1§ times that of 60°

6. Draw a clock-face on paper, and state how many degrees
correspond with the space of a minute. Then construct a clock-
face on a larger scale, by describing a larger circle from the same
centre, and drawing straight lines from this centre through the
minute marks of the smaller face to meet the larger circle.

7. What is the angle formed by the two hands of a watch at
12, 24, 36, and 48 minutes past 12 o'clock? Do not forget to
take into account the movement of the short hand. Draw
diagrams of each.

8. The long hand of a watch is 2 cm. long. How long will it
take the extremity to travel over 50 metres?

9. Compare the distances moved through in equal times by
two points on a wheel, one of them being 3 and the other

‘4 inches from the centre of the axle. Draw a diagram to

illustrate that the comparative distances passed through by the
points are the same as their distances from the axle.

10. Construct a right angle, then make the two straight lines
forming it equal to 3 and 4 respectively, taking any convenient

] B 5 TP AD)
FI16. 67.—The two sides of the right angle ABC arc 4 and 3 times a unit
length. Then the distance from 4 fo € is 5 times the same unit.

lengths as units. . Then prove by measurement that the straight
line joining the extremities of the two lines will measure 5 on
the same scale (Fig. 67).

11. Make use of this discovery to construct a right angle.
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Measure off on a piece of string consecutive lengths in the
proportion of 3, 4, and 5; mark the lengths by pieces of thread;
then arrange three pins so that the string, when stretched and
bent so as to have its two ends at the same point, shall have its
marked points touching the pins. We then have a triangle with
ohe of its angles a right angle. (The proof of this relation
existing between the sides of a right-angled triangle is con-
tained in prop. 47, Book L. of Euclid, in the shape of the squares
on the two sides containing the right angle being together equal
to that on the third side. The numerical equivalent of this
proposition is 3*+4*=5%)

12. Cut out a triangle in paper, and show, by cutting off the
corners, that its three angles are equal to two right angles.
Repeat your observation with other triangles to show it is
always true. Prove also, by cutting out paper, that the alternate
angles made by two straight lines are equal.

13. Fix 3, 4,and 5 pins upright in the bench, so as to be in
the same straight line, by using your eyesight. Test your result
afterwards by a straight-edge.

14. Place pins at the ends of two unequal laths. Then arrange
these laths, while keeping them parallel, so that the pins at each
extremity are in a straight line with another pin. Find out by
several observations the relation between the lengths of the

laths and the sides of the triangles of which they forw part, as
shown in Fig. 68.

A
/‘\
/I’ \‘\
I’ X
l’ ‘\‘ D
gl e
i S S mﬂﬂlﬂ]‘
A - 27 CE B

Fra. 68. Fic. 69.

15. Cut out a square of paper from a given rectangular sheet,
and fold it across a diagonal ; that is, divide it into two right-
angled triangles, each having its right angle contained by two
equal sides. The other angles of the triangles will be each

equal to 45°. (See I'ig. 69.)
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Make use of one of these triangles to find a given-distance
ADB, marked by ping on the bench-top and supposed to be in-
accessible. Move the paper, while keeping DF parallel to 4B
as far as possible, about until the sides €D and CF of the
triangle are in the same straight line with A and B respectively.
This may be done by li‘aoking along the edge of the paper. If
we can now make sure that the angle ABC is a right angle, then
the distance C'B, which can be measured, will be equal to 4B,
which has been assumed to be inaccessible. (The inaccessibility
may be made real by placing some object between 4 and B.)

It is clear that the triangle ABC is stmilar in shape to the
paper CDE} and therefore the side C'B is equal to AB. Test
your result by actual measurement of 4B5.

16. Make use of the same figure to ascertain the height of
the room, holding the paper vertically, and looking along the
edge C'D. When the paper has been moved until ¢'D points to
the ceiling line, measure the distance of ¢ from the wall. It
will be necessary to fix the paper at such a height that the eye
can be placed at €, and this height imust, of course, be added to the
distance from the wall to obtain the height of the room. (Caution
is needed to maintain CF horizontal, or the result will be in-
accurate.)

17. Measure the distance between two points 4 and B which
do not permit direct measurement ; for example, the distance
between two pins at the edges of two benches. Place another
pin in one of the benches at €, so that 48C may form a right
angle ; then place another pin at D, in the same straight line
with ¢ and B, and at the same distance from ¢ as B is found to
be. Then find a position & in a line drawn from the point D at
right angles with DCB, such that a pin placed there may be
in the same straight line with the pins at ¢ and 4. The dis-
tance DF, which can be measured, Will be the same as distance
B4, Test your result by measuring the length of a string
stretched across from B to 4. (See Fig. 70.)

1The similarity in shape follows from the angle DCE being common to
the two triangles, for since both of the angles DEC and 4BC are right
angles, the remaining angles BA (' and KDC must be each 45° and equal.
Hence the side OB must be related in magnitude to the side 4B, in the
same way as the sides C& and ED are related.
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Construct the same figure on paper, cut out the triangles
ABC and CDE, and satisfy yourself that they are equal. FProve
also that they are equal by the aid of Euclid.!

Y
/ /”/// /ff///%{/é

B CE

Fra. 71.

18. Place two pins at any convenient distance from the rect-
angular corner of the bench, as at A and B (Fig. 72). Place

// _
0 ////////2

Fia. 72.

anofher pin at €. Then gradually move the pins by equal
steps, as measured along the sides of the bench, until they are
in the same straight line with ¢, We have moved the line 4

1 An extension of this method is sometimes of great servicee. In
Fig. 71 AB may be a distance across a river which needs to be known.

Now, it may not be possible to walk back far enough along EF to get

your eye in line with a stake fixed at €' and some object at 4. It might
be necessary to walk half a mile, and inequalities of ground or other
causes might interfere. In that case, malke the distance of BC much
greater, fix a stake to mark the point at €, place another stake at a
distance C'E one quarter of BC, and then walk backwards until your eye
at Fis in a straight line with ¢'and 4. The distance EF will then be
a quarter the width of the river. A further extension of this method
should be attempted.
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{or rather the dirvection 4B3) through a given distance, and it
has remained parallel to its original position.

19. At the end of a rectangular bench are points 7 and (!
It is required to find the distance of the point 4 which is in a
straight line with 7 and ¢ Make €0} equal to OB, and from
the points 7 and 2 measure off equal distances BF and DE of
guch length that 4, F, and # are in the same straight line.
Then BA=BF or DE.

é
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Satisfy yourself that B4 doeg equal B#, both by actual
measurement and by geometrical knowledge derived from

‘Euclid.  Join BD for the latter purpose.

20. Cause the light, from a candle or gas behind a sereen with
a small-opening, to be reflected from a plane mirror so as to
appear on the wall. Let the mirror be supported so as to be cap-
able of turning. Mark the position of the bright spot on the wall.
Turn the mirror through a measurable angle ; mark the position
of the spot of light ; and measure the angle throngh which the

reflected light has been turned, by finding the angle made by .

the two positions of the spot with the surface of the mirror
from which the licht was reflected. Take several observations,
and show that the angle moved through by the mirror is half
that moved through by the spot of light.

21. Draw on paper all angles at intervals of 5° from 0° to 90°
in a given quadrant, and measure the relation of the perpen-
dicular, let fall from the extremity of the radius, to the radins
itself. Draw up a table with the lengths of these lines in terms
of the radius, and compare them with the values given in a
table of Natural Sines.
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22. By using squared paper show that vertical height may be
caleulated by a horizental distance and an angle. Construct a
gquadrant of a circle of considerable radius on the paper, and
draw angles from 5” up to 85° at intervals of 5°. Produce the
lines in each case until they meet a line drawn vertically from
the Dase line at its extremity. The vertical heights corre-
sponding with each angle may then he read off.

23, Make use of the property of a mirror, described above, for
finding the height of the room. Obtain a horizontal reflection
from the mirror placed vertically. Turn the mirror until the
gpot of light reflected by it from a luminous body touches the
top of the wall. Then the angle made by the light before and
after reflection is known,! and the distance of the mirror from
the wall is measurable. Now it can be arranged that this
angle shall be 45°, by moving the position of the mirror. This
nmakes the horizontal and vertical sides of the imaginary triangle
equal. (But this adjustment need not be carried out by thoge
who can calenlate from the value of the tangent, nor need it be
done in cases where graphic methods are understood.)

24, Having placed a mirror at the same level as a light, cause
the light to be reflected until the spot appears af the edge of the
ceiling. Then intercept the light by a piece of paper held ver-
tically at some little distance from the mirror. Mark the spot,
and so obtain the vertical height corresponding with the angle
made by the movement of the light at a shorter distance away.
The two heights, that on the paper and that on the wall, will be
in the same ratio as the horizontal distances of the mirror from
the paper and from the wall respectively.

25, Measure a base line A8, and make a pin at the edge of
a board coincide with 4, then place pins in the board in direc-
tiong A8 and AC, ¢ being a distant object not in line AB.
Draw angle BAC; place a pin in the line A8 at the edge of the
board, aud make it coincide with 2, and move the pin which at
first colncided with A into the line B4 ; place a pin in the
line BC, draw angle ACB, Move the line in direction of B,
parallel to itself, till it intersects the line in direction AC at D,
and intersects A28 at £ Then the velation of A8 to A4 is the

1 Being twice the angle through which the mirror turns.
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same as the relation of AC to AD and BC to BE, or AB: AE
=AC: AD=BC: ED.

7o BiZ ]

Fig. 74.—The diagram shows the lines drawn on the board when the
observations are completed.

26. Taking it for granted, that when the image, in a flat mirror,
of a stretched string is in the same straight line with the string
itself, the string is perpendicular to the mirror, find cut the
angle between two mirrors by measuring the angle made by
two strings stretched in front of them,

THE MEANING OF DIRECTION AND POSITION IN A
GIVEN PLANE.

98, We have learnt in the previous section what is
meant by an angle, and also how we measure the size
of an angle. Tt has been shown that the magnitude of
an angle is determined by the extent to which one line
of the angle is turned away from the other, while their
two extremities remain ecoincident and fixed. And
it has heen shown that the line which has traced an
angle denoted by 3607, that is, an’angle which has been
made by a complete circular sweep, must have passed
over every single point within the circle.

Any given point or position within the cirele must
have been passed over by the line at some period or
other in its journey. We need to know the stage at
which any point was passed over, if we wish to learn
anything of its position. = The angle formed at that
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stage must be found out, and this will tell us some-
thing of position,

But there is one Important condition not yet
‘mentioned. We must know where the line tracing the
angle starts from. Again and again we shall find, as
we have already found, this need of something to start
from, either a point or a quantity, in all measurements.
Length, mass, and time all require for their measure-
ment something fo start from; and here again, in deter-
mining position, the same limitation is prominent.
We know nothing whatever of the position of any
point on our plane figure, although we may know that
af some stage or ofher we must have passed over it in
sweeping around with our line. Some point must be
considered as fized, then we can proceed to measure
from it.

99. If we fix upon the point 4 in TFig. 75, and
say that a given point within the circle makes, wiil
that point A and the eentre of the civele, an angle of 60°,
all that is needed is to carry round the tracing line
BA until, at the position BC, it makes an angle of 60°
cwith its original position.  Then the point required
must be somewhere or other in this line. Whereabouts
in it we have no means of knowing at present.

C

B A
Fra. 75.

Now the statement, that the point is in a line which
makes an angle of 60° with the line A5, does not give
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sufficiently full information abcut it. It is true we
assumed that it was somewhere within the circle
described.  But then the circle may be imagined of any
size; just as the lines B4 and BC may be of any length,
though always containing an angle of 60°. It must

dawn upon our minds then, that the wngle wade with

any fixed point in a given plane is #fof enough for
deseription of position. We should have to grope our
wey, as it were, along the line which forms the given
angle, until we found the point.

To avoid this search for the point, we should have
to state the distance along the line from the centre of
the circle where it could be found. We then have the
two necessary kinds of information about position in a
plane, viz.:

1. Direction.
2. Distance in that direetion.

LY

100. 1t will be perceived that a result precisely
similar to this might be obtained by taking any fwo
Jized points as the basis of our description of an un-
known position. We have had, in one sense, to do so

Fia. 76.

already, for in the circle the cenfre needed to be known
or we could not have drawn the given angle. But
if we have two points 4 and B fixed, we can join
them and then trace out from the line drawn 47
an angle of the deseribed magnitude. We must next
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measure the right linear distance along the tracing
line. (Fig. 76.)

We learn then the same lesson from each method—
the need of direction and distance to define position.
Either a civele with o fired and known point from which
to measure angles, or a line with a fived and known
extremity from which to measure angles will serve the
purpose.

It will be advisable at this stage to make use of
these means of describing position in the following
exercises.

EXERCISES IN DESCRIBING POSITION.

N.B.—In writing out a description of these exercises, take care to point out
how each one tllustrates the need of knowing two fixed points and «
distance, before position can be determined.

1. Select two points 4 and B on your bench ; find a point ¢
which is 25 em. from A, and also makes a right angle with the

straight line joining A5, (Fig. 77.)
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9, Tind a point ¢ which is 50 em. distant from a point 4, and
45° away from a point B placed at a metre distance from 4.

3. Find the angle made by two points 4 and £ with a third
C, the three points being marked on the bench. Use for the
purpose a-circle drawn on cardboard and divided into degrees,
each ten degrees being marked by longer strokes. A lath with
a straight edge will serve for pointing out direction.
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The same observation should be taken with two points on
the wall, to show that we may observe angles in any plane.

4. Place a pin upright at the distance of 1 metre from
another pin so as to make an angle of 60° with a given object.
Make use of the divided circle constructed in question 3.
Devise a means of testing the accuracy of your result without
referring to the divided circle.

5. Draw a circle and its diameter on paper, and show that
there are four ppints on its circumference which are equidistant
from the diambter. Show that they are at the same time
equidistant from a diameter drawn at right angles to the first
one. Note then that distance from oune or even from two
diameters does not effectively describe position.

6. Make use of the divided circle again to measure the angle
between a line and a point on the bench, and move the point
antil it makes an angle of 45° from each end of the line. Test
your position by finding if the distance of the point from each of
the extremities of the line is the same. Also find a position

in which the point makes an angle’of 60° with the line. -What
more is needed to construct an equilateral triangle ?

SUMMARY.

101 When two straight lines meet, an angle is
formed. The magnitude of the angle has been shown
not to depend upon the length of these lines, nor
upon the distance by which their two free extremities
are separated from one another ; but it does depend
upon the extent to which one of‘the lines, as « whole,
would neéd to be turned before being sufficiently
separated from the other to form the given angle. A
cirele, described with its centre at the meeting point
of the lines forming the angle, affords the best means
of describing this magnitude. The circle may be of
any size. Tts cireumference is divided into 360 equal
divisions, and the unit angle subtends one of these

divisions.
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The direction in which any point lies in a plane may
be described by constructing a circle on that plan{’a
*with another point as centre. We proceed next to
ﬁ-nd at what position on the ecircumference of the
circle a rotating line (with one extremity fixed at the
centre) would, if long enough, coincide with the point
o'f which the direction is to be described. The 1kposi-
tion of this line on the circumference can, however, be
despribed only with reference to some o;siler posit’ion
whlcb must be taken as the starting point of th(;
rotation.  The number of degrees of the circle between
thesg two positions adequately deseribes the direction,
Feqmred. In deseribing direction in a given plane, it
is essential, therefore, to have two %oints Vah‘e:ljdy
known: one from which to draw a straight line indi-

cating the direction, and the other to mark the angle
o

through which the line has been turned. The position
of the point investigated is indicated by its distance
away from that fixed point, which is at the extremity
of the line showing direction, ~Without two points

being known, neither direction nor position ecan be
described. :

POSITION IN ANY PLANE.

102, It is not difficult to perceive that there is
another important requirement for ascertaining position
We may have positions above or below a gfvm J-_o{rcfwc:
There are positions in all planes, and some additional
means of finding them is needed.

It was stated in a previous section (Na. 60), that

- & sphere may be traced out by the rotation of a circle

oat i - e : .
thout its diameter. Fix upon any line passing through
o o = ; :
centre of a circle and then, keeping its two

Lo 3
tremities fixed, the circle may be considered to
K ,
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turn round upon these points, and also upon the line
joining them. That is, not only do these points
remain fixed, but the whole diameter remains fixed, and
at rest, while the circle is made to trace out a sphere.

A penny made to spin on the table illustrates the
meaning of this, for when moving rapidly it produces
somewhat the appearance of a sphere.

When we imagine a given sphere to have been
formed in this way, we shall at once understand that
every point on its surface is equidistant from its centre,
which is the same as that of the circle from which it
is derived.

And since the circumference of a circle, rotating
about any of its innumerable diameters, always sweeps
out the same spherical surface, it is clear that when cut
in any plane passing through the centre, the surface
presented by the segments is a circle equal to that of the
generating cirele. (When cut by a plane not passing
through the centre smaller circles are produced,

Fig. 78.)

7

Fic. 78.—4, a circle generating a sphere. B, a sphere so cut as to
present a smaller circle than that which generates it.

103. Now a little consideration will show, that just
as the circle in a plane is formed by the rotation Of- a
line, which sweeps over all the surface within its cir-
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cumference ; and just as its tracing line has therefore
pointed during its revolution in every conceivable
«direction in that particular plane; so does the sphere
include every possible plane in space, in that it can be
generated by the rotation of a circle about any diameter.
An unlimited number of planes pass through its centre,
for there is no end to the number of positions to be
taken by the generating circle.

Both the circle and the sphere may be looked on as
being a portion of an indefinite whole, the circle stand-
ing for the limitless plane in which it exists, and the
sphere for the whole limitless space in which all things
exist,

104. It has been shown that position in the circle
may be defined by a direction and a distance (or angle
and distance), provided we have a fixed point from
which to start. So much for position in a given plane.
But suppose the plane itself be not known, then this
must be first determined. The knowledge already
gained with regard to position will make it clear, that
we can only determine the position of a plane by having
some fized plane for reference.  Then, having found the
plane, find the position within the plane as before.

It is evident that position in space is not easy to
define, and that there are fwo distinct stages in the

~ complexity of the subject. It is by the use of angles

that we can define the relation of one plane to another
with regard to position, just as we can in the case of
lines. In Fig. 79 the angle ABC defines the relation
~of the planes to one another. It will be interesting to
take as a problem the discovery of the condition
requiring to be observed, before the lines give a true
indication of the relation of the planes with regard to
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position.  (Note that relation of position is the only
relation which is possible hetween planes; there is mo
relation of magnitude, for example.)

F1c. 79.—The angle ABC shows the relative position of the two planes
which contain the lines 45 and B¢,

ANOTHER METHOD OF DESCRIBING POSITION.

105. We have learnt from preceding lessons that we
know nothing of the position of bodies, except by
referring to some other bodies which we look upon as
fixed or unmaltered in position. Whether they are
really fized or not makes no difference, so long as we
know them to be fixed with regard to the body under
observation. It is of little concern to us whether the
earth is fixed or not in space, when we are trying-to
give a description of the position of London on its
surface ; nor is it important to know whether a table
rotates with the earth, when we say that a book is
lying at a certain place on the table. London is fixed
on the surface of the earth, and the book is fixed with
regard to the table. On these surfaces we must take
some poinis or lines, which are fixed thereon, in order
to define the position of London or of the book.

We have already learnt, that even when we know
the plane on which exists a point to be determined, we
must have some lines or fixed points for the purpose
of measurement. Now the simplest deseription will be
that of a point upon a plane which we consider to be
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known. As a matter of fact, our most frequent experi-
ences in finding position are upon a known surface,
that of the earth, which may be looked upon, roughly
And for small areas, as a plane.

After deseribing position on a given surface we may
proceed to position in space. Now in the first case,
the simplest one, two measurements alone are needed.
In the second case, three at least are required. For
example, all points on the circumference of o circle are
equidistant from its centre, so one measurement is not
enough to distinguish a point3 whereas all poinis on the
swrface of w sphere, which covers all directions in space,
are also equidistant from its centre. One linear
distance does not suffice for position on a plane, nor do
two linear distances give information ahout positions
in space.

106. To take the more common®requirement, that of
position on a known plane (a sihall surface of the earth
for example), once given a fixed point, we may draw
two straight lines meeting at right angles at this point.

F1c. 80.—The position of the point 4 with regard to ON and OF is
defined by the length of the lines AB and AC.
Then we can measure lincar distances from these lines
to the given point, provided it is included within the
angle (Fig. 80). If it be not, the straight lines can
be produced ; or, if need be, they can be continued so as
to intersect (Fig. 81), and then the required point
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must be within one of the four right angles so formed.
zl"l‘ovided we know the angle within which the point is
ineluded, its linear or shortest distanece from each of
these lines fully and adequately describes its position.
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Fra. 81,.—The position of the point « in each of the f ]
L 1 our quadea
defined by the lengths of the lines ab m]dlzc.qll'ldnnts, i

These distances describe the position of the point with
regard to two straight lines which are at right angles
and pass through the fixed and known point.
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F16, 82, —A method of describing an irregular surface, by stating the

;:;{;'1!)0&3 of various points on its boundary from two fixed lines 04

It may be observed that we have taken as our
problem the determination of the position of a point
(or we may rather say of a particle, which is a body

> j'____;r—
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so small that its dimensions may be neglected). The
position of a bhody may be determined by the same
process, by treating it as a particle. Dut if this be
not convenient, we may take the position of any

particle on ils surfaee, and from this learn the position

of the whole.

From this statement we may learn what may have
seemed very difficult, namely, how to describe the shape
of an drrequlor surface or body.  This may be done
by taking the position of a sufficient number of points
on its boundary line or surface (Fig. 82). This is the
only means of describing an irregular surface.

107. We have mow reached the stage to fully
understand why it is needful to have points, North,
South, East, and West, for the purpose of describing
position. These are names which denote ¢ system of
defining position, which has been in use from the
remotest ages, and which is one and the same thing
as the method just described of using two lines at right
angles. '

If we take two lines intersecting at right amgles,
and put nerth at the upper extremity, and south at
the lower extremity of the vertical line, then east at
the right extremity, and west at the left extremity
of the horizontal line: we represent on our paper, what
is meant by the words north, south, eost, and west,
Or, better still, if we take a sheet of squared paper,
and consider that the corresponding extremities of
any of its vertical and horizontal lines are similarly
named, we shall gather the meaning of these words
(Fig. 83).

Tt must be remembered, of course, that the points
marked on the paper do nothing more than indicate
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divection with regard to the paper.  Corresponding
directions are imagined on the surface of the earth,
although what we may have called north on the
paper may be quite the opposite of the real north,
In fact, we have done nothing more by our diagrams
than to show the selative directions of N., 8., K.,
and W.
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Fic. 83.—The direction of North, South, BEast, and West, shown in
two ways. It will be seen that the points denoted by these words vary
with the pesition of the speaker, whereas the directions do not change.

. 108. We next come to the meaning of real north.
Some point, it is admitted, must be considered as
fixed for the starting-point of 4ll measurement. Suech
a point there is on the earth, and it is called the
north. Any peint on the surface of the earth would
serve as a starting-point, but unless we could constantly
refer to that point, or be able at any moment to state
where it lies, measurement and determination of posi-
tion would be as impossible as ever. Fortunately the
direction in which the point lies, which has been
selected and called the north, can he found at any
time without difficulty.

A magnet, if balanced on a point or placed so that
it can easily turn in any direction, will always point
in the same direction, provided no iron be near ‘it.
Why it does so need not be explained at present. A
compass consists of a magnet so balanced that it turns

DIRECTION AND POSITION IN SPACE 153

in this direction, .., the north.! Tt will generally be
found to have a divided circle upon which are marked
N, S, E, W, and intermediate points.

T
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T1c, 84.— A gradunted circle showing the points of the compass. A small
portion alone of the circle is graduated in half-degrees,

The principle upon which these intermediate points
are named will be best learnt by making a copy on
paper of the divisions of the cirele on a compass with

1 It may be as well to point out here, that the direction called
north does not exactly agree with that indicated by the com-
pass. Somewhat complex considerations have to be taken into
account if a more accurate knowledge of the standard direction
is required. The need of distinguishing between the position,
north, and the direction, north, is likewise important.
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their names (Fig. 84). It must not he supposed that
the N. on the circle, which is fixed, shows the direction
of the north. The letters on the circle point out, for
the sake of convenience and rapidity of calenlation,
what @ given dirvection would be in case the N. of the
circle were the real north. Some additional meaning
is given to the word north when you try to realize
that, were you at the North Pole, you could only
travel away from it by going south. Whichever direc-
tion you took you would move southwards.

109. In addition to the magnet as a means of
showing the north, we may always rely upon the sun
at 12 o’elock, or the Pole Star at night. At 12 o’clock
or mid-day, the sun is in the south,! and we shall be
looking to the north if we stand with the sun at our
back. Throughout the night time the Pole Star points
out the north, remaining fixed in position while other
stars are in apparent motion.

Having fixed upon the north, we can now oblain
lines at right angles to one another, one going from
north to south, the other from east to west, and
distances from each of these lines will be an adequate
guide to position.

\

MEASUREMENT OF POSITION ON THE SURFACE OF
fen THE EARTH.

110. The method described in the last sections
needs some modification, if it is to Dbe applied to
the deseription of position on the surface of the earth.
In dealing with a perfectly plane surface, all that
has been found necessary is to measure from fwo

1 With referenee to countries north of the Tropics.
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straight lines; and it is most convenien? that they
should be at 7ight angles to one another. But in
dealing with such large distances as become necessary
in treating of the surface of the earth and the posi-
tion of towns, mountains, rivers, etc., on its surface, we
have two dificulties to face: first, the fact that the
surface of the earth is not flat but spherical; and,
secondly, the practical difficulty of comparing position
by referring to two lines alone. ILven although they
may be fixed in any agreed position, the nwmerical
walues of the distances would be so large as to cause

‘ UI'(,Elt inconvenience.

The first difficulty need not be dwelt upon, for it
is easy to substitute (in the case of the carth) for our
fwo lines at right angles, fwo circles® lying on the sur-
face of the earth in planes at right angles to one
another, as shown (Fig. 85).

ff‘#_\
‘\
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Tio. 85.—The surface of the earth divided by two civcles, at right angles

to one another, for the purpose of describing position.

But in connection with this scheme it must be
remembered, that there are an indefinite nwmber of
such circles, which may all with equal truth be said
to be at right angles to one another. It is necessary
to fix upon one to start with as the standard. There

! Circles approximately.
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is no difficulty in this if we know of any fixed point.
We have already learnt that the magnet is always
able to point towards the north, and we shall soon
learn that a wmore accurate indication of true north is
possible.  Hence we may select that line which,
passing through a known spot (the Observatory at
Greenwich for example), points in the direction of the
north.  The imaginary line, passing through the
Observatory at Greenwich and running north and
south, is the standard line for measurement towards
the east or west. 1t is called the Meridian.

111, Tt now becomes necessary to define the position
of the other standard line. But the method by which
this is done; and the manner in which the standard
north and south is more accurately determined, is
better understood after a statement has been made in
regard to the earth’s movement in space. A brief
description of this movement must suffice.

The earth moves round the sun once a year, and it
spins as it goes. A body sping on an axis, an ima-
ginary line around which turn all the parts of the
body except those in the axis itself. The spinning
or #otation will account for ‘day and night, provided
it do not take place with its axis always turned
- towards the sun as in No. 1, Fig. 86, in which
case one portion of the earth would be always daik,
and the other always light.

If the axis were turned, as in No. 2, and main-
tained always in that position with regard to the sun,
then there would be equal day and night all over the
face of the earth. :

The direction in which the axis is actually fixed is
shown in Fig. 87, but instead of remaining in that
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position always with regard to the sun, the axis is
directed always to the same point in space. It is
directed in fact towards the Pole Star. Consequently,

e e R
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Ira. 86.—If the axis npon which the carth rotates be turned towards
the sun as shown in No. 1, the surface of the earth around A4 would be
always light, and that around B always darvk, 1f th is be placed as
in No. 2, then every portion of the earth would possess equal day and
night.

it assumes with regard fo the sun the various direc-
tions shown in Fig. 87 at different periods of its
annual journey round the sun.

I'1G. 87.—The actual direction of the earth’s axis being fixed with
regard to a peint many times more distant than the sun, and that
direction heing inclined at an angle to the planc in which lie the earth
and the sun, then different portions of the earth’s swrface are diveotiy
exposed to the sun at different stages of its annual progress round the
sun. It will be summer over a given surface at that period of the year
during which the surface is most directly exposed to the sun, and on
account of the daily movement of the earth, that surface will form a belt
round the earth.
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From this cause a given part -of the earth’s surface
is differently inclined to the sun at different periods of
the year. When placed so that the sun shines
most directly npon it, that part is passing through the
season of summer. When placed so that the sun

shines more obliquely than at any other time, that part
18 passing through winter.

112. Now it is observations of the movement of the
earth with regard to the Pole Star, which inform us
of the direction in which the azis lies. The termina-
tions of the axis are the Poles, north and south.
In these two poles we have the fixed points which
render measurement of, and description of position upon,
the earth’s surface possible. DBy means of a magnet,
an approximate north (the magnetic north) alone is
obtained ; whereas the axis of the earth gives the
direction of Zrue north.

e .f/
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FI1G. 88.—An illustration of the division of the earth’s surface by circles
of latitude and longitude. ; i

From these two points a series of parallel circles 3
are imagined to divide the surface of the earth into
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zones, in much the same way as the circle is divided
into degrees. They are called Parallels of Latitude.
That which is midway between the poles is called the
Equator. Counting from the equator to the mnorth
and south pole respectively, there are 90° of latitude.
/ A careful study of an atlas will now help us to under-
stand, that in the parallels of latitude just described,
together with circles passing through the poles which
are called Meridians of Longitude, we have all that is
necessary to deseribe any position on the earth’s sur-
face, if we follow the method already described.
. Taking the meridian of Greenwich as the standard, there
are 180° east, and 1807 west, marked by meridians.
~ It will be perceived that as we go towards the north
or south, the value of a degree of longitude diminishes.
The convenience of this system of marking the whole
surtace of the earth with lines, distinguished by
nuwmbers, is extremely great.  We have always, within
convenient distance, two lines at right angles, with
which the position of any point can be compared.

SUMMARY.

T13. Besides the method already stated for deserib-

ing position in a given plane, it is always necessary to

. know exactly the position of the plane itself before
any deseription can be complete. Not only may the
_ point sought be in any plane, but the position on the

' To make the preceding description more intelligible, it is
strongly recommended that small globes fixed on a stand
should be used to demonstrate the reason of the seasons. Cheap
papier-miché globes can be obtained, and a pointed wire can
be inserted to hLold them in the right position. Tt is worth
while devoting some time to the explanation and demonstration
of this subject by means of models and diagrams.
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plane may be unknown. There are two stages in the
search for position. In order to determine a position -
which is cowmpletely unknown, at least three linear
measurements have to be made; and these measure-
ments should be at right angles to one another.!

The description of position in a known plane may be
most conveniently effected from two lines at right
angles; and this is the method which is followed, as
closely as is possible on a enrved surface, in describing
the position of places on the surface of the earth.
The only difference between them lies in the fact that
all the lines of latitude and longitude are curved
instead of straight. Any map or chart, with its lines
of latitude and longitude, illustrates this method.
We learn that in finding position, just as in measuring
any kind of quantity, we need a startdard from which
to start. The standards in Geography are true north
and the meridian of Greenwich.

EXERCISES IN DEFINITION OF POSITION.

1. Draw a plan of a path which proceedsfor 4 miles straight
to the N.W., then 5 miles to the W., then 2 miles due N.
Use the scale of an inch to the mile.

2. On the same scale, an inch to-the mile, draw a._gpath
leading from a given point for 3 miles in a straight link to
the K., and then 4 miles due N. till it reaches auother’point B
find oub the nearest distance between these two points by
measuring the distance on your plan. ;

3. Find the points of the compass by means of a magnet, and
draw a plan of the room which shall show its’ true position
when the top of the paper is assumed to be the north.

P

1 We may substitute for these three linear measurements the
measurement of an angle and of one linear distance, but the
plane of the angle must be known.
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4. A magnet is hidden in a piece of wood. Find out the
direction in which the magnet lies without uncovering it. To
do so, allow the piece of wood to be suspended or balanced
freely, and ask which is the north.

5. Ascertain by the uge of an atlas and a magnet the direction

. of London, Paris, and New York with regard to the room.

6. Focus a telescope on a given movable object, then take
its position in the room by meagnrement from two walls and
the floor. Remove the object and replace it from the measure-
ments taken. The telescope will serve to test your aceuracy.

It will be quite clear from this example that any position in
space may-be defined with regard to a given plane. A plane
isﬂ(;snsidered as fixed ; in the case given, the floor is naturally
selected, and then any point marked out on this plane by
measuring distances from two lines at right angles on the
plane, the lines made by two walls at right angles for example.
From the point thus determined, distance is measured vertically
from the plane. If the position of the point is-unknown, its
vertical distance from a given plane is measured; and the
position of the point to which measurement is made may be
ascertained on the plane, by the ordinary course of taking the
distance from any two lines at right angles.

7. Project a circle on a plane placed at an angle with it.
This is done by a plumb-line heing carried round the edge of
the circle. (Onemade of cardboard, or the dise of an electrophorus
will gexve. Support it by a clamp.) The suceegsive positions
of the plumb will trace out an ellipse. Vary the position of
the circle, and note the alteration in the shape of the ellipse.

8. Draw a clock face and put in against each figure the point
of the compass corresponding to it, assuming that the line
joining x1r. and vr. is the N. and 8. line,

9. How many points of the compass does a minute on the
clock face represent ?

10. If a compass card were used for a clock face, where would
the minute hand be at 17 minutes past the Lour?

11. Determine the angle between two lines, by reading the
position of a compass needle when the N.8. line of the card is
made to coincide with each in turn.

L

oriiivions.
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12. Compare the direction of the compass needle with 1_:hat
of the shadow of a vertical stick at twelve o'clock, or the given
direction of true N.; transfer this given dh‘ecti'on to another
part of the room, and notice whether the direction marked by
the compass still agrees with it. _

13. Use the compass to transfer a line parallel to itself.

14. Measure by means of a compass the angle turned through
Dby a cupboard door. :

15. Draw a plan showing the laboratory, without deta,}ls,. and
the position, relative to it, of the rest of the school bullchn.gs,
and the direction of the various passages and paths leading
away frong the laboratory.

16. Yo are required fo cover the surface of‘ a sphere
uniformly with a simple geometrical des‘ign, so that the ﬁgu%‘es
used may be all of the same size. Mention a few figures which

may b used. ‘

. kb i

CHAPTER VIL

\

MEASUREMENT OF TIME.
THE MEANING OF TIME.

114. We may gain some knowledge of time by
comparing it in our thoughts with space. ' Tt will often
be found that much of a subject is learnt by a process
of comparison. Even when the things compared are
unlike in their nature, and although different subjects
ought to be kept distinct in our minds, there may be
some aspects in which they are alike. Yet this pro-
cess of comparison would not be helpful except on one
condition, namely, that the qualities -in which the
likeness may appear should be more familiar to us,
more commonly presented to our minds. In that case
the less familiar ideas will become more intelligible.
They will be more readily grasped by being linked
together in our minds with those which are better
known.

115. It is not difficult to understand that when we
perceive that the bodies around us, tables, chairs,
books, and the rest, are distinct and separate, We begin
to feel the need of some idea to express this separate-

o
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ness of objects. The meaning we give to the term
space expresses this. We cannot think of the objects
familiar to us except as existing in space. It cannot
be said that matter depends In any way on space,
but it can he said that the idea of space presents
itsell as soon as we percelve separaleness.

The exfenit of this separateness we have measured
under the name of length. We have also_learnt that
lengths and measurements of space can only be
measured when we have some fixed point tol start
from. Hence we do not know anything about space,
at any rate in a sclentific sense, except by means of
matter.  And if wb start by assuwing we know some-

thing about matter, we need to link the notion of

space with our thoughts about matter. We recognize
space as that necessary something in which matter is
perceived, and through which separate and indivi‘gggl
portions of matter exist. .
A

116. Now in just the same way we perceive events
and “ocewrrences to be distinet and separate from one
(mozf??a-e?'.‘ An evenf is happening now. Another did
happe I saw a dog. I see a man. The wind
ble The tree fell. These statements, or rather the
occurrences which are the foundation of the statements,
carry with <them, quite apart from their difference of
noture o kind, the need of w something whereby they are
separate and distinet.  This something is time. We
think about the separateness of events chielly with
regard to time, just as separate bodies.carry - ith them

the idea of wang, -;.It ]:‘ ,..1_:;:@2;}8 that  ents may

PN = & - .

happen foge® i‘edq]-g??q and ppay vary in neture,

but we are noy, ;I g thayy, - this_point of view.
i

The words, noy e

eforeer, cah only be used

L—.
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with refercnce to this idea of time, just as the words,
here, there, up and down, for example, make space a
necessary idea. They are words which convey the
meaning of geparateness. And time is the word which
implies all this.

It is not difficult to understand that as soon as we
gain this idea of time we realize change. We shall

soon learn that time is a necessary part of change, and

also that all changes have to be compored with a given
change if we are to learn their true value.

117. Tn making a general review of the ground we
have now covered, the first fact of importance to notice
is, that we have dealt with the fixed and constant
nature of space and matter. And it is here that our
comparison of them with time must cease. All our
measurements of space and matter have been based upon
their freedom from change. Whereas in fime we have
an example of a new kind of measurement, that of a
change itself. The meaning of time carries with 1t
the notion of change. We have to treat change as a
quantity, and scdect some standard change wherdy to
measure 1. 1t is clear that the word change denotes
the opposite of constancy. But it is clear that change,
just as much as those things which are constant, cannot
be measured (or even pereeived) unless there be some-
thing fixed to which reference may hbe made. The
same rule holds then for change as for that which is
constant.

118. The beginning of knowledge as to time is that
derived from our perception of an order in the oceur-
rence of events. The idea of order in time follows
from what has been previously said about fke separate-
ness of events. Beginners cannot be expected to go
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much more deeply into the subject than to recognize
that the order and following on, or sequence of events,
calls up the notion of time.

-

APPROXIMATE METHODS OF MEASURING TIME.

119. The practical measurement of time is now so
easy, so familiar, and we are so dependent upon accurate
knowledge of time in our daily life, that it is difficult
to go back to the period when time could only be
measured with diffienlty, and when accurate divisions
of time were impossible. All th, business of modern
life, the~complexity of affairs, and even rapidity of
(?ommunication, are made possible by the existence of
unstruments which readily indicate exact periods of
time. It is true that the apparent motion of the sun,
produced by the rotation of the earth,-causes the pro-
minent division of day from night; that the height to
which the sun appears to rise in the sky determines
the seasoms, appearing highest in summer, and lowest
in winter; and the appearance of the moon at its full
marks the months. But much more than this is
needed for civilization such as it is now.

It is not enough to know that day follows day, and
month succeeds month, that years join themselves to-
gether in an unbroken sequence. How do we know
that the appearance of the moon at its full or the
Interval from summer to summer is regular ? ; Do we
know that the period of time between the highest

point of the sun on successive days is the same ?
What is there fixed ?

120. If we could make sure in any way that any of
these intervals, to which the names of day, month, and
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year have been given, were fixed and unchanging, we
chould have something to start from, and a standard of
time would exist. We are forced to the conclusion
tleab considerations of these periods of time alone can
give us no help. The longer we ponder over the
subject in our minds the more certain shall we feel
our helplessness to be.

By a process of counting, extending over several years,
we should finally come to the conclusion that there are
365 days in each year, denoting by a day the whole
interval,. day and night, from mid-day to mid-day.
But by continuing the process for many more years,
we should find that this number is not quile accurage.

- Measuring - fron? the day on which #he sun has ap-

parently reached its ighest point in the sky to the same
day again, as representing the interval of a year, we
should find, in course of time, that there are 365} days
in each year. We should then, at any rate, possess a
‘Calender. :

But even by such a laborious process we should
only find out the number of days in the yeas. We
should not know that this number of days always
represented the same interval of time, for the length of
the day might be an inconstant quantity, varying from
year to year.

121. It is true we might {eke for granted—what is
always assumed, in some degree, in our investigations
of nature—the general uniformity of nature. Buthow-
ever strongly we may be urged to accept the truth of
this principle in the case of changes which are under
our own control, and which can be reproduced as fre-
quently and wnder such conditions as may be desired,
it is no inconsiderable assumption when applied to a
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change of such magnitude as that movement of the
earth by which the years are marked.

But apart from the difficulties of this assumption,
there is no mneed to point out that practical observa-
tions of the year are inconveniently long for a
laboratory course. We may, however, confine our
investigations to the day itself, and although there
are serious practical difficulties, even in this case, yet
we may consider a day to be a period more within
the student’s means of observation. Nevertheless, the
same difficulties would again be encountered.

The uniformity of the length of day! must needs be
assumed hefore we can accept it as a standard. We
are, therefore, bound to admit that our personal inves-
tigations into the measurement of time must take
another direction, if we are to learn experimentally
how to ascertain equal intervals of time.

122, With regard to a possible subdivision of the
day, we may direct attention to the fact, that a rough
approximation of the “time of day ™ may be obtained
by means of a sun-dial, an instrument consisting in its
essential parts of a rod or bar, placed so as to throw
its shadow on a flat surface which has been graduated.
The position of the shadow will vary at different
periods of the day. It is advisable to fix up such a
rod in a favourable position, and to make a rough
dial by comparison with a watch. DBuf notice here
that we need a wateh to make the dial.

1 The day as understood to mean the length-of time during
which the sun is visible must be kept distinct from the day
measured from mid-day to mid-day. Our own sensations give
us vaguely the information that the former varies according to
the season.
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If we can put out of our minds entirely all thoughts
about the existence of such instruments as watches, we
¢hall nunderstand, from what follows, something about
the reasoning involved in measuring time, and some-
thing of the methods of selecting a standard.  Assuming
that watehes do not exist, we could make a very rough
timekeeper out of the dial. We could mark out the
avea which the shadow sweeps out, and let the portion
of the area swept out stand for a rough estimate of
the portion of the day which has passed. The shadow
would vary in size, and in position  probably, at
different periods of the year, although for several
successive days we might depend upon the readings.
Snuch a course would enable us to learn some of the
difficulties of the subject.

123. A plan similar to this in method, and also
in want of exactness, has been in use from the
yemotest antiquity. It is a method which serves
for the night-time, and carries on from the day a
means of measuring that mysterious motion of the
earth, which caunses the variation in the shadow of
a sun-dial.  'We refer to the apparent movements of
constellations, their rising and setting, or attaining
their highest point in the sky. These various con-
stellations being known, their recognition ab different
parts of the sky gives a rough estimate of the time.

In just the same way, the apparent course traced
out by the sun between rising and setting, gives some
indication of time, and it should be noted that the
cause of the sun’s apparent motion is the same as
that of the stars, namely, the rotation or turning
of the earth itself, the solid earth which appears
80 changeless.
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PRACTICAL METHODS OF MEASURING TIME.

WelfiiuiI:elegnl;e feadily ad.mitted that for our purpose
e i‘:mluge wh1.ch can be proved to go on
e (.)fl ormly. It 13 clear that change gives
e i easuring time: that there is about
ge a something to be observed, which we call th
d‘z‘m'ah(m of the change, or the quentity of time‘.‘ Wz
;1;;8&\;;&1‘;813;‘511(3 Slow of time by observing change.
el Su}‘.n ps as much as need be said on this
ooy nee.[)i]e:}:]f. But W:e may repeat the statement,
mph ang*fas which ta.kfa place at an even rate
il ipare intervals of time, and these changes
i A e such as can be controlled and regulated by
o8 E vei. .The }ntervals of Fime which we call days
00 long to form the subject of practical experi-

ments, even if we take it for
g or 2
dinl i granted that they are

: 125. In anglent times an inaccurate measure of
time was obtained by sun-dials, and instruments lik
our sand-glasses, but, instead of using the flow ZJ'
sand, 'the time was measured by the %ow of w to
Such instruments were called clepsydrae ; we now acelrl-
them water-clocks. ~ Either a sand—glas,s or a Wat:r-
c%ock may be very useful in recording equal portions of
time. i It should be remembered that in respect of fll]
quantities, whatever their kind, the ﬁrstp roc -
measurement is to ascertain equal qu.al.ntitiesp "

In the case of lengths and masses we cc;me t
agreement in the first place, as to what is mea E gn
equal quantities; and then we may afterwards s }{
to compare one quantity with another bytml lp'lioirei(
them the same standard. A given quanti;;l-'p} o
so many quantitics equal to the standard,}o: 0::'.&1»:::

‘ )

-
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say, contains the standard so many times. Another
quantity contains the standard another number of
times, and the nwmbers give an indication of the
relative value of the quantities. We gather the
pumerical value of quantities when they have been
measured by the same standard. The same process
must be followed with respect to time.  The main
difficulty s to select a standard.

126, We may begin by selecting a standard which
is quite arbitrary, that is, one of which the magnitude
is not necessarily known except by those who select
it, and by those to whom it is clearly described. We
may say that our standard is the time occupied by
the flow of 500 cc. of water through a circular
aperture of 1 cm. diameter in the bottom of a cer-
tain glass vessel, such as a beaker. This
would be understood, and would form a
fairly constant standard, but it would be 4
difficult to produce such an aperture 4
readily. .

It would be better to select a glass F
tube throngh which the flow may take
place, and make it of a known length
and of known internal diameter. Such
a tube should be obtained and fitted to l
a burette by means of an india-rubber
tube. The time occupied by the fall of
20 cec. of water from the burette may T:'
be compared with the fime indicated by o ‘so. ke
a clock. It will be found that the time frsths marked
as indicated by a clock, which we may e
suppose to be correct, will depend upon otine;
the actual level of the water. For example, the time

|

T T

I
Intervals unequal in Time
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will be shorter from the mark 0 to 20 ce., than it
is from 60 cec. to 80. Tt will form a useful exercise
to take the time for each 20 c.c. of flow at the various
levels. The flow may be stopped by the use of a clip.

Several observations should be taken with the aid of a
watch or clock. ,

127. Now it is apparent that if we know: (1) the
change of level: and (2) the actual distance of the
level of the water from the aperture: and (3) all the
dimensions of the vessel, we have a standeard, which
may be carried about from one place to another or
copied. It forms a standard of time, by means of which
other times may be measured and compared.

We may much more safely rely upon our belief in
the uniformity of nature in carrying out the obsery-
ations described above. All our observations would
be valueless if similar causes did not always precede
similar results. Here we have precisely the swme
conditions in every respect. The bodies are alike, and
the same change is taking place. All our observations
of nature lead us to believe that the swme time 1s
therefore occupied.  On the other hand, we are ignorant
of the causes which may operate on the movements
of the earth, and we have therefore less reason for

assuming that they are uniform.

128. Instead of the flow of water through an aper-
ture, we may make use of the flow of fine sand

through an aperture, and the familiar sand-glass lends
itself well to experimental purposes.t

! They have the advantage for cl

ass purposes of heing cheap
and handy. Their inferiority to burettes with water lies in the
impossibility of varying their period.
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In the same way we might take the'b}lrmngu‘c:{
1 lengths of a wuniform candle as giving eque

- ds oi? time. Tt is instructive to take a candle
(:123(1)1 as those sold for testing 1uminosity,1 l:)r Si?jiﬁgﬁ
candles) and compare the lengths of _candﬂt: 1(;; sy
(previously making marks at_equal mtlelm e
successive periods of fifteen minutes egc g s

If we could make sure tl?at the composmt?}lll i
candle were absolutely umform,. and that1 diwghts
been no irregularity in the burning, throus 1 dra T)f 3
or other causes, we should have foun.d‘an mstan;?n o
aniform change which could be subdivided accorme dg'
the lengths of the portions of the candle cm}su h;mn

Much in the same way, we took a Ierfg'th. 0 ‘ a co .fain
of water flowing out of a tube as 111({10£lt}1l% a ceﬁm{}h
interval of time. The latter change being sc: i
more rapid, we should n.eed to take anviz}e%. o
column of water if we wished to compare thes
methods of measuring time.

1929. There is, however, a most valuable facii Whmih_
can be learnt by means of our kgowfli(:ivgeofoi ‘::T 1;1111 :
form nature of such changes as he flow of w

¢ ine of a candle. This fact is so valuable,
?]j:te\i’s nisb]ilngas:ible to realize what woulld be the bcon};
dition of our scientific knﬂwlec‘lge,‘ had it never :ef
obtained. I refer to the investigation of the swing o
ap‘fgiuiizlltake the time of swing, by comparmgdw‘
with any other change which can l?e repeated un elv
the same conditions, and we shall discover, that evirzi
observation points to i.e fact that a well-construc eOf
pendulum takes the same time to perform every one
its swings.
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Now the nature of this change is not easy to under-
stand, and it will be very convenient to postpone for
some time all questions as to the eauses of the move-
ment of a pendulum. We must be satisfied with the
simple statement that the movement is produced by
the same cause as that which brings a hody to fall to
the earth; in fact, a pendulum is formed of a body
which #7ies to fall to the earth, but is prevented by
the string or wire which is attached to it. "With this
explanation we must go on to make use of the
pendulum as an instrument for measuring time, just as
a steel or wooden scale may be used as an instrument
for measurement of length, without any inquiry into
its mode of construction.

(It may be explained to the student that the course here
adopted is not that in which events actually succeeded one
another in the history of science. Yet the gradual growth of
correct methods of measuring time has arisen from much the
same line of argument as that which has been expressed in the
preceding pages.)

EXERCISES IN MEASUREMENT OF TIME.

1. Prepare a pendulum from a fairly heavy iron ball with a
hook attached to it.! Tie to the ball a thin cord or wire of
about 3 feet length, and make a loop at the end. Prepare
another pendulum in the same way, but make it only half the
length. Set them swinging together. Notice that the shorter
one moves more rapidly than the longer. Find out how many
times the one beats compared with the other.

We can affirm from this observation nothing more
than ‘that there is a difference in the duration of the
two events being observed.

1If all the iron balls be cast so as to be approximately a pound each,
they will be useful for subsequent experiments,
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We have taken a convenient example of cvents
which can be observed at the swme time.

We can perceive when both objects are in cor-
responding positions, and we can perceive th.at:, one
returns more rapidly than the other to that position.

Further than this, we can state that during a
certain unknown period of time the one pendulum
swings to and fro so many times, while the other
pendulum swings to and fro another number of times.

But we have no ground for saying that the one
pendulum moves so many times faster than the other,
antil we can find out that the separate movements of
each take place in equal times.

2. Arrange a water-clock by means of a burette having a
glass tube, with a fine opening, which is attached to its lower
end by a piece of india-rubber tube, Consider that the time,
during which the water falls from a given level (say that
marked 100 c.c.) to another level (say that marked 50 c.c.), is
always the same for successive observations. Refill the burette
to the same 100 c.c. mark as required.

We can now observe that the pendulum beats the same
number of times on every occasion that the water falls throngh
the same difference of level. It may happen that the results
given are not quite the same, but it will be found that the less
the friction encountered as the pendulum swings, the better will
the results agree.

In this observation it may be considered, that we
have a means of obtaining equal periods of time, on
the ground that exactly similar changes take place,
namely, the same quantity of water falls from the

burette under exactly the same circumstances. There
is no reason to suppose that the period of time differs.
In fact, there is no other way of knowing what are equal
periods of time.

If we did not consider them as equal, we should have
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no knowledge of time beyond that elementary knowledge
of one event occurring hefore, after, or together with
another. '

We should not understand time as something cap-
able of being measured, unless we could assert thai
the same change under the same conditions will always
take place in the same time. Hence we start measure-
ment of tume by deciding what are to be considered equal
times.

3. Count the number of beats during a smaller interval of
time, that occupied by a smaller change of level of water in the
burette, say from 100 c.c. to 90 c.c, and notice that there are
the same number of beats when the pendulum moves through
a large arc ag when it moves only slightly. (That is, when
the amplitude varies, the time occupied is the same.)?

Derforin the some experiments as ore given above, with a sand-
gluss substituted for o water-clock,

4. Observe that the pendulum which is one-half the length
of the other swings four times to each swing of the other.
Make separate observations, counting the swings of each during
the same change of level in the water-clock, or while the
sand-glass empties itself.

It may be inferred from these observations, that
each beat of a given pendulum represents the same
period of time, and that we have in the penduluwn a
means of subdividing a given period of time tnto small
equal portions,

When we learn for a certainty, by using a pendulum
which is more accurately made, that the time of swing
1s always the same, then we can feel sure that time
can be measured, and that it is quite as much a quan-
tity as length or mass.

! This statement is only approximately true, You will probably fail,

nevertheless, to discover that it is not true, as the time is so nearly the
same however wide the swing.
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5. Make observations of the time of swing of your own
pendulum compared with that of a standard pendulum, and
draw up a table showing the relation of the lengths of
pendulum to the fime of swing. y

A standard pendulum should be constructed of a massive
s ol ” suspended by rigid rod, which has fixed to it a “ kmfn?v
edge” of steel so as to be able to stand on steel plates. T.hls
method causes very little friction, and gives a pendulum which
will swing for a long time.

6. Assuming that equal periods of time are marked by the
second-hand of a wateh or clock at all parts of the day, con-
struct a pendulum which will “beat seconds,” that .is, Whl‘(}h
will occupy a second in passing from one extreme point of its
swing to the other. . -

Measure the exact length ~ing | \wjﬁéulum from its point of
suspension to the centre of t:"glost ? o

7. Coustruct another pendu Vo -actly the same length,
but with a bob of different ma' .7 [easure from the centre
of the mass in this case as before-Vo this very carefully as
the result iz important. Ascertain if its period is the same.

8. Ascertain the time of beat of the given pendulum_, 3..1’](1
calculate its length from your result, knowing that the time ts
proportional to the sguare of the length, and that a second’s
pendulum is 99 em. in length. ]

By the phrase © proportional to the square ’l’ we mean, t]r{a.t if
the length is doubled, then the time is fou.r times longer ; if the
length is one-third, then the time is ene-ninth, a-nc]: 80 O,

We may perceive that there is a connection between
the standards of time and length, as well as between

those of length and mass.

If we had no other means of finding out what was
the quantity of matter denoted by a gramme, we could
obtain it by finding out the guantity of pure ‘fvater
which would fill one cubic centimetre. (Practically
this would be done, with less likelihood of error, by
finding out first of all the quantity of matter con-

tained in 1000 e.c. of pure water.)
M
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In a similar manner, we could re-determine the
length of a metre, or rather of 99 cm., assuming it to
be lost, if we were provided with a good time-keeper,
by measuring the length of a pendulum beating
seconds.  Such a pendulum is 99 cm. long.

SUMMARY.

130. In the preceding sections a variety of phrases
referring to time have been used, among them—day,
year, length of time, dwration of time, interval of time,
and period of time. All these phrases originate in the
fact that we regard Time =< a quantity, which we may
treat as other quantities h#e been treated. Just as
we have measured and cobpared Lengths and Masses
by means of standards,:s¢ we must proceed to measure
and compare Time. Mength, Mass, and Time are quan-
tities which may be treated alike. In addition, they
are the three most important gquantities in existence.
As we continue our investigations of nature, we shall
find that all the measurements we may have to malke
hereafter are based upon measurements of some or all
of these quantities. TIn other words, measurements of
Length, Mass, and Time enter into all Physical
Measurements.

But this is not all. Not only do they enter into
other physical measurements, but there ig a compre-
hensive system of measurement, whereby all physical
quantities ave expressed in terms of quantities of length,
mess, and #ime.!  Provided then we can find a suitable
standard, time can be measured; a numerical value can
be given to any quantity of time; and the treatment of

1 The Centimetre-Gramme-Second System, or C.G.S. System,
the so-called Absolute System of Measurement.
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time differs in no way from that of other quantities.
The selection of a standard, however, is a far more
difficult matter than the selection of a standard of
length or mass.

Length and Mass are constant objects, Time is
something of a totally different kind.- It does not
remain constant while being measured. It is some-
thing which goes on or flows on without stop. We
cannol 7epeat our observation of the swme time, as
we can of the same mass or length, for time goes
on and eludes us. IHence we do not measure, in
the strict meaning of the word, time itself, but rather
measure change by means of a standard change.
Still this is not the most accurate description of
what is done.

More correctly speaking, we measure one aspect
of change, which we call time, by means of the
same aspect of another change which is selected as
the standard. In measuring either length or mass
we confine our observation to one property, neglecting
all differences in kind or nature of the objects which
are measured. So In measuring change we can pay
attention solely to that aspect of change which is
called time.

The year, month, and even the day are too long
to be treated experimentally. Moreover we have
no means of knowing that they are uniform quantities.
The instruments which can be depended on for de-
noting equal intervals of time have the opposite
defect of marking intervals which are too short.
The water-clock, however, enables us to find out
that the pendulum swings in regular periods of time.
As a pendulum can be constructed to swing for a
considerable fraction of the day, and it will swing
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for a number of days with the aid of machinery
(as in a clock), we have means of comparing the
length of day with the swing of the pendulum. = We
have also the means of comparing one day with
another.

MEANING OF A SECOND.

131, Probably all who are working through this
course have often been told that the earth rotates
or turms round on its axis. This axis is an imaginary
line. It will be understood that a top may be
spinning in such a way that every portion of it
circles round a line or axis. If this imaginary line
he a true ling, that is, one without breadth or thick-
ness, we can perceive that all points in that line
are at rest, and that this line may be pointing always
in the same direction. This will happen when the
top is af 7est as o whole But the top may spin
round and move on at the same time. Now the
earth is spinning round and moving on in the same
way. This statement ought not to be laken without
due consideration.

It is not casy to realize that the earth is spinning
round, as is shown by the fact that until the days
of (Galileo many people much wiser than ourselves
did not believe that it moved. REither the earth or
the sun and stars must move, as Wwe Call 5c6 for our-
selves; but it was not until very searching tests
were made, that it became clear that the alternative
which is so difficult to realize is the true one, and
that our solid and mighty earth is in motion.
We must accept the conclugions of the many skilful
experiments, which have been carried oubt with
great precision, and ¢ry to wnderstand that the earth
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is in motion. It is the rotation of the earth, and
not the movement of the sun and stars, which causes
the apparent movement of the sun across the sky, the
change of day and night, and the ehanges in the
positions of the stars at night.

132. We may readily perceive that the lengths
of day and night are not uniform throughout the
year. We can perceive this withont the use of
time-keepers, because we are directly conscious of
day being short compared with the length of night
in winter, while in summer the nights evidently
are short. DBut any of our rough time-keepers
would enable us to ascertain this fact with cer-
tainty.

We may succeed in observing a day, if we take
up a suitable position with a piece of smoked glass
(which enables us to look at the sun) and watch
until the edge of the sun coineides in position with
some fixed point on a chimney, flag-stalf, or church
tower, for example. Then if we choose to remain
in the same position, and wait until the sun reaches
the same point again, we shall have observed the lapse
of a day.

Some means of dividing this day must be discovered,
for a day is too long a period for purposes of experiment.
Some such instrument as a clock must be used, a elock
being an instrument which registers by a skilful contriv-
ance the beats of a pendulum, and describes on its dial
how many beats have taken place during any given time.
Such an instrument would at once tell us that all
days are not of the same length. Hven two con-
secutive days vary to some extent, but the difference
in the length of the days at different seasons is very
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distinct. The same result is obtained whether we use
a clock, or any other instrument capable of giving us
successive and equal intervals of time.

133. The question then avises, does the earth twrn
round at different rates, does it turn round more slowly
in summer than in winter? If we had no further
test to apply, we should have to admit that it does; for
there can be no doubt that the same change, produced by
the same cause under the same circumstances, always
occupies the same time, and we have no doubt that the
same change shown by the water-clock or pendulum
denotes the same length of time. All kinds of tests
being applied, we are driven to the same conclusion,
namely, that days are not equal in length. Now it
would be strange if all methods of measuring time were
to agree in this respect and yet be misleading.

We are, therefore, forced to the conclusion, that the
length of day is not a constant quantity and that it is
misleading. Still the variation in the length of day would
scem to be due to other eauses than an alteration in the
rate at which the carth turns round. It is difficult to
understand why the earth should rotate more slowly,
then increase its pace, and then again become slower,
as it appears to do. Tt might Lappen, for aught that
we know at present to the contrary. And we should
indeed he compelled to admit that the earth’s rotation is
not uniform, were it not for another observation which
can be made, that is, the interval of time between the
successive transits of a star past a fixed point, instead of
the time oceupied by successive transits of the sun.

134. If the same observation as was made with the
sun be made with a star, which is known not to change
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its position in the sky as compared with other stars!it
will be found that suecessive transits of that star occur
at equal intervals of time.  Hence compared with a fixed
star the earth does rotate uniformly. We ought perhaps
to say that as far as we can judge the earth rotates
uniformly. A1l kinds of tests, such as have been indi-
cated, may be applied, but they all give the same result.
If the earth do not rotate uniformly, then a great
variety of observations must all lead to wrong conclu-
sions; and instead of finding a general agreement among
all our investigations, we should have a meaningless
confusion.

135. We may now begin anew our explanation of
the meaning of a second. It is a certain fraction of the
time occupied by the earth in turning completely on its
axis, and it is by observations of this time, by means
of the transits of the same star across the cross-wires
of a fixed telescope (or rather, of a transit instrument),
that we obtain a check on our time-keepers. The
mechanism of a time-keeper is adjusted, until it causes
a given number of seconds to coincide with the period
of two star-transits or a sidereal day.

It is decided beforehand that there are to be
86,164'1 of these seconds in a sidereal day. This
seemns an odd number to select; but it is due to the
fact that ordinary people have to regulate their life,
not by stars, but by the sun. And therefore they
ascertain the fotal length of all the days in a year
and then calculate the average length of a day,
and obtain what is called the mean solar day. This
is divided into 24 hours, 1,440 minutes, or 86,400
seconds.

1That is, a star as distinet from a planet.
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136. Hence the wniz of time which w

- 18 based upon the average length of

this is obtained from the total length of all the days in

@ year. But once having decided upon this quantity,
any sidereal day affords a check of its value.

It is of course understood th
vestigation of the means of me
used the word dey with a special and limited Ineaning,
namely, as the length of time in which the earth makes
one complete rotation on its axis. But Wwe may con-
trast with this meaning the loose and irregular use of

the word in ordinary conversation. For example, we
find it used with the following meanings :

Day stands for :

1. 24 hours or a mean solar day, eg.,
oceupied 5 days 14 houps.”

2. The period between sunrise and sunset, a very
irregular period, ¢y “Which is the shortest
day?” forms a frequent, question in
Moreover in the neighbourhood of
corresponds with 6 months.

3. The portion of a day spent in work, eq., “The
eight-hours day.” :

4. Any indefinite period of time, eg.,
has his day,” ete., ete.

e call a secongd

at throughont our in-

“The voyage

geography.
the poles it

“Every dog

COMPARISON OF TWO TIME-KEEPERS BY MEANS OF A

PENDULUM.

137. In performing this experiment it mmust be

taken for granted that the time of vibration of the mov-
able pendulum does not vary, otherwise the fundamental
principle of measurement, that the standard which 1s
used must not change, will be violated.

a solar day, and -,

asuring time, we have
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> - . - a‘
Ve are about to use the time of vibration of
e fixed quantity of time, and measure a
L 1 clock, by means
3 interval shown by the standard cloek, % ;
5 1 (- 3 Ta
10an ling how many times this small selected intery
of finding e
i i larger interval. i
is contained in the larg _ iy
g ('JI‘he time of vibration of the pendulum is our 1 7t hé
T A .
nd the number of vibrations which it execu.teg 1t e
F1l no interval gives the numerical value of this inte
ong gives
i y * unit.
n terms of our un 12
1 Now, just as in the measurement of length, Wed : 2
eprodu,ce a given length which has been prresie ke
k . by setting out ths
r i standard length, by :
so mawy times a : ‘ e
number of times the standard length along ? s}rz; 'gw
wen interval of tumne,
i eproduce & given .
line; so we can 7y : e
which has been measured as so many times afc e
standard interval, by allowing that number o
rd 1 ral to elapse.
the standard interva : g o
Ve see tl that if we wish to compare a time
o e t take a known
piece with a standard clock, we mus ; a{ 1( iy
1 rd clo g
i es on the standarc :
interval, say 3 minut
find ho,w inany vibrations the movable pend1i111Jum
i i g n vibra-
makes in that interval. Suppose 1t make%f G
tions. We then remove the pendnh{lm T e
tandard eclock ; swing it near the timepiece ; and 1l
i : i 1 the timepiece during
the measure of the interval on epiec
which the movable pendulum makes 7 W_nbra.tlons.f I
As an experiment, the time of vibration o
l ' il wa
metronome may also be compared in the same way
with the clock by means of the pendulum.

The pendulum used for this purpose conslszs oihfé ‘ﬂ;;ﬂe:;:gl.
bar. The thickness may be about one-qu'ﬂ;‘"tfr ——
Through a brass block attached to one end o e o
steel wire passes horizontally a,n.d oy 1ae 3)211’: a rectangular
The support consists of a plain piece of wood wi



186 ]
PHYSTCATL MEASUREMENT

hole in it, This can easily he ¢l

er end of the bap ;
be ;Lttached, to steady o

T
S " -1
-~ -
) w s o

F16, 90.—A useful form of
burposes, It may

Pendulum and st

AT KElh g i
be clamped to a she?f f)(ll lf;fﬁ:lmental

Two observers will
of the experiment on
t%‘le standard clock
tions of the experi;n

Enter thus :

In-terval on Clock, -
Vibrations of Pendulum, - ;?g e

The next step i
P 1s for one obser |
- . ver to count 2
o I;the pendulum, while the other counts th 2
cats made by the metronome °
Enter thus ; ‘

Number of beats of i .
e 0 metrm_mme n 272 beats of pendu-

be Lecessary.,
e of them note
while the other
ental pendulum,

In the first part
s the interval on
counts the vibra-

1 T}1e pattern of the pendulum ad
described, but steel bar is readily o

opted need not resemble the one here
lengths now required will serve for

bte'nned at t]!le ironmon‘ger’s, and the
various experiments afterwards

amped to the edge of the bengh
oy st.a. hook, to which a weight can
b motion

wing for » Tonges 5. 2 and make the pendulum
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972 Beats of penfhlhlm?lSO seconds.
. 211 Beats of metronome =180 seconds.
Number of beats of metronome in 180 seconds found by

* divect experiment=( ).

138. EXPLANATION OF SOME TERMS USED.

Nore.—The following statements arc of little value unless they are accom-
panied by detailed demonstration with the aid of a globe and mocels.

DIvISION OF THE CireLE.—The circamference of every circle
is divided into 360 degrees, marked (°). kEach degree is
divided into 60 minutes, marked (), and each minute into

' 60 seconds, marked (7). An angle is enclosed by any two
lines meeting at the centre of the circle, and its magnitude
is measured in all cases by the fraction of circumference
subtended by those lines. Tlence any angle is fully
deseribed by the number of degrees it contains. The
convenience of this method of measuring angles is especially
marked in dealing with the rotation of the carth. In one
complete rotation a given point on the surface moves
through a circle, in half a turn it moves through 1807
and =0 on. When the carth rotates on its axis all points
on its surface except the poles turn through 360 degrees in
a sidereal day. "The angular distance through which the
earth moves is the same as the angular distance through
which a given fixed star appears to move. This is
measured by any instrument indicating angles, the only
difference being that the angle appears to be traced out
in the contrary direction. Fence it is that movements of
the earth are always ascertained by observing the apparent
motion of distant stars.

SExTa¥T.—The sextant is an instrument used for measuring
angular distances between stars, or for measuring the
altitude (that is the angle from the horizon) of the sun
or other bodies, The instrument consists of the sixth of a
circle finely graduated, carrying a movable arm with a
mirror, a telescope and a fixed mirror.

TraxsiT InstruMEsT.—This consists of a good telescope fitted
to a vertical graduated circle, so that the angle through
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: ; Knowing that th_e fih o S (e
. 3 ” : o © EXERCISE— 1 vemembering tha s
which the axis of the telescope is rotated at the centrao, the Bcliptic, and r€ nd a yearly revolution, e
e e (By this means angular dis e tions, a daily rotation a distance around 1t,

mo 3

ome
| . - e pole, and s
tances in g given plane may also he ascertained. ) e

is1 ? rest
¢ months and invisible for the

_ou explain that a
ihe cun is visible for
of the year?
ENDULUM.—ADY body,
o and fro under the
pdulum. |
. TCH.—AD instrument wl e e
lAOf tilme s llnnism consisting 1n
. che ;
i ’ By means of a me e
i A ] t a moven
Y o 1s connected so tha
he main of cog-wheels
the me

i caused
er, the motion ;
one to the oth T .1 . Ve B
be passed on from e e

Pore Sran.Ag the earth rotates and
is earried round with it, the fixed
enormously greater distance than
exist on the earth, appear to move at the same rate in an
opposite direction. Ag the earth moves round from west
to east, the stars appear to move in g body from east to
west.  But as the North Pole i approached, the observer
would move through smaller ang smaller circles. Many
stars too would seem to move throug y
which the centre is the Pole Star,
itself the Pole Star would he

a person on its surfae
stars, which are at an
any distances which

ing to
t it can freely swing

: o :
so placed th e

action of the earth,

y ual
Lich serves to mark eq

Cpock ok W

At the North Pole
always directly overhead, -

by the fall of a we.ight‘- Of-e t constant by the VLbl_nat:ih,
while other stars would appear to sweep round parallel rzcorded. This motumﬂ is 1\ I\)vhich e Teen provioudly
with the horizon (the line where the sky and earth seem to 1 { a pendulum or whee %
meet). In our own latitudes the Pole Star has an altitude 0 AR

s o >
. regulated to vibrate
{or angular distance above the horizon) of about 50°, Hence ‘

there are many stars visible which cirela round it and never
set ; but there are ahout, the same number which both rige

and set. There wil] be of course many stars which are
never visible unless we go further sout,,

e T 1E.
ES IN MEASUREMENT OF TIM

watch stands
he time when the hour—handko;f;;
i r-mar !
2 ‘Vhr'l"l minute-mark past the hou B
. 1 between three and four o'c
9. At what time

3 T
i traicht line ¢
the same stralg e
B f atch is § inch long, and the
of a wab

oA o d Yy b?
ﬁlll the distance tr L\e}.Sed m a da
(¢

FURTHER EXERCIS

SECOND.—A. certain fraction of the time oceupied by the
rotation of the earth on its axis.
Day.—The time occupied in the rotation of

measured by the sun, iy variable‘through t

he year. The
mean time calculated from the year is called the megy
solar day, and containg 86,400 seconds. The rotation as

measured by a star is called a siderey day, and containg
86,1641 of the same seconds (mean soly seconds, or seconds
obtained by subdividing the mean solar day by 86,400).

YEAR.—The time occupied by the eargh in completing its journey
round the sun. The Path taken ig called the orbiz of the

3. The minute-hand
hand is & inch long;
the extremity of each.

s y Ve
- 2 wa,t(,h mo
hat hole ¢ 1]3.-1](1 Of a

4 Ihrough what al (a

oes the hour

in 3% hours ?
1f ¢ arth tur
5. If the eart .
performs g th of its eompl

ig, if 1t
1oh 15° in an hour, thzutt ,ﬂl =
4 A ,
i thmt Dlotat'mn in 1 hour, what w
ete v

i and at
soh is 75° west longitude,
i Philadelphia which 1 75 “(‘i when it is mnoon
the time at Flik gg° 25 east longitude, i
Calcutta which is ich? To answer this que_t Wh,en o
' Jreeny ? ] e :
(12 o’clock) at Gr ber that moon is the Mo st
: . ‘ i
- re[‘lclle'l that is, the vertical plane }
he merwdian,
passes b

north and south.

being noted, the completion of the orbit i
g attaining thay heighz,

together with sun ig called t
the axis of the earth Wwith th

The plane containing this orhit
e Beliptic. The angle made by
13 plane is always about 664°.




190 PHYSICAL MEASUREMENT

6. How much earlier does the same star cross the meridic, |
each night ? S

Remember that the earth has two motions, in consequen
of which there is a daily apparent motion of the stars, and
yearly apparent motion of them which is added to the dail;
motion. If the earth were not rotating at all, the yearly
revolution of the earth would cause the same apparent change
in the sky at night as now occurs in 24 hours.

7 What is necessary for finding out the position of a shin- |
at sea, assuming the necessary instruments and almanacs o
on hoard? To answer this question, remember that we "_l d
to find out longitude and latitude. Longitude is learnt -
finding out the highest position of the sun, and the time *
indicated by a good chronometer. How is this done? HL
will the position of the Pole Star, or the suw at its highest poin?
vary with the latitude ? : f

8, Suspend a small magnet by = fine fibre of silk, and show
that it makes all its vibrations in equal times (that is, its
vibrations are isochronous). To do so count the number of
vibrations during successive minutes, or longer periods. Show

that the same statements hold, for a stronger maguet,! but that '

the vibrations take a shorter time.

9. Tix to the middle of a large mass, a cube or sphere of iron
or other metal weighing from 20 to 60 pounds, a steel wire,
which is thick enough to support it with safety, but not too
thick. The wire should be rigidly fixed to the mass, and should
be firmly and tightly supported at a height to allow at least
& feet of wire to be tightly stretched by the mass. Fix a small
mass, bwist it round about twice, and

mark or pointer on the
leave the wire to twist and untwist itself under the action of

mass,  Prove that the movement is isochronous ; and that the
apparatus is capable of acting as a time-keeper. It is essential
that the fastening at each end should be firm enough to prevent
the wire turning at the top, while at the bottom it must move
throngh the same angle as the mass itself.

1 The stronger magnet should not be bigger, or it may swing more
lowly; in fact, a change, which will be observed in the next guestion,

may counteract the, change due to magnetism.

CHAPTER VIIL

MODES OF RECORDING OBSERVATIONS,
USE OF NAMES AND LANGUAGE,

139. Tt is one thing :

others what we hsz};;nb F.o 0bse1v{e. - ke
1 _ ourselves observed is anotl
m&tt(?l.. There is often as much need of earﬂt' o
d;swlzr{pthrz of what has been done, as in fheb 1:11:31:1?:;
of doing 16,  Yet the true i
in iearning about nature, njffl;db);11ct);fns;;fcl’;ce SR
arm:/;il are now occupied in observing the objects
L us, Later on we shall have to use
reasoning powers to make dnferences or draw o
Eﬁfgﬁ; fromhwhab we observe. In descrﬂ;i?;w cs::;
w g

alrea?ly hade tso ac{isléi‘;lf; Z:hzsew}emlllguage, e
main intention has been g
! : nas been to observe, the act of
measurement being the chief part of t};is worl :
measuring, we have merely observed more ] Mol
accurately. The use of names has b e .
the nse of our senses. g
areAESZEe ):I(;a;nesilgnfdlt 18 ‘Jmpormnt that when names
58 ,h’ y shou .be rightly used; that the same

e should be the sign of the same object. When

n secondary to
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the word sphere is used, it is essential that it should
convey the same meaning to all. If it serve this
purpose it will be wn consequence of all our thoughts
about the sphere being alike. To know the nature and
properties of a sphere we must have it before us,
we must see it, and find out by observation what
it is like.

140. A name, as sphere, may stand for an in-
dividual object which we are observing; but we pass
from the individual to a class in learning that there

are a large number of such bodies. We may learn

facts which are true of that individual sphere, such
as its exact diameter or its colour, but in the main
we have learnt facts that are true of all kinds of
spheres. Hence we can make « general statement or
proposition about spheres, for example, that every point
on the surface of a sphere is equally distant from
its centre. This is an important thought, which the
name sphere ought tc raise in the minds of all
who use that mame. There are other thoughts, too,
which the name should raise, but if we combine the
thought just mentioned with the thought that a
sphere is a solid figure, we know all the essentials
of a sphere and we have defined it. But it may,
perhaps, be as well to know how to deseribe ohjects
for ordinary purposes before we attempt to define
them.

141, There is nothing more important at the
beginning of the study of science, than to be able
to write out in a simple but exact manner a descrip-
tion of what has been observed. And there is
nothing that is rarer than excellence in this’ respect.
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Constant exercise is needed to gain any facility in
description.!

Now a description of an object may be satisfactory
in some respects, and unsatisfactory in others. It may
be sufficient to denote what is meant on some par-
ticular occasion, as, when we say a man is a two-
legged animal, we state one difference between a man
and a caterpillar. Or,again, in saying that a measure-
ment was made with a metre scale, all the necessary
description may have been given, but neither descrip-
tions would be complete.  Whether a description is
sufficient or exact enough depends upon the purpose
in view.

All that which is an essential or a necessary part of
any occurrence or fact must be expressed in words if
a description is to be good. And the first and chief
aim of all attempts at description should be to make
sure in your mind what it is that yow have observed.
Then you may use fitting langnage to express it. This
is fio easy task; and one of the chief aims of your
work will be to carry on this most important training,
namely, the separation of fact from fact, and the direc-
tion of the senses to one property while others are
neglected. :

142. Correct observation, then, is the first step, and
adequate description must follow it. ~ When many
objects or events have Dbeen observed fo be alike in

11t is advisable to give examples of descriptions, and then set
questions on the same’subject. For instance : a hat is a cover-
ing for the head. A box is something made of wood or other
material joined together so that it may serve the purpose of
holding bodies. A ook is a collection of sheets of paper with
printing thereon. Now, describe a pen, candle, table, football,
and collar.

N
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some respect, we are in a position to make a quuwl(qc;
tion.  'We begin to form a class, and a certain def ‘1} ¥

statement or proposition may he made about allhg NG
members of the class.

For example, we notice that in all cases where we
have measured the mass of 1 c.c. of pure waler, we
have found it equal to 1 gram. This is the simplest
form of generalization, and yet there must be an
accumulation of observations to enable us to make the
general statement that any c.c. of pure water weighs
1 gram. It is, of course, easy to use arguments, such
as the recognazed wniformity of nature ; to assert that it
is in the ordinary course of nature for matter to be uni-
formly distributed in the same body; bub these state-

ments are based upon the experience of innumerable |

instances of this and like cases.

143. A generalization of a different class is made
when we discover all circles to have the circumference

3:1416 times the diameter. This is a generalization

which is recognized to be @ mnecessary trutl for all
circles, as in all circles there must be the same relation
between the -diameter and the ecircunference. Or
again, when we say that every point on the circum-
ference is equidistant from the centre of a circle, we
express a, general truth or generalization which alsq
serves as a definition of all circles.

A definition is a description so complete that an ohject
may be recognized readily from it. A definition does
not necessarily describe the most prominent properties,
but it must give those which are essential.

We may nofice that names do more than merely
point out or denole. Terms like square or circle hring
up in the mind the thoughts of certain properties
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which belong to these objects in general.  One or other
object may be denoted, hut the propertics of the object
are connoted at the same time.

MODES OF RECORDING OBSERVATIONS BY USE
OF LINES.

144, We have learnt already that observations 1may
be recorded with accuracy, by the use of terms and
language which have been selected according to certain
rules of exactuess. It must be granted, for example,
that a given term shall a,lways gtand for the same
object or quality; that the word eube, or the word
size, shall always bear the same meaning for those
who use it.

When a given term is used, it ought to convey fo
the minds of others such thoughts about that thing, of
which it is the sien, as we oursclves have in owr own
minds. And the thoughts of each one, when tested by
the same questions, should produce always the same
angwers.

But the use of luwyuage, unless quantities alone
are referred to, often leads to naccuracy; and long
before we can trust ourselves to learn about nature
Jrom descripiion, we should oceupy ourselves with such
observations as can easily lend themselves to measire-
ment. It is for this reason chiefly, that the study of
natural science should always commence with accurate
methods of measurements and aceurate methods of record.

145. All the quantities, which have been measured
so far, have been such as could he represented by e
number and the mome ¢f ¢ wnit; and no quantity
can have its value, or numerical value as it is called,
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represented in words except by a phrase which has
two parts or components, a number and & unit. For
example, in describing a length we say fhiee fect, one
metre, two millimetres.

It is true we might describe a variety of lengths by
werely giving a series of numbers, to which the name
of a unit is supposed to be attached. We say the
dimensions of a room are 24 by 20, meaning 24 by
20 feet. But when verious units are in use it is im-
portant to state which one is meant. If a universal
unit of length were in use, numbers alone would describe
any given length adequately. -

146. Now if we fix upon a given length, and draw a
line which shall have as many millimetres in length as
a given object has centimetres in length, we shall have
a line standing as a record of the length of this object.
The line would in fact have one-tenth the length of
the object measured. We then say it is « 7ecord
drawn on the scole of one-tenth, or, for shortness, on a
17 scale. Keeping to the same scale, or to any other
which may prove convenient, we may represent any
number of lengths by lines drawn to correspond with
them. For this reason we can recall from the recorded
lines the lengths for whick they stand. All that is
needed is to measure the lines, and then change the unit.

A line of 15 mm, on a % scale will express a length
of 15 cm.

147. But it is not only lengths which can be repre-

sented in this way. A line of 1 mm. may be used as
a record of 1 gram, and then any number of grams may
be represented by lines, drawn to correspond with them
by the number of millimetres it contajns. A line
12'5 mm. in length would denote 195 grams.
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In‘ just the same manner time may be recorded by
lines. 1t must be remembered then that the thrge
primary quantities, Length, Mags, and Time, may be repre-
gented by means of straight lines drawn on paper, t_he
length of line denoting the numerical value of the quantity
according to a scale determined on beforehand.

Tn addition, we may mark off upon lines lengths
which shall correspond with any XLind of quantity
besides those mentioned ; and a mere inspection of the
lines will at once convey to the mind an impression of
the relative values of these guantities. DPerhaps it is
the greatest advantage of this mode of representation
that it does immediately convey to the mind in a simple
and direct manner what is intended to be expressed. Such
a record is said to be graphic.

148, It is not difficult to perceive that if our record
is a true one, the lines drawn ought to correspond
cxactly with the values recorded. This implies that
the accuracy of the drawing is quite equal to that of
the measurement. We should be able to measure off
lengths of lines at least as accurately as we have been
able to measure the quantities to be expressed. Now,
we may frequently find a quantity which cannot be
stated precisely in terms of a given unit. For ex-
ample, a distance to be measured may not be any
exact number of centimetres, or even millimetres,
small as a millimetre is for a standard. It is true
we might subdivide the millimetre, and express the
extra length as a fraction; but on emgploying a micro-
scope for greater accuracy, we might then find that it
did not quite correspond with the supposed fraction.
Similarly, we may employ in any measurement more
and more accurate instruments or means, and come to
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measure approximately. At the same time, such
measurements may he said to be accurate, if they serve
their purpose accurately. The same statement may
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(1 mm, represents 1 cm., or 1 cm. represents 1 decimetre).

2. Taking a length of 1 em. to stand for a gran, draw lines
to represent 5, 12, 65, and "9 grams.

3. Measure the length and breadth of the room in feet, and

1. Draw lines to represent 1-5 and '35 metres to Y scale

! ; 4 ’ bout 4 inch
draw lines to corvespond, representing every foot by L of an B aoes ruled nto squares of 2 :
inch. The scale is called for shortness } scale, and is the one  with thelr Pag fat
most frequently used in architects’ plans. g square. k. paper with smaller sec
. . i ed WOTK, 1 P
Proceed from these two lines to represent the room in plan,

Tor more advanc
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is aided by

th-inch squares)
in this case 1

drawing on paper an area which represents that of the room.

Prove that your area coutains as many squares, each 3 of an The counting of the SQ‘JMC}S_ 1, show squares of 25
inch in the side, as there are square feet in the room. b - ed lines, which 11
; « means of colow ed ) the area of the sma

4. Measure the room again in metres, or calculate the dimen-
sions in metres from the value in feet, and draw a plan to the
scale of 1 cm. for 1 metre (or 1 mm. for 1 decimetre).

How will your two areas be related to one another ?

5. Measure all the dimensions of a box in centimetres, and
draw them to 335 scale.  Draw a plan and elevation of the box,
that is, one horizontal and one vertical surface, and show that
they form a vecord of all the external dimensions of the box.

6. A plan and elevation of a box arve drawn to 1 scale ; cal-
culate the total volume from the plans given you,
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valuable services which it can lend, in enabling us to
make records of two quantities by a single operation.

1. Notice the relation between linear distance and number of
squares, in a larger square drawn upon the paper. Without
measuring by any other standard, take as unit of length the
side of a small square, and notice that squares of 4, 6, and 8
units of length in the side contain 16, 36, and 64 small squares.

2. Draw upon the squared paper any right-angled triangle
with two gides coineiding with two lines of the paper, and note
that it is always one-half of a rectangle of the same base and
height.

You will perceive that-one side of the triangle acts as a
diagonal to the rectangle, and it cuts the squares in such manner
that it leaves segments with counterparis on each side the line.

3. Draw a triangle, not a right-angled one, and show that it
is one-half a parallelogram of the same base and height.

Then show that the parallelogram is equal to a rectangle on
the same base, and of the same height.

Hence the area of any triangle may always be ascertained as
half that of a rectangle of the same base and height.

The same facts may he proved geometrically, or by cutting
paper to the required shapes. :

4. Draw circles on squared paper with radii in the relation of
1, 2, and 3, and show by means of counting the squaves that
their areas are related as 1, 4, and 9, in just the same way as
squares are related to their linear dimensions.

5. Draw several rectangles of the sume area, varying the
relation of the sides to ome another, but maintaining their
product unaltered : for example, 8x6, 12x4, 16x3, 24x2,
48 x 1, and notice that they contain the same number of squares.

6. Trace on the squared paper any irregular surface, such as
that of a fragment of paper, and caleulate the arvea of your
tracing by measuring that of a single square, and counting the
number of squares. A number of pieces of paper cut together,
g0 as to have the same area, should be given to the class.

7. Draw a plan of the 1'00-131,' taking the side of one of the
squares of paper to represent one foot. Show in yowr plan the
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right position of the tables in the room. Calculate from your
: e of the {loor which is unoceupied by tables.

plan the ar

Fi6. 11,—Two circles with radii as 1 to 2 may be seen to possess
arcas as 1to4,

8. Draw a hexagon (a six-sided figure with all its angles 120°%)
on the line made hy the sides of three adjacent squares, and
find out the number of squares it contains. Show that its
avea is the same as the sum of the areas of the six equilateral
triangles, which are made by drawing lines from its centre to
each of its angles.

Algo ascertain its area by dividing it into three parallelograms.

N

Fic. 93.—The line AB is cquidistant from 0 and 0N at every poinf.
The line ¢ is ab every point twice as far from 04 as from ON.




202 PHYSICAL MEASUREMENT

9. Draw at right angles two lines to coincide with those n-f
the paper. Then trace out a line which shall be always equi-
distant from each of the given lines.

10. Draw lines which shall be throughout their length ab a
distance of 2 to 1, and also at 3 to 1, from the two lines
respectively. :

11. Find a point which is distant from the-two. lines 1'espe.ct-
ively in the relation of 13 to 11. Also a point in the relation
22 to 19. )

(In each of the cases place the points as near ag possible to
the angle, consistently with accurate meagurement,) ;

Then join either of the peints with the angle by.'a. straight
line, and make it clear to vourself, that every "fpomi on that
straight line should maintein an wnehanged relation, as regards
distance, from the two given lines at right angles.

12. Divide a line, cqual inlength to the sides of 20 squares, into
two parts, which shall be in the same relation as the numbers

B 7 C 9 A A
=t i is divided at € into two parts, which are relate
T1a. 93.—The line 4B is Pl !

9 and 7. Count oﬁ'vd.iat,a]; ¢ &
successively along a 1
extremity of the ﬁfstf
and then draw a parall
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FURTHER EXERCISES IN THE USE OF SQUARED PAPER.
Two Quantities of the same Find represented by « Curve,

1. Use squared paper, draw two lines at right angles to each
other, and find a point which shall represent, on 11y scale, the
position of an object 25 metres from one wall of the room and
375 metres from the other.

2. Draw a line on squared paper which shall show the relation
between the length and breadth of a rectangle, which alters in
shape but maintains the same area.

20

S e e

10

%]

10 20

Fra. 94.—A B is a line all the points of which deseribe, by means of the
distances from the two co-ordinates, a rectanglo of the same avea.

1f we count units of length along one co-ordinate, and units of
breadth along the other, we can indicate a succession of rect-
angles of the same area, as may be gathered from an inspection
of the line 44 in Fig 94 This line may change its position on
the diagram, but its shape will not alter.

3. Draw, in the quadrant of a circle of some 8 em. radius, lines
to mark off every angle 5% 10°, 15°, 20°, etc., up to 90° Then
draw chords to these angles.

Draw two lines at vight angles on squared paper, along one
measure angles, and along the other measure the chords.

Draw the line which will show the relation between the
magnitude of an angle and its chord.
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8. Draw a curve which will show how the avea of a circle
increases with its radius, representing the fact that it increases
ag the square of its radius, taking 1, 2, 3, 4, 5, etc., units as

|

2015 radif.
I
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A ot e T
0 15 30 a5 60 75 90 RN
Fia. 95.—AB is a line showing the relation between the magnitude of an | -»-.\
angle and its chord, Eia
. . & gt ]
4, Carry out the same observation, but instead of drawing ;g;-go-
the chords, draw perpendiculars from the extremities of the 5 f&j}i’ !
tracing line. Make a record of your results in the same way EEEEE
as in the preceding exercise. AAhah HE
5. Making use of the plan recording the relation existing g
Letween an angle and its chord, find out from your curve the IEEp R —::: A AR —H
angles which, having sides of the same length as those re- il /-/ 8 o i L G s
corded, would have chords of & 9, and 10 units of length E /-I“ e B ’i"'lp-.cza.‘a'c:t_'-"? 1 1 e
) v ATATT | 7 1 3 s 2 ) e ) o o £ 3 ] ]
respectively. 0 1 20 30 40 50 ©0 70 80 90

6. Also, find from your other curve the angles, of which th
subtending perpendiculars have 6, 7, 1, 4, and 7 units
length, the radius of the circle being 10 wnits.

7. Measure the angle, made by two points on the

Fic. 06.—d4 B is a line showing the relation between the magnitude of
an angle and that of the perpendicular dropped from the extremity of
the line tracing out the angle.

9. Draw another curve representing the fact that the volume
of a sphere varies as the cube of its radius,

Nore.—It may be pointed out that the word curve is used in
speaking of any line, whether straight or curved, used in

diagrams of this kind as a record of the relation between two
quantities.

the curve constructed 1
dicular (the distance
unknown).
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|
SUMMARY. \ i

149. In the preceding exercise we made observations
which can be looked upon as the measurement of two
quantitics of the same kind, and we have been able to
make a record of the results in such a way that the
same sign marks out the two quantities.

The two straight lines which have been drawn at
right angles to one another may he called t-he.co-
ordinales. Dy means of these co-ordinates, fwo quantities
may be represented af one and the swme time.

It will be admitted that there is no possible objec-
tionr to a given length of line standing for another
distance. We may represent a mile by a millimetre if
necessary. Moreover it is eclear that a convenieng
record of other quantities, time and mass for example,
may be made, by means of straight lines of lengths
which have been agreed upon beforehand.

But by referring to two straight lines at right angles,
we can represent at the same time two linear distances.
For we can draw a line at any distance from one of
these lines so that all points on it are equally distant
from it (7.c, parallel to it), and we can 'select' such
a point on this line that it is af any required dustane
Jrom the other line. 5

Hence such a point gives two lengths, an these ©
lengths may he the records of any two quantities we
to express. A i

Tt is clear that there would be no g
use of this method of expreﬁs'
some connection between the ©
quantities which are ¢
is used. B

There is no diffie
cages. The area
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increases. The cost of goods increases at the same
time as the quantity. The size of a growing boy
increases with years. The tightness or pressure of air
within a football depends upon the quantity of air
forced in. These are a few examples of the numerous
quantities which are found to be connected together,
and their connection is most directly and conveniently
expressed by means of curves.

Tt will be noticed that we simply make use of the two
dimensions of a plane surface. Our records are, as a
rule, expressed on paper, and therefore we take such
means as a plane surface presents.  That is, we measure
S0 many steps in ome direction, and so many in a
direction at right angles, one direction being length-
ways, the other broadways. We have carried on the
same operations as are needed in deseribing the position of
@ point m a plane,

In the exercise given above, quantities of t4e swme
kind were given, but we shall soon proceed to cases
where the quantities are not of the same kind.

150. EXPLANATION OF SOME IMPORTANT TERMS,

Ossrvarion.—Wlhenever our senses are affected or acted on
in any way we are said to observe. To see, to hear, to
touch, to smell, or to taste, is to observe! Whatever we
observe is outside ourselves, and by the act of observation
we are placed in connection with the world which exists
apart from ourselves. We may divide what we can
perceive or notice by means of the senses into two classes,
nawmely, objects and events, or, objects us they are and objects
as undergoing changes of various kinds.

ExpermveNt,—Changes may Dbe either such as oceur indepen-
dently of ourselves, or they may be caused or set in motion

* Using the word observe in the simple and dircot senso which is
hecessary in this connection, and is employed throughout this beok,
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by our own acts. Those changes which go on in nature
apart from ourselves may, or may 1ot be observed by us.
But it sometimes happens that we ean alter or control such
changes, and if we do so for the purpose of adding to our
knowledge, we perform an caperiment.  In addition to this
we may bring together, order, or arrange objects so that
they may undergo change. 1f we do this with a view to
observe what takes place, we make an experiment.
Tanguaek.—The impressions made by external objects and
events upon one person, are made known to others by
means of words. The same word ought, on all occasions,
to stand as a sign of the same object or event, so that,
“when it is spoken or written, it may have on the mind of
the person hearing or reading it, an effect similar to that
existing in the mind of the person using that word. A
word may also serve as a sign of a thought about an object
or change, Hence it is that language is a means of com-
municating or recording observations, and thoughis based
upon observations. :
Trovanr.—Our minds are so constituted that impressions
received from the external world linger for varying periods

of time. We are, therefore, able to call up or recollect past
impressions as well as to receive fresh ones. A new observ-

ation may therefore be made at the same time as we
recall one or more past impressions, which are similar i
kind or in any way connected with it. In such case w
in a condition to think about the object or event whic
observed. We must be careful, on all such occas
keep the impression, which is received durin
observation, quite separate and distinct
which are called up in colmectiop_ vith
it is important to distinguish wha
inferred. i

CHAPTER IX.

MEASUREMENT AND RECORD OF TWO
CONNECTED QUANTITIES.

MEANING OF DENSITY.

151. We have already learnt that in the same kind
of matter the mass is always directly proportional to
the volume, that is, mass and volume increase together
at the same rate. There are, for example, in 10 c.c.
of water 10 times the mass existing in 1 c.c. This
statement is in agreement with all our experience.
We have no reason for supposing that there is any-
thing but uniformity in the composition of water, and
all experiments show that it is uniform. If we found
any deviation from the statement now quoted, we
should suspect the presence of some Find of matter which
is not water. The same argument holds for other
kinds of matter! All kinds of tests confirm this
general truth of nature, that under the same conditions

* the mass varies as the volume.

In the following diagram drawn on squared paper,

! The argument assumes that difference of physical conditions
no more exists than difference of chemical composition. The
result of change of conditions must be learnt from the study of
physics.

0
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that law is expressed by the line AB.  Units of
length along one co-ordinate stand for units of .mass,
and units of length along the other represent 111?1ts of
volume. The line 4B is formed of a succession of
points, each one of which marks the magnitude of both
mass and volume at the same time: mass by the
distance from the vertical line : and volume by
the distance from the horizontal ome.  The wumnits
of length measured along each co-ordinate are
equal, that is, the side of each square represents a
unit of mass or volume, and in consequence of this,

20
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Fic. 97.—Diagram showing by the line 4B the relation between the

mass and volume of water. The mass is measured along the horizontal

co-ordinate, i.c., from left to right, while the volume is measured by the
vertical distance. 3

the line AB is equally distant at all points
co-ordinate. An inspection will '
Now this diagram exactly rep
between the numerical v: :
the case of water, for the
contain the unit of mass or

Jrom either -

this clear.
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152. But we will now consider how we may repre-
sent by a diagram the relation between the numerical
values of mass and volume, in the case of a kind of
matter, such as brass, which contains about 8 times the
wunit of mass in the wnit of volume. Taking another
piece of squared paper and drawing co-ordinates, we
find a point which represents 8 divisions along the
line of mass, and 1 division along the line of volume.
Another point representing 16 units of mass and 2
units of volume is next found, and so on. Then

0 S TV e 2 2 e E I T ) -
e &
e Tfel TSIl St LR e E

5-0f-R L
..g i 1 =il
ENNEE i 1
25/ 3 N EN T

CATIEE ] e B J—I— £l
iKY TR I
2= R Randmamaans
o] B 10 15 20 25 30 35 40

Mass of Brass in Grams.
Fic, 98.—A diagram 1‘ept.*esen’ciug approximately the relation between

st e B TR D e

of volume. (Note each unit of volume takes fwo squares.)
the line joining these various points represents
in a continuous record the numerical values of hoth
mass and volume. That is, the records of the two
quantities are made at once, and by the same mark.

It may be pointed out that we may shorten the
phrase—the relation, or ratio, between the numerical
value of mass and the numerical value of volume.
For the sake of rapid expression we may speak of the
relation between mass and volume, although we may

‘be aware that, strictly speaking, there is no relation
- between mass and volume possible. It is their numerical

values which are related.
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153, Now it is not diffienlt to realize, and diagrams
should be drawn to assist you to realize, that no change
in the units by which you measure can prevent any
one of these lines from showing what it is intended to
show, namely,

First. The lines exhibit the primary fact that the

mass ig proportional to the volume; and

Secondly. They indicate in what manner the mass and
volume (or rather, the nwmerical value of mass and
numerical value of volume) are related. We may also
point out that the lines must always be straight lines.
When one guantity is directly proportional to another a
stvaight line alone ean represent this foct.
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Frc. 99.—Diagram representing the relations between the masses
and volumes of two kinds of matter, water and brass, and showing at
the same time the difference in these relations, (Note that the scale for
the volume of the brass is not the same as in the last fignre.)

We may now proceed to take another step, by com-
bining the two diagrams in one (Fig. 99). Here we
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have represented in the same diagram the two items of
information, which are given above, for two distinet
kinds of matter. But we need not draw a limit at
two lines.  The same diagram may inelude any number
of lines, each line representing these relations as they
exist for each kind of matter.

154, In such a diagram we may give any conveniont
velue of mass or volume to a unit of length, but the
relation existing hetween the lines themselves will always
remain unchanged. The same facts will always be re-
presented.  These facts are wmore easily expressed by
using the word Density, which stands for the relation
existing Dbetween the quantity of matter and the
quantity of space which it oceupies. We may say (1)
That the density of the swme Eind of satter wnder the
saane. conditions does not vary, and (2) That different
kinds of wmatler have different densities.  These state-
ments express the same facts as arve given above, and
the lines shown in the diagraws ave lines of density.

Nore.—To avoid confusion, it is convenient to call the line
forming the recerd a curve, even when it is straight. It is of
the utmost importance that the meaning of every line and the
scale of distances should be clearly stated in each diagram.

Write under each diagram what it is intended to show, and write
against each line the meaning you intend it to bear.

EXERCISES IN RECORDING CONNECTED QUANTITIES.

L Draw two co-ordinates 0L and 0. on squared paper, and
trace a curve which shall represent the rvelation between the
wagnitude of the side and that of the area of a square,

1t is known that if the numerical value of the side of a square
be 1, then its area will have a numerical value of 1 that if its
side be denoted by 2, then its avea hag a magnitude of 4, and so
on.  To tale examples, if the sides of a series of squares are re-
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presented by 1, 2, 3, 4, 5, ete. centimetres, then the correspond-
ing areas will be 1, 4, 9, 16, 25, etc. square centimetres.

On your diagram make five crosses which shall mark distances
in the direction of OL to correspond with the linear dimensions,
and shall at the same time mark, in the direction of 0.4, distances
to correspond with the square measures or areas. For instance,
the centre of the cross @ marks 1 unit of length in both
directions ; the centre of the cross b marks 2 units of length in
the same direction as 0L, and, at the same time, 4 units of
length in the same direction as O.. Take further points
¢, d, and ¢, agreeing with linear dimensions of 3, 4, and 5, and
also with the corresponding square measures.

-

Length of Side

- K WP O]

L ok 5 I e 50 I
O 1234506789101 121314151617 18 1920 21 22 23 24 250627 A
Area of Square

Fic. 100.—A curve showing the numerical values of the areas of
various squaves at the same time as it points out the lengths of the
sides containing those areas. llence it shows the relation between the
linear dimension and the quantity of surface in a square.

It may now be found that these points «, b, ¢, d and ¢ are too
wide apart to trace a curve to include them with any certainty
of accuracy. Points should now be interposed or intercalated,
corresponding with linear dimensions of 1'5, 2'5, 3'5, and 45,
and with areas of the squares of these numbers,

The curve connecting them may be traced by hand, bus it
may be drawn better by using a flexible lath, bending it to co-
incide with these points, and tracing a curve from its face.

YVe now possess a curve which exhibits the relation required.
Test its accuracy by taking several intermediate points, measur-
ing the distances in the direction representing linear dimensions,
and also in the direction representing areas, and noting if they
agree with your calculations.

9. Construct, in the same manner as in the last exercise, a

diagram which shall exhibit the magnitude of the area of a
rectangle, when one side remains unchanged, say at 2 units of
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length, and the other side increases from 1, 2, 3, ete.,, up to 10
units. Remember that the area of a rectangle is caleulated by
multiplying together the two sides. Note that the curve ex-
pressing this relation is a straight line.

3. Construct a curve showing the relation between the area of
a cirele and its radius, Follow the instructions laid down in
No. 1 as to the need of intercalation.

Remember that the arvea of a circle may be calculated from
the square of the numerical value of the radius multiplied by a
number 31416, or 7 ; but since the square of the value of the
radius is always multiplied by this number, the relation between
the areas is not altered, and the shape of the curve is not affected,
by omitting this number from the calculation.

In order to understand that the relution between two quan-
tities is not affected Ly multiplying them both by the same
number, it is only necessary to take two simple lengths, such as
9 ft. and 3 ft., repeat them two or three times, in other words,
multiply them by 2 or 3, and we have 4 ft. and 6 ft., or 6 ft. and
9 ft. But each of these pairs is similarly related. 3 ft. is half
as long again as 2 ft., and 6 and 9 ft. are distances half as long
again as 4 and 6 ft. respectively.!

After drawing the required curve to express that the areas
are always related in the same way to the squares of the radius,
draw another curve on the same diagram showing the same
relation, but in this case caleulate the areas fully as o x7z%
Note that the two curves are of the same kind (Fig. 101).

Note also that the curves are of the same shape as that ex-
pressing the relation between the numerical values of the side
and area of a square (Fig. 100).

4. Make use of the squared paper to obtain a curve showing
the relation between inches and centimetres. Take two lines,
04 and OB at right angles (co-ordinates), and calling the sides
of the larger squaves (for we shall need subdivisions of these
lengths) along 04, centimetres, and those along 0B, inches, we
can obtain a curve expressing the number of centimetres in any
required number of inches. Note, that lines may be made to act
as signs of any quantities whatever.

1 Either an actual measurement or a pictorial representation will help
you to realize this. A superficial knowledge is not enough.
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Fra. 101.—Two curves showing the relation between the radius and
the area of a circle. One is obtained by ealeulating the area (by multi-
plying the square of the radius by 8:1416), and the other is obtained by
considering the area as pr tional to the square of the radius. The
former may be the record of actual observations. It may be noted that
the scale for areas is one-fenth that of the radii, In Fig. 100 the scales

are alike.
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Taking the value of an inch in centimetres to be 2-54, which
may be measured practically on a scale, select a point which has
127 divisions in the direction of 04, and five divisions in the
direction of OB (Fig. 102). We shall then have a point «
which represents on our diagram both 5 inches and its
equivalent in centimetres (5x254 or 127). We have re-
presented equal lengths in each direction; but, since the units
of length measured in different directions on our diagram
stand for different quantities (in the one case standing for an
inch, and in the other for a centimetre), the actual length along
OB is not the same as that along 04,

T4 g e | O T 210
Centimelres

Fia. 102.—A dingram showing the value of lengths up to 13 centimetres,

cither in inches or centimetres.

Join the point so obtained with ¢, and we shall have a curve
which represents all values from 1 up to 5 inches. We may
take any length not greater than 5 inches, and find by referring
to the curve the value of this length in centimetres. Similarly
we may find the value in inches of any length not greater than
127 cm.

Such a curve does more than act as a record of observa-
tiong, It affords valuable information when certain questions
are put to it.

Note carefully that by producing the line we can compare
the values of longer lengths in the two systews of weasure-
ment.

Find from your curve the value in centimetres of 3, 4, and
4'5 inches.
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5. Make use of squared paper to obtain a curve showing the
relation between pounds and kilograms.

Tollow the same method again, and use the larger squares
again. Suppose the units of length in one direction to represent
pounds, and those in the other direction to indicate kilograms.
Find a point which expresses the value of the kilogram in
pounds.  Join this point with the meeting-point of the two
co-ordinates. (This point is called the origin.)  Then this line
may be continued to any distance, so as to represent any length
within the dimensions of the paper.,
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Fig. 103, —A dingram showing the value in both pounds and kilograms
of masses up to ¢ kilograms (or 132 pounds),

Find out from your curve the value in kilograms of 15, 2-5,

4 and 7 pounds, and also the value in pounds of 2, 4, 5 and
7 kilograms,

6. Find the mass of a flask which will hold 25 c.c. of liquid
and is marked to show that volume.  Fill it up to the mark
with pure water and weigh again,  Perform the same operation
again in a 50 c.c. flask, and also in a 100 c.c. flask.

Make a diagram on squared paper.which shall represent the
results of your observations, Measure cubic centimetres along
one co-ordinate and grams along the other. Connect the marks
indicating the three observations by a line (usually called a
curve even if straight).

Next make use of your curve to inform you of the mass of
10, 20, 60, ete., c.c. i

The information given by the diagram
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the results obtainable from observation. Test how far your
curve correctly represents intermediate values by making
observations. Weigh a Dbeaker carefully, and then drop in
from a burette 10, 20, 60, etc, cubic centimetres of water,
weighing on the occasion of each addition. :

Your observations should inform you that 1 c.c, of water contains
1 gram of matter.

Use a weighed beaker and a burette, and perform the same
series of observations with methylated spirits, turpentine, ether,
solution of common salt, and other liquids. Then draw the
corresponding curves on a diagram, such as is shown for other
substances in Fig. 104. The mass of 25 c.c. of mercury may
also be found, and the masses of larger volumes be assumed.
The beaker should he well cleansed and dried after each liguid
has been used.
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Fic. 104, —A diagram showing the relations between the volumes and
masses for different substances, and also the relation hefween the masses
of equal volumes of these substances, that is, their relative densities. For
the latter purpose any horizontal line may be sclected which cuts the
various curves.

It may be admitted that any poins on any of these so-called
curves, provided the measurements expressed by certain points
on them are correct, will express a certain fact, namely, the
mass of a known volume of the substance. A given point may
be selected, then its distance from the one co-ordinate will repre-
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sent the numerical value of the volmme, while its distance from
the other will show the numerical value of the mass. The
points between those which record our observations shouwld be of
equal value as records of fucts.

The diagram will also reveal to us the masses of equal
volumes of the various liquids.  All that is needed is to draw a
horizomtal line from any convenient point on the line of volumes,
Then the length, cut off between any one of the points of inter-
section with the curves and the horizontal co-ordinate, shows
the guantity of matter contained in a given volume of the sub-
stance denoted by that curve. (One of the horizontal lines
already existing in the diagram will serve the purpoese equally
well.)

In other words, the linear distances of the points of inter-
section, made by this line with the curves, from the line of
volumes, stand for the relative quantity of matter in equal
volumes of the various substances. These distances express the
relative densities of the substauces. And we may note that the
density of water is 1,

7. Measure the mass of the given cireular brass cylinder in
grams, and then measure its volume by observing fhow much
wader it displaces,

Place water in a burette up to a certain level, say the 50 c.c.
mark. Then slide the cylinder down the tilted burette. Note
the level at which the water now stands. The difference of
level enables you to measure the volume.

Now culeulate the volume, by wmeasuring the dimensions of
the cylinder in cms., and multiplying the square of the radius
by the height and by & (m2%). The result should be the same
as that obtained by observation of the displacement of water.

Kunowing the numerical values of the mass and volume,
ascertain the number of units of mass in one unit of volume.
The number obtained is called the density of brass. This
number may be regarded as an index of the compactness of the
matter in that substance. There is more matier in 1 c.c. of
brass than in 1 c.c. of water.

The great convenience arising from a knowledge of the
number of grams of matter there are in 1 c.c. of a substance,
lies in the opportunity'of comparison which it affords. By
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knowing the different guantities of matter, contained in the
same volume of different substances, we can compare their
densities. They are all brought to the same scale. Tn order
to do this, it is always necessary to divide the number of wnits
of mass by the number of units of wolume. 1f we could always
measure the masses of egual volianes, the numbers obtained
would be proportional to the densities.

8. Measure the density of pleces of lead, iron, glass, and
copper, by the method described in the last exercise, namely,
by finding the mass and the volume in each case, and dividing
the numerical values obtained for mass by those obtained for
volume.

Use any graduated vessel, provided it admits of aceuracy in
reading volumes.

Prove by observation that the narrower the vessel the more
accurate the results, for in a narrow vessel the length corre-
sponding with a given volume is greater than in a wide one.

Make a list of the densities oltained.

9. Make calenlations which will produce the numbers needed
to indicate the densities of the above substances, if the unit of
volume he changed to a cubic inch, and the unit of mass to
an ounce. Notice that it is convenient to make two steps in the
caleulation :

(1) Find out how many grams there would be in a cubic inch,

knowing that a cubic inch contains 16-38 c.c.

(2) Find out how many ounces there are in the number of

grams found in the first part.

10. The density of meveury is 13'6. By measuring from two
lines at right angles, on squared paper, construct a line which
shall exhibit the mass of any volume between 10 and 20 c.c. of
mercury. Then find ont from measurement of lengths the
masses of 12'5 and 165 c.c.

What would be the length of a column of water which would
contain the same quantity of matter as a column of mereury of
equal sectional area and 76 cm. in length ?

What would be the respective number of grams in 100 c.e. of
water, brass, lead, and mercury ?

11. Ascertain the diameter of a circular tube (a hurette, for
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example), by allowing a column of water of measured lengtl* to
be taken from it and weighed in a beaker. The beaker itself
must be previously weighed, and the density of water is
assumed to be 1.

(The mass of the water informs you as to the volume of the
water. Then calculate the diameter of a eylinder of the
measured height which is equal in volume to that of the water.)

12. You have given to you a piece of paraflin and a piece of
brass for any investigations you may wish to make, and also a
piece of paraffin which has embedded in it an unknown quantity
of brass. The problem before you is to find out the mass of the
imbedded brass without disengaging it.

THE MEASUREMENT AND RECORD OF DISPLACEMENT
WITH REGARD TO TWO STRAIGHT LINES.

155. The simplest kind of change ever coming hefore
us is change of position, It is of course necessary to
be able to recognize or mark position, before we can
perceive change of position; and when it happens that
position is indefinite, a change in position may pass
without notice. As a rule we mark in our minds the
position of a bedy by observing those bodies which are
near it. 'We refer to these bodies again if we wish to
ascertain whether it moves. A rapid mental measure-
ment takes place.

If, however, the position of a body at one moment
may be denoted (in the manner already described) by a
point in a certain position on a plane, and by another
point to denote its position at some subsequent time,
then we are on the way to learn something about the
displacement of the hody. If the positions of the
body at small intervals of time could be measured, we
should have them represented by points close together;
and in that case the line joining these points would serve
as @ record of the displacement of the body.
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Now we know that displacement may take place in
a variety of directions, but we shall first deal with the
case of a body being displaced in some direction in a
given plane; for example, a stone moving on ice or a
train moving through level country. It will be best
to consider that we can measure the distance of the
body from two lines at right angles. Let these two
distances be marked, on any convenient scale, by corre-
sponding distances from two lines drawn at right angles
on squared paper. Let corresponding measurements
be taken at subsequent periods of time, and marked
on the paper. We shall then obtain a series of points
serving as a record of successive positions of the bhody.

N

S E
Fic. 105.— A curve showing the path along which a body has becn

displaced, or the successive positions of the body. The distances

measured from the two lines ON and 0F denote the position of the

body at any moment.
If the displacement has been at all uniform, the line
joining these points will he a record of the path along
which the body has moved. It may happen that the
displacement has been wery irreguler, and in that case
the line is an incorrect record of the path. To make
it corvect, the measurements must be made at intervals
so small as to include or give an indication of all
irregularities.

156, The same result would be obtained if the body
during its displacement showed its own path, or the
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line along which it had travelled. We should then
transfer this path to Paper, a line drawn to scale repre-
senting it. A body, for example, may be moving in a
straight line to the N.; or in a circle of known radius
from E to w. by way of N. If the direction of the
path be deseribed in this Way, measurcments are not
n